Фракталы теория свойства. Что такое фрактал? Фракталы в природе

Фракталы известны уже почти век, хорошо изучены и имеют многочисленные приложения в жизни. Однако в основе этого явления лежит очень простая идея: бесконечное по красоте и разнообразию множество фигур можно получить из относительно простых конструкций при помощи всего двух операций — копирования и масштабирования.

Что общего у дерева, берега моря, облака или кровеносных сосудов у нас в руке? На первый взгляд может показаться, что все эти объекты ничто не объединяет. Однако на самом деле существует одно свойство структуры, присущее всем перечисленным предметам: они самоподобны. От ветки, как и от ствола дерева, отходят отростки поменьше, от них — еще меньшие, и т. д. , то есть ветка подобна всему дереву. Подобным же образом устроена и кровеносная система: от артерий отходят артериолы, а от них — мельчайшие капилляры, по которым кислород поступает в органы и ткани. Посмотрим на космические снимки морского побережья: мы увидим заливы и полуострова; взглянем на него же, но с высоты птичьего полета: нам будут видны бухты и мысы; теперь представим себе, что мы стоим на пляже и смотрим себе под ноги: всегда найдутся камешки, которые дальше выдаются в воду, чем остальные. То есть береговая линия при увеличении масштаба остается похожей на саму себя. Это свойство объектов американский (правда, выросший во Франции) математик Бенуа Мандельброт назвал фрактальностью, а сами такие объекты — фракталами (от латинского fractus — изломанный).


У этого понятия нет строгого определения. Поэтому слово «фрактал» не является математическим термином. Обычно фракталом называют геометрическую фигуру, которая удовлетворяет одному или нескольким из следующих свойств: Обладает сложной структурой при любом увеличении масштаба (в отличие от, например, прямой, любая часть которой является простейшей геометрической фигурой — отрезком). Является (приближенно) самоподобной. Обладает дробной хаусдорфовой (фрактальной) размерностью, которая больше топологической. Может быть построена рекурсивными процедурами.

Геометрия и алгебра

Изучение фракталов на рубеже XIX и XX веков носило скорее эпизодический, нежели систематический характер, потому что раньше математики в основном изучали «хорошие» объекты, которые поддавались исследованию при помощи общих методов и теорий. В 1872 году немецкий математик Карл Вейерштрасс строит пример непрерывной функции, которая нигде не дифференцируема. Однако его построение было целиком абстрактно и трудно для восприятия. Поэтому в 1904 году швед Хельге фон Кох придумал непрерывную кривую, которая нигде не имеет касательной, причем ее довольно просто нарисовать. Оказалось, что она обладает свойствами фрактала. Один из вариантов этой кривой носит название «снежинка Коха».

Идеи самоподобия фигур подхватил француз Поль Пьер Леви, будущий наставник Бенуа Мандельброта. В 1938 году вышла его статья «Плоские и пространственные кривые и поверхности, состоящие из частей, подобных целому», в которой описан еще один фрактал — С-кривая Леви. Все эти вышеперечисленные фракталы можно условно отнести к одному классу конструктивных (геометрических) фракталов.


Другой класс — динамические (алгебраические) фракталы, к которым относится и множество Мандельброта. Первые исследования в этом направлении начались в начале XX века и связаны с именами французских математиков Гастона Жулиа и Пьера Фату. В 1918 году вышел почти двухсотстраничный мемуар Жулиа, посвященный итерациям комплексных рациональных функций, в котором описаны множества Жулиа — целое семейство фракталов, близко связанных с множеством Мандельброта. Этот труд был удостоен приза Французской академии, однако в нем не содержалось ни одной иллюстрации, так что оценить красоту открытых объектов было невозможно. Несмотря на то что это работа прославила Жулиа среди математиков того времени, о ней довольно быстро забыли. Вновь внимание к ней обратилось лишь полвека спустя с появлением компьютеров: именно они сделали видимыми богатство и красоту мира фракталов.

Фрактальные размерности

Как известно, размерность (число измерений) геометрической фигуры — это число координат, необходимых для определения положения лежащей на этой фигуре точки.
Например, положение точки на кривой определяется одной координатой, на поверхности (не обязательно плоскости) двумя координатами, в трёхмерном пространстве тремя координатами.
С более общей математической точки зрения, можно определить размерность таким образом: увеличение линейных размеров, скажем, в два раза, для одномерных (с топологической точки зрения) объектов (отрезок) приводит к увеличению размера (длины) в два раза, для двумерных (квадрат) такое же увеличение линейных размеров приводит к увеличению размера (площади) в 4 раза, для трехмерных (куб) — в 8 раз. То есть «реальную» (т.н. Хаусдорфову) размерность можно подсчитать в виде отношения логарифма увеличения «размера» объекта к логарифму увеличения его линейного размера. То есть для отрезка D=log (2)/log (2)=1, для плоскости D=log (4)/log (2)=2, для объема D=log (8)/log (2)=3.
Подсчитаем теперь размерность кривой Коха, для построения которой единичный отрезок делят на три равные части и заменяют средний интервал равносторонним треугольником без этого сегмента. При увеличении линейных размеров минимального отрезка в три раза длина кривой Коха возрастает в log (4)/log (3)~1,26. То есть размерность кривой Коха — дробная!

Наука и искусство

В 1982 году вышла книга Мандельброта «Фрактальная геометрия природы», в которой автор собрал и систематизировал практически всю имевшуюся на тот момент информацию о фракталах и в легкой и доступной манере изложил ее. Основной упор в своем изложении Мандельброт сделал не на тяжеловесные формулы и математические конструкции, а на геометрическую интуицию читателей. Благодаря иллюстрациям, полученным при помощи компьютера, и историческим байкам, которыми автор умело разбавил научную составляющую монографии, книга стала бестселлером, а фракталы стали известны широкой публике. Их успех среди нематематиков во многом обусловлен тем, что с помощью весьма простых конструкций и формул, которые способен понять и старшеклассник, получаются удивительные по сложности и красоте изображения. Когда персональные компьютеры стали достаточно мощными, появилось даже целое направление в искусстве — фрактальная живопись, причем заниматься ею мог практически любой владелец компьютера. Сейчас в интернете можно легко найти множество сайтов, посвященных этой теме.


Схема получения кривой Коха

Война и мир

Как уже отмечалось выше, один из природных объектов, имеющих фрактальные свойства, — это береговая линия. С ним, а точнее, с попыткой измерить его длину, связана одна интересная история, которая легла в основу научной статьи Мандельброта, а также описана в его книге «Фрактальная геометрия природы». Речь идет об эксперименте, который поставил Льюис Ричардсон — весьма талантливый и эксцентричный математик, физик и метеоролог. Одним из направлений его исследований была попытка найти математическое описание причин и вероятности возникновения вооруженного конфликта между двумя странами. В числе параметров, которые он учитывал, была протяженность общей границы двух враждующих стран. Когда он собирал данные для численных экспериментов, то обнаружил, что в разных источниках данные об общей границе Испании и Португалии сильно отличаются. Это натолкнуло его на следующее открытие: длина границ страны зависит от линейки, которой мы их измеряем. Чем меньше масштаб, тем длиннее получается граница. Это происходит из-за того, что при большем увеличении становится возможным учитывать все новые и новые изгибы берега, которые раньше игнорировались из-за грубости измерений. И если при каждом увеличении масштаба будут открываться ранее не учтенные изгибы линий, то получится, что длина границ бесконечна! Правда, на самом деле этого не происходит — у точности наших измерений есть конечный предел. Этот парадокс называется эффектом Ричардсона.


Конструктивные (геометрические) фракталы

Алгоритм построения конструктивного фрактала в общем случае таков. Прежде всего нам нужны две подходящие геометрические фигуры, назовем их основой и фрагментом. На первом этапе изображается основа будущего фрактала. Затем некоторые ее части заменяются фрагментом, взятым в подходящем масштабе, — это первая итерация построения. Затем у полученной фигуры снова некоторые части меняются на фигуры, подобные фрагменту, и т. д. Если продолжить этот процесс до бесконечности, то в пределе получится фрактал.

Рассмотрим этот процесс на примере кривой Коха (см. врезку на предыдущей странице). За основу кривой Коха можно взять любую кривую (для «снежинки Коха» это треугольник). Но мы ограничимся простейшим случаем — отрезком. Фрагмент — ломаная, изображенная сверху на рисунке. После первой итерации алгоритма в данном случае исходный отрезок совпадет с фрагментом, затем каждый из составляющих его отрезков сам заменится на ломаную, подобную фрагменту, и т. д. На рисунке показаны первые четыре шага этого процесса.


Языком математики: динамические (алгебраические) фракталы

Фракталы этого типа возникают при исследовании нелинейных динамических систем (отсюда и название). Поведение такой системы можно описать комплексной нелинейной функцией (многочленом) f (z). Возьмем какую-нибудь начальную точку z0 на комплексной плоскости (см. врезку). Теперь рассмотрим такую бесконечную последовательность чисел на комплексной плоскости, каждое следующее из которых получается из предыдущего: z0, z1=f (z0), z2=f (z1), … zn+1=f (zn). В зависимости от начальной точки z0 такая последовательность может вести себя по‑разному: стремиться к бесконечности при n -> ∞; сходиться к какой-то конечной точке; циклически принимать ряд фиксированных значений; возможны и более сложные варианты.

Комплексные числа

Комплексное число — это число, состоящее из двух частей — действительной и мнимой, то есть формальная сумма x + iy (x и y здесь — вещественные числа). i — это т.н. мнимая единица, то есть то есть число, удовлетворяющее уравнению i^ 2 = -1. Над комплексными числами определены основные математические операции — сложение, умножение, деление, вычитание (не определена только операция сравнения). Для отображения комплексных чисел часто используется геометрическое представление — на плоскости (ее называют комплексной) по оси абсцисс откладывают действительную часть, а по оси ординат — мнимую, при этом комплексному числу будет соответствовать точка с декартовыми координатами x и y.

Таким образом, любая точка z комплексной плоскости имеет свой характер поведения при итерациях функции f (z), а вся плоскость делится на части. При этом точки, лежащие на границах этих частей, обладают таким свойством: при сколь угодно малом смещении характер их поведения резко меняется (такие точки называют точками бифуркации). Так вот, оказывается, что множества точек, имеющих один конкретный тип поведения, а также множества бифуркационных точек часто имеют фрактальные свойства. Это и есть множества Жулиа для функции f (z).

Семейство драконов

Варьируя основу и фрагмент, можно получить потрясающее разнообразие конструктивных фракталов.
Более того, подобные операции можно производить и в трехмерном пространстве. Примерами объемных фракталов могут служить «губка Менгера», «пирамида Серпинского» и другие.
К конструктивным фракталам относят и семейство драконов. Иногда их называют по имени первооткрывателей «драконами Хейвея-Хартера» (своей формой они напоминают китайских драконов). Существует несколько способов построения этой кривой. Самый простой и наглядный из них такой: нужно взять достаточно длинную полоску бумаги (чем тоньше бумага, тем лучше), и согнуть ее пополам. Затем снова согнуть ее вдвое в том же направлении, что и в первый раз. После нескольких повторений (обычно через пять-шесть складываний полоска становится слишком толстой, чтобы ее можно было аккуратно гнуть дальше) нужно разогнуть полоску обратно, причем стараться, чтобы в местах сгибов образовались углы в 90˚. Тогда в профиль получится кривая дракона. Разумеется, это будет лишь приближение, как и все наши попытки изобразить фрактальные объекты. Компьютер позволяет изобразить гораздо больше шагов этого процесса, и в результате получается очень красивая фигура.

Множество Мандельброта строится несколько иначе. Рассмотрим функцию fc (z) = z 2 +с, где c — комплексное число. Построим последовательность этой функции с z0=0, в зависимости от параметра с она может расходиться к бесконечности или оставаться ограниченной. При этом все значения с, при которых эта последовательность ограничена, как раз и образуют множество Мандельброта. Оно было детально изучено самим Мандельбротом и другими математиками, которые открыли немало интересных свойств этого множества.

Видно, что определения множеств Жулиа и Мандельброта похожи друг на друга. На самом деле эти два множества тесно связаны. А именно, множество Мандельброта — это все значения комплексного параметра c, при которых множество Жулиа fc (z) связно (множество называется связным, если его нельзя разбить на две непересекающиеся части, с некоторыми дополнительными условиями).


Фракталы и жизнь

В наши дни теория фракталов находит широкое применение в различных областях человеческой деятельности. Помимо чисто научного объекта для исследований и уже упоминавшейся фрактальной живописи, фракталы используются в теории информации для сжатия графических данных (здесь в основном применяется свойство самоподобия фракталов — ведь чтобы запомнить небольшой фрагмент рисунка и преобразования, с помощью которых можно получить остальные части, требуется гораздо меньше памяти, чем для хранения всего файла). Добавляя в формулы, задающие фрактал, случайные возмущения, можно получить стохастические фракталы, которые весьма правдоподобно передают некоторые реальные объекты — элементы рельефа, поверхность водоемов, некоторые растения, что с успехом применяется в физике, географии и компьютерной графике для достижения большего сходства моделируемых предметов с настоящими. В радиоэлектронике в последнее десятилетие начали выпускать антенны, имеющие фрактальную форму. Занимая мало места, они обеспечивают вполне качественный прием сигнала. Экономисты используют фракталы для описания кривых колебания курсов валют (это свойство было открыто Мандельбротом более 30 лет назад). На этом мы завершим эту небольшую экскурсию в удивительный по красоте и разнообразию мир фракталов.

Самые гениальные открытия в науке способны кардинально изменить человеческую жизнь. Изобретенная вакцина может спасти миллионы людей, создание оружия, наоборот, эти жизни отнимает. Совсем недавно (в масштабе человеческой эволюции) мы научились «укрощать» электричество — и теперь не можем себе представить жизнь без всех этих удобных устройств, использующих электроэнергию. Но есть и такие открытия, которым мало кто придает значение, хотя они тоже сильно влияют на нашу жизнь.

Одно из таких «незаметных» открытий — фракталы. Вам наверняка доводилось слышать это запоминающееся слово, но знаете ли вы, что оно означает и как много интересного скрыто в этом термине?

В каждом человеке заложена природная любознательность, стремление познавать окружающий его мир. И в этом стремлении человек старается придерживаться логики в суждениях. Анализируя процессы, происходящие вокруг него, он пытается найти логичность происходящего и вывести некоторую закономерность. Самые большие умы на планете заняты этой задачей. Грубо говоря, ученые ищут закономерность там, где ее быть не должно. Тем не менее даже в хаосе можно найти связь между событиями. И эта связь — фрактал.

Наша маленькая дочь, четырех с половиной лет, сейчас находится в том прекрасном возрасте, когда число вопросов «Почему?» многократно превышает число ответов, которые взрослые успевают давать. Не так давно, рассматривая поднятую с земли ветку, дочка вдруг заметила, что эта ветка, с сучками и ответвлениями, сама похожа на дерево. И, конечно, дальше последовал привычный вопрос «Почему?», на который родителям пришлось искать простое объяснение, понятное ребенку.

Обнаруженная ребенком схожесть отдельной веточки с целым деревом — это очень точное наблюдение, которое лишний раз свидетельствует о принципе рекурсивного самоподобия в природе. Очень многие органические и неорганические формы в природе формируются аналогично. Облака, морские раковины, «домик» улитки, кора и крона деревьев, кровеносная система и так далее — случайные формы всех этих объектов могут быть описаны фрактальным алгоритмом.

⇡ Бенуа Мандельброт: отец фрактальной геометрии

Само слово «фрактал» появилось благодаря гениальному ученому Бенуа Мандельброту (Benoît B. Mandelbrot).

Он сам придумал этот термин в семидесятых годах прошлого века, позаимствовав слово fractus из латыни, где оно буквально означает «ломанный» или «дробленный». Что же это такое? Сегодня под словом «фрактал» чаще всего принято подразумевать графическое изображение структуры, которая в более крупном масштабе подобна сама себе.

Математическая база для появления теории фракталов была заложена за много лет до рождения Бенуа Мандельброта, однако развиться она смогла лишь с появлением вычислительных устройств. В начале своей научной деятельности Бенуа работал в исследовательском центре компании IBM. В то время сотрудники центра трудились над передачей данных на расстояние. В ходе исследований ученые столкнулись с проблемой больших потерь, возникающих из-за шумовых помех. Перед Бенуа стояла сложная и очень важная задача — понять, как предсказать возникновение шумовых помех в электронных схемах, когда статистический метод оказывается неэффективным.

Просматривая результаты измерений шума, Мандельброт обратил внимание на одну странную закономерность — графики шумов в разном масштабе выглядели одинаково. Идентичная картина наблюдалась независимо от того, был ли это график шумов за один день, неделю или час. Стоило изменить масштаб графика, и картина каждый раз повторялась.

При жизни Бенуа Мандельброт неоднократно говорил, что он не занимается формулами, а просто играет с картинками. Этот человек мыслил очень образно, а любую алгебраическую задачу переводил в область геометрии, где, по его словам, правильный ответ всегда очевиден.

Неудивительно, что именно человек с таким богатым пространственным воображением стал отцом фрактальной геометрии. Ведь осознание сути фракталов приходит именно тогда, когда начинаешь изучать рисунки и вдумываться в смысл странных узоров-завихрений.

Фрактальный рисунок не имеет идентичных элементов, но обладает подобностью в любом масштабе. Построить такое изображение с высокой степенью детализации вручную ранее было просто невозможно, на это требовалось огромное количество вычислений. Например, французский математик Пьер Жозе Луи Фату (Pierre Joseph Louis Fatou) описал это множество более чем за семьдесят лет до открытия Бенуа Мандельбротом. Если же говорить про принципы самоподобия, то о них упоминалось еще в трудах Лейбница и Георга Кантора.

Один из первых рисунков фрактала был графической интерпретацией множества Мандельброта, которое родилось благодаря исследованиям Гастона Мориса Жюлиа (Gaston Maurice Julia).

Гастон Жюлиа (всегда в маске — травма с Первой мировой войны)

Этот французский математик задался вопросом, как будет выглядеть множество, если построить его на основе простой формулы, проитерированной циклом обратной связи. Если объяснить «на пальцах», это означает, что для конкретного числа мы находим по формуле новое значение, после чего подставляем его снова в формулу и получаем еще одно значение. Результат — большая последовательность чисел.

Чтобы получить полное представление о таком множестве, нужно проделать огромное количество вычислений — сотни, тысячи, миллионы. Вручную это сделать было просто нереально. Но когда в распоряжении математиков появились мощные вычислительные устройства, они смогли по-новому взглянуть на формулы и выражения, которые давно вызывали интерес. Мандельброт был первым, кто использовал компьютер для просчета классического фрактала. Обработав последовательность, состоящую из большого количества значений, Бенуа перенес результаты на график. Вот что он получил.

Впоследствии это изображение было раскрашено (например, один из способов окрашивания цветом — по числу итераций) и стало одним из самых популярных изображений, какие только были созданы человеком.

Как гласит древнее изречение, приписываемое Гераклиту Эфесскому, «В одну и ту же реку нельзя войти дважды». Оно как нельзя лучше подходит для трактования геометрии фракталов. Как бы детально мы ни рассматривали фрактальное изображение, мы все время будем видеть схожий рисунок.

Желающие посмотреть, как будет выглядеть изображение пространства Мандельброта при многократном увеличении, могут сделать это, загрузив анимационный GIF .

⇡ Лорен Карпентер: искусство, созданное природой

Теория фракталов скоро нашла практическое применение. Поскольку она тесно связана с визуализацией самоподобных образов, неудивительно, что первыми, кто взял на вооружение алгоритмы и принципы построения необычных форм, были художники.

Будущий сооснователь легендарной студии Pixar Лорен Карпентер (Loren C. Carpenter) в 1967 году начал работать в компании Boeing Computer Services, которая была одним из подразделений известной корпорации, занимающейся разработкой новых самолетов.

В 1977 году он создавал презентации с прототипами летающих моделей. В обязанности Лорена входила разработка изображений проектируемых самолетов. Он должен был создавать картинки новых моделей, показывая будущие самолеты с разных сторон. В какой-то момент в голову будущему основателю Pixar Animation Studios пришла в голову креативная идея использовать в качестве фона изображение гор. Сегодня такую задачу может решить любой школьник, но в конце семидесятых годов прошлого века компьютеры не могли справиться со столь сложными вычислениями — графических редакторов не было, не говоря уже о приложениях для трехмерной графики. В 1978 году Лорен случайно увидел в магазине книгу Бенуа Мандельброта «Фракталы: форма, случайность и размерность». В этой книге его внимание привлекло то, что Бенуа приводил массу примеров фрактальных форм в реальной жизни и доказывал, что их можно описать математическим выражением.

Такая аналогия была выбрана математиком не случайно. Дело в том, что как только он обнародовал свои исследования, ему пришлось столкнуться с целым шквалом критики. Главное, в чем упрекали его коллеги, — бесполезность разрабатываемой теории. «Да, — говорили они, — это красивые картинки, но не более. Практической ценности теория фракталов не имеет». Были также те, кто вообще считал, что фрактальные узоры — просто побочный результат работы «дьявольских машин», которые в конце семидесятых многим казались чем-то слишком сложным и неизученным, чтобы всецело им доверять. Мандельброт пытался найти очевидное применение теории фракталов, но, по большому счету, ему и не нужно было это делать. Последователи Бенуа Мандельброта в следующие 25 лет доказали огромную пользу от подобного «математического курьеза», и Лорен Карпентер был одним из первых, кто опробовал метод фракталов на практике.

Проштудировав книжку, будущий аниматор серьезно изучил принципы фрактальной геометрии и стал искать способ реализовать ее в компьютерной графике. Всего за три дня работы Лорен смог визуализировать реалистичное изображение горной системы на своем компьютере. Иными словами, он с помощью формул нарисовал вполне узнаваемый горный пейзаж.

Принцип, который использовал Лорен для достижения цели, был очень прост. Он состоял в том, чтобы разделять более крупную геометрическую фигуру на мелкие элементы, а те, в свою очередь, делить на аналогичные фигуры меньшего размера.

Используя более крупные треугольники, Карпентер дробил их на четыре мелких и затем повторял эту процедуру снова и снова, пока у него не получался реалистичный горный ландшафт. Таким образом, ему удалось стать первым художником, применившим в компьютерной графике фрактальный алгоритм для построения изображений. Как только стало известно о проделанной работе, энтузиасты по всему миру подхватили эту идею и стали использовать фрактальный алгоритм для имитации реалистичных природных форм.

Одна из первых визуализаций 3D по фрактальному алгоритму

Всего через несколько лет свои наработки Лорен Карпентер смог применить в куда более масштабном проекте. Аниматор создал на их основе двухминутный демонстрационный ролик Vol Libre, который был показан на Siggraph в 1980 году. Это видео потрясло всех, кто его видел, и Лоурен получил приглашение от Lucasfilm.

Анимация рендерилась на компьютере VAX-11/780 от Digital Equipment Corporation с тактовой частотой пять мегагерц, причем прорисовка каждого кадра занимала около получаса.

Работая для Lucasfilm Limited, аниматор создавал по той же схеме трехмерные ландшафты для второго полнометражного фильма саги Star Trek. В фильме «Гнев Хана» (The Wrath of Khan) Карпентер смог создать целую планету, используя тот же самый принцип фрактального моделирования поверхности.

В настоящее время все популярные приложения для создания трехмерных ландшафтов используют аналогичный принцип генерирования природных объектов. Terragen, Bryce, Vue и прочие трехмерные редакторы полагаются на фрактальный алгоритм моделирования поверхностей и текстур.

⇡ Фрактальные антенны: лучше меньше, да лучше

За последние полвека жизнь стремительно стала меняться. Большинство из нас принимает достижения современных технологий как должное. Ко всему, что делает жизнь более комфортной, привыкаешь очень быстро. Редко кто задается вопросами «Откуда это взялось?» и «Как оно работает?». Микроволновая печь разогревает завтрак — ну и прекрасно, смартфон дает возможность поговорить с другим человеком — отлично. Это кажется нам очевидной возможностью.

Но жизнь могла бы быть совершенно иной, если бы человек не искал объяснения происходящим событиям. Взять, например, сотовые телефоны. Помните выдвижные антенны на первых моделях? Они мешали, увеличивали размеры устройства, в конце концов, часто ломались. Полагаем, они навсегда канули в Лету, и отчасти виной тому… фракталы.

Фрактальные рисунки завораживают своими узорами. Они определенно напоминают изображения космических объектов — туманностей, скопления галактик и так далее. Поэтому вполне закономерно, что, когда Мандельброт озвучил свою теорию фракталов, его исследования вызвали повышенный интерес у тех, кто занимался изучением астрономии. Один из таких любителей по имени Натан Коэн (Nathan Cohen) после посещения лекции Бенуа Мандельброта в Будапеште загорелся идеей практического применения полученных знаний. Правда, сделал он это интуитивно, и не последнюю роль в его открытии сыграл случай. Будучи радиолюбителем, Натан стремился создать антенну, обладающую как можно более высокой чувствительностью.

Единственный способ улучшить параметры антенны, который был известен на то время, заключался в увеличении ее геометрических размеров. Однако владелец жилья в центре Бостона, которое арендовал Натан, был категорически против установки больших устройств на крыше. Тогда Натан стал экспериментировать с различными формами антенн, стараясь получить максимальный результат при минимальных размерах. Загоревшись идеей фрактальных форм, Коэн, что называется, наобум сделал из проволоки один из самых известных фракталов — «снежинку Коха». Шведский математик Хельге фон Кох (Helge von Koch) придумал эту кривую еще в 1904 году. Она получается путем деления отрезка на три части и замещения среднего сегмента равносторонним треугольником без стороны, совпадающей с этим сегментом. Определение немного сложное для восприятия, но на рисунке все ясно и просто.

Существуют также другие разновидности «кривой Коха», но примерная форма кривой остается похожей

Когда Натан подключил антенну к радиоприемному устройству, он был очень удивлен — чувствительность резко увеличилась. После серии экспериментов будущий профессор Бостонского университета понял, что антенна, сделанная по фрактальному рисунку, имеет высокий КПД и покрывает гораздо более широкий частотный диапазон по сравнению с классическими решениями. Кроме того, форма антенны в виде кривой фрактала позволяет существенно уменьшить геометрические размеры. Натан Коэн даже вывел теорему, доказывающую, что для создания широкополосной антенны достаточно придать ей форму самоподобной фрактальной кривой.

Автор запатентовал свое открытие и основал фирму по разработке и проектированию фрактальных антенн Fractal Antenna Systems , справедливо полагая, что в будущем благодаря его открытию сотовые телефоны смогут избавиться от громоздких антенн и станут более компактными.

В принципе, так и произошло. Правда, и по сей день Натан ведет судебную тяжбу с крупными корпорациями, которые незаконно используют его открытие для производства компактных устройств связи. Некоторые известные производители мобильных устройств, как, например, Motorola, уже пришли к мирному соглашению с изобретателем фрактальной антенны.

⇡ Фрактальные измерения: умом не понять

Этот вопрос Бенуа позаимствовал у знаменитого американского ученого Эдварда Каснера.

Последний, как и многие другие известные математики, очень любил общаться с детьми, задавая им вопросы и получая неожиданные ответы. Иногда это приводило к удивительным последствиям. Так, например, девятилетний племянник Эдварда Каснера придумал хорошо всем известное теперь слово «гугол», обозначающее единицу со ста нулями. Но вернемся к фракталам. Американский математик любил задавать вопрос, какова длина береговой линии США. Выслушав мнение собеседника, Эдвард сам говорил правильный ответ. Если измерять длину по карте ломаными отрезками, то результат окажется неточным, ведь береговая линия имеет большое количество неровностей. А что будет, если измерять максимально точно? Придется учитывать длину каждой неровности — нужно будет измерять каждый мыс, каждую бухту, скалу, длину скалистого уступа, камня на ней, песчинки, атома и так далее. Поскольку число неровностей стремится к бесконечности, измеренная длина береговой линии будет при измерении каждой новой неровности увеличиваться до бесконечности.

Чем меньше мера при измерении, тем больше измеряемая длина

Интересно, что, следуя подсказкам Эдварда, дети намного быстрее взрослых говорили правильное решение, в то время как у последних были проблемы с принятием такого невероятного ответа.

На примере этой задачи Мандельброт предложил использовать новый подход к измерениям. Поскольку береговая линия близка к фрактальной кривой, значит, к ней можно применить характеризующий параметр — так называемую фрактальную размерность.

Что такое обычная размерность — понятно любому. Если размерность равна единице, мы получаем прямую, если два — плоскую фигуру, три — объем. Однако такое понимание размерности в математике не срабатывает с фрактальными кривыми, где этот параметр имеет дробное значение. Фрактальную размерность в математике можно условно рассматривать как «неровность». Чем выше неровность кривой, тем больше ее фрактальная размерность. Кривая, обладающая, по Мандельброту, фрактальной размерностью выше ее топологической размерности, имеет аппроксимированную протяженность, которая не зависит от количества измерений.

В настоящее время ученые находят все больше и больше областей для применения теории фракталов. С помощью фракталов можно анализировать колебания котировок на бирже, исследовать всевозможные естественные процессы, как, например, колебание численности видов, или моделировать динамику потоков. Фрактальные алгоритмы могут быть использованы для сжатия данных, например для компрессии изображений. И кстати, чтобы получить на экране своего компьютера красивый фрактал, не обязательно иметь докторскую степень.

⇡ Фрактал в браузере

Пожалуй, один из самых простых способов получить фрактальный узор — воспользоваться онлайновым векторным редактором от молодого талантливого программиста Toby Schachman . В основе инструментария этого простого графического редактора лежит все тот же принцип самоподобия.

В вашем распоряжении имеется всего две простейших формы — четырехугольник и круг. Вы можете добавлять их на холст, масштабировать (чтобы масштабировать вдоль одной из осей, удерживайте клавишу Shift) и вращать. Перекрываясь по принципу булевых операций сложения, эти простейшие элементы образуют новые, менее тривиальные формы. Далее эти новые формы можно добавлять в проект, а программа будет повторять генерирование этих изображений до бесконечности. На любом этапе работы над фракталом можно возвращаться к любой составляющей сложной формы и редактировать ее положение и геометрию. Увлекательное занятие, особенно если учесть, что единственный инструмент, который вам нужен для творчества, — браузер. Если вам будет непонятен принцип работы с этим рекурсивным векторным редактором, советуем вам посмотреть видео на официальном сайте проекта, на котором подробно показывается весь процесс создания фрактала.

⇡ XaoS: фракталы на любой вкус

Многие графические редакторы имеют встроенные средства для создания фрактальных узоров. Однако эти инструменты обычно являются второстепенными и не позволяют выполнить тонкую настройку генерируемого фрактального узора. В тех случаях, когда необходимо построить математически точный фрактал, на помощь придет кроссплатформенный редактор XaoS . Эта программа дает возможность не только строить самоподобное изображение, но и выполнять с ним различные манипуляции. Например, в режиме реального времени вы можете совершить «прогулку» по фракталу, изменив его масштаб. Анимированное движение вдоль фрактала можно сохранить в виде файла XAF и затем воспроизвести в самой программе.

XaoS может загружать случайный набор параметров, а также использовать различные фильтры постобработки изображения — добавлять эффект смазанного движения, сглаживать резкие переходы между точками фрактала, имитировать 3D-картинку и так далее.

⇡ Fractal Zoomer: компактный фрактальный генератор

По сравнению с другими генераторами изображений фракталов имеет несколько преимуществ. Во-первых, он совсем небольшой по размеру и не требует установки. Во-вторых, в нем реализована возможность определять цветовую палитру рисунка. Вы можете выбирать оттенки в цветовых моделях RGB, CMYK, HVS и HSL.

Также очень удобно использовать опцию случайного подбора цветовых оттенков и функцию инвертирования всех цветов на картинке. Для настройки цвета имеется функция цикличного перебора оттенков — при включении соответствующего режима программа анимирует изображение, циклично меняя на нем цвета.

Fractal Zoomer может визуализировать 85 различных фрактальных функций, причем в меню программы наглядно показываются формулы. Фильтры для постобработки изображения в программе имеются, хотя и в небольшом количестве. Каждый назначенный фильтр можно в любой момент отменить.

⇡ Mandelbulb3D: редактор трехмерных фракталов

Когда употребляется термин «фрактал», чаще всего подразумевается плоское двухмерное изображение. Однако фрактальная геометрия выходит за рамки 2D-измерения. В природе можно найти как примеры плоских фрактальных форм, скажем, геометрию молнии, так и трехмерные объемные фигуры. Фрактальные поверхности могут быть трехмерными, и одна из очень наглядных иллюстраций 3D-фракталов в повседневной жизни — кочан капусты. Наверное, лучше всего фракталы можно разглядеть в сорте романеско — гибриде цветной капусты и брокколи.

А еще этот фрактал можно съесть

Создавать трехмерные объекты с похожей формой умеет программа Mandelbulb3D . Чтобы получить трехмерную поверхность с использованием фрактального алгоритма, авторы данного приложения, Дениэл Уайт (Daniel White) и Пол Ниландер (Paul Nylander), преобразовали множество Мандельброта в сферические координаты. Созданная ими программа Mandelbulb3D представляет собой самый настоящий трехмерный редактор, который моделирует фрактальные поверхности разных форм. Поскольку в природе мы часто наблюдаем фрактальные узоры, то искусственно созданный фрактальный трехмерный объект кажется невероятно реалистичным и даже «живым».

Он может походить на растение, может напоминать странное животное, планету или что-нибудь другое. Этот эффект усиливается благодаря продвинутому алгоритму визуализации, который дает возможность получать реалистичные отражения, просчитывать прозрачность и тени, имитировать эффект глубины резкости и так далее. В Mandelbulb3D имеется огромное количество настроек и параметров визуализации. Можно управлять оттенками источников света, выбирать фон и уровень детализации моделируемого объекта.

Фрактальный редактор Incendia поддерживает двойное сглаживание изображения, содержит библиотеку из полусотни различных трехмерных фракталов и имеет отдельный модуль для редактирования базовых форм.

Приложение использует фрактальный скриптинг, с помощью которого можно самостоятельно описывать новые типы фрактальных конструкций. В Incendia есть редакторы текстур и материалов, а движок визуализации позволяет использовать эффекты объемного тумана и различные шейдеры. В программе реализована опция сохранения буфера при длительном рендеринге, поддерживается создание анимации.

Incendia позволяет экспортировать фрактальную модель в популярные форматы трехмерной графики — OBJ и STL. В состав Incendia включена небольшая утилита Geometrica — специальный инструмент для настройки экспорта фрактальной поверхности в трехмерную модель. С помощью этой утилиты можно определять разрешение 3D-поверхности, указывать число фрактальных итераций. Экспортированные модели могут быть использованы в 3D-проектах при работе с такими трехмерными редакторами, как Blender, 3ds max и прочие.

В последнее время работа над проектом Incendia несколько затормозилась. На данный момент автор ищет спонсоров, которые помогли бы ему развивать программу.

Если вам не хватает фантазии нарисовать в этой программе красивый трехмерный фрактал — не беда. Воспользуйтесь библиотекой параметров, которая находится в папке INCENDIA_EX\parameters. С помощью файлов PAR вы сможете быстро найти самые необычные фрактальные формы, в том числе и анимированные.

⇡ Aural: как поют фракталы

Мы обычно не рассказываем о проектах, работа над которыми только ведется, однако в данном случае мы должны сделать исключение, уж очень это необычное приложение. Проект под названием Aural придумал тот же человек, что и Incendia. Правда, на этот раз программа не визуализирует фрактальное множество, а озвучивает его, превращая в электронную музыку. Идея очень любопытная, особенно если учесть необычные свойства фракталов. Aural — это аудиоредактор, генерирующий мелодии с использованием фрактальных алгоритмов, то есть, по сути, это звуковой синтезатор-секвенсор.

Последовательность звуков, выдаваемая этой программой, необычна и… красива. Она вполне может пригодиться для написания современных ритмов и, как нам кажется, особенно хорошо подходит для создания звуковых дорожек к заставкам телевизионных и радиопередач, а также «петель» фоновой музыки к компьютерным играм. Рамиро пока не предоставил демонстрационной версии своей программы, но обещает, что, когда он это сделает, для того, чтобы работать с Aural, не нужно будет изучать теорию фракталов — достаточно просто поиграться с параметрами алгоритма генерирования последовательности нот. Послушать, как звучат фракталы, и .

Фракталы: музыкальная пауза

Вообще-то фракталы могут помочь написать музыку даже без программного обеспечения. Но это может сделать только тот, кто по-настоящему проникнут идеей природной гармонии и при этом не превратился в несчастного «ботана». Тут есть смысл брать пример с музыканта по имени Джонатан Колтон (Jonathan Coulton), который, помимо всего прочего, пишет композиции для журнала Popular Science. И не в пример другим исполнителям, Колтон все свои произведения публикует под лицензией Creative Commons Attribution-Noncommercial, которая (при использовании в некоммерческих целях) предусматривает свободное копирование, распространение, передачу произведения другим лицам, а также его изменение (создание производных произведения), чтобы приспособить его к своим задачам.

У Джонатана Колтона, конечно же, есть песня про фракталы.

⇡ Заключение

Во всем, что нас окружает, мы часто видим хаос, но на самом деле это не случайность, а идеальная форма, разглядеть которую нам помогают фракталы. Природа — лучший архитектор, идеальный строитель и инженер. Она устроена очень логично, и если где-то мы не видим закономерности, это означает, что ее нужно искать в другом масштабе. Люди все лучше и лучше это понимают, стараясь во многом подражать естественным формам. Инженеры проектируют акустические системы в виде раковины, создают антенны с геометрией снежинок и так далее. Уверены, что фракталы хранят в себе еще немало секретов, и многие из них человеку еще лишь предстоит открыть.













































































Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Авторы:
Бекбулатова Алина,
Гетьманова Софья

Руководители:
Могутова Татьяна Михайловна,
Дерюшкина Оксана Валерьевна

Введение .

Теоретическая часть проекта:

  • История развития фрактальной геометрии.
  • Понятие фрактала.
  • Виды фракталов:

а) геометрические фракталы, примеры геометрических фракталов;
б) алгебраические фракталы, примеры алгебраических фракталов;
в) стохастические фракталы, примеры.

  • Природные фракталы.
  • Практическое применение фракталов:
  • в литературе;
  • в телекоммуникации;
  • в медицине;
  • в архитектуре;
  • в дизайне;
  • в экономике;
  • в играх, кино, музыке
  • в естественных науках
  • в физике;
  • в биологии
  • фракталы для домохозяек
  • современные картины – фрактальная графика.
  • Фрактальная графика.
  • Роль фрактальной геометрии в жизни – гимн фракталам!

Практическая часть работы над проектом

  • Создание научной работы «Путешествие в мир фракталов»
  • Размещение в сети Интернет.
  • Участие в олимпиадах, конкурсах.
  • Создание собственных фракталов.
  • Создание брошюры «Удивительный мир фракталов»
  • Проведение фестиваля «Удивительный мир фракталов.

Введение

Геометрию часто называют холодной и сухой. Одна из причин заключается в ее неспособности описать все то, что окружает нас: форму облака, горы, дерева или берега моря. Облака - это не сферы, горы - не конусы, линии берега - это не окружности, и кора не является гладкой, и молния не распространяется по прямой. С огромной для нас радостью мы узнали, что в современном мире существует новая геометрия – геометрия фракталов.

Открытие фракталов произвело революцию не только в геометрии, но и в физике, химии, биологии, во всех областях нашей жизни.

Актуальность проекта:

  • Роль фракталов в современном мире достаточно велика
  • Убедительных аргументов в пользу актуальности изучения фракталов является широта области их применения

Гипотеза исследования:

Фрактальная геометрия – современная, очень интересная область человеческого познания. Появление фрактальной геометрии есть свидетельство продолжающейся эволюции человека и расширения его способов познания мира.

Цель проекта:

Изучить теорию фракталов для создания научной работы «Удивительный мир фракталов» и разработки и реализации на компьютере алгоритмов рисования фракталов на плоскости.

Задачи проекта:

  • Познакомиться с историей возникновения и развития фрактальной геометрии;
  • Изучить виды фракталов, их применение в современном мире.
  • Выполнить программы создания фракталов на языках программирования Pascal и Logo
  • Создать научную работу о фракталах, опубликовать ее в сети Интернет.
  • Создать брошюру «Удивительный мир фракталов»
  • Провести фестиваль «Удивительный мир фракталов» с целью ознакомления с результатами нашей работы учащихся школы.

Над проектом мы работали в течении 4 месяцев.

Основные этапы нашей работы:

  • Сбор необходимой информации: использование сети Интернет, книг, публикаций по данной теме. (2 недели)
  • Сортировка информации по темам: систематизация и определение порядка написания работы. Работа заняла 2 недели.
  • Составление текстовой работы: написание текста, частичное оформление систематизированной информации. Заняло один месяц.
  • Создание презентации: сжатие систематизированных сведений, определение структуры презентации, её создание и оформление и проходило в течении месяца.
  • Изучение программы создания фракталов и создание собственных фракталов на языках программирования Pascal и Logo (до сегодняшнего дня)

Теоретическая часть проекта

Мы изучили историю создания фрактальной геометрии.

Интерес к фрактальным объектам возродился в середине 70-х годов 20 века.

Рождение фрактальной геометрии принято связывать с выходом в 1977 году книги Мандельброта `The Fractal Geometry of Nature". В его работах использованы научные результаты других ученых, работавших в период 1875-1925 годов в той же области (Пуанкаре, Фату, Жюлиа, Кантор, Хаусдорф). Но только в наше время удалось объединить их работы в единую систему.

Так что же такое фрактал?

Фрактал - геометрическая фигура, составленная из нескольких частей, каждая из которых подобна всей фигуре целиком.

Небольшая часть фрактала содержит информацию обо всем фрактале. Сегодня под словом «фрактал» чаще всего принято подразумевать графическое изображение структуры, которое в более крупном масштабе подобно себе.

Фракталы делятся на геометрические, геометрические и стохастические.

Геометрические фракталы по-другому называют классическими. Они являются самыми наглядными, так как обладают так называемой жесткой самоподобностью, не изменяющейся при изменении масштаба. Это значит, что, независимо от того, насколько вы приближаете фрактал, вы видите всё тот же узор.

Приведем самые известные примеры геометрических фракталов.

Снежинка Коха.

Изобретена в 1904 годнемецким математиком Хельге фон Кохом.

Для её построения берется единичный отрезок, делится на три равные части и среднее звено заменяется равносторонним треугольником без этого звена. На следующем шаге повторяем операцию для каждого из четырёх получившихся отрезков. В результате бесконечного повторения данной процедуры получается фрактальная кривая.

Пятиугольник Дюрера.

Фрактал выглядит как связка пятиугольников, сжатых вместе. Фактически он образован при использовании пятиугольника в качестве инициатора и равнобедренных треугольников, отношение большей стороны к меньшей в которых в точности равно так называемой золотой пропорции Эти треугольники вырезаются из середины каждого пятиугольника, в результате чего получается фигура, похожая на 5 маленьких пятиугольников, приклеенных к одному большому.

Салфетка Серпинского.

В 1915 году польский математик Вацлав Серпинский придумал занимательный объект.

Для его построения берётся сплошной равносторонний треугольник. На первом шаге из центра удаляется перевернутый равносторонний треугольник. На втором шаге удаляется три перевернутых треугольника из трёх оставшихся треугольников и т.д.

Кривая Дракона.

Изобретена итальянским математиком Джузеппе Пеано.

Ковер Серпинского.

Берется квадрат, разбивается на девять равных квадратов, средний из которых выбрасывается, а с остальными повторяется та же операция до бесконечности.

Второй вид фракталов – алгебраические фракталы.

Свое название они получили за то, что их строят на основе алгебраических формул. В результате математической обработки данной формулы на экран выводится точка определенного цвета. Результатом оказывается странная фигура, в которой прямые линии переходят в кривые, появляются эффекты самоподобия на различных масштабных уровнях. Практически каждая точка на экране компьютера как отдельный фрактал.

Примеры самых известных алгебраических фракталов.

Множество Мандельброта .

Множества Мандельброта наиболее распространенный среди алгебраических фракталов. Его можно найти во многих научных журналах, обложках книг, открытках, и в компьютерных хранителях экрана. Этот фрактал, напоминающий чесальную машину с прикрепленными к ней пылающими древовидными и круглыми областями.

Множество Жулиа .

Множество Жулиа было изобретено французским математиком Гастоном Жулиа. Не менее известный алгебраический фрактал.

Бассейны Ньютона.

Стохастические фракталы.

Фракталы, при построении которых в итеративной системе случайным образом изменяются какие-либо параметры, называются стохастичными. Термин "стохастичность" происходит от греческого слова, обозначающего "предположение".

При этом получаются объекты очень похожие на природные - несимметричные деревья, изрезанные береговые линии и т.д. Двумерные стохастические фракталы используются при моделировании рельефа местности и поверхности моря.

Эти фракталы используются при моделировании рельефов местности и поверхности морей, процесса электролиза. Эта группа фракталов получила широкое распространение благодаря работам Майкла Барнсли из технологического института штата Джорджия.
Типичный представитель данного класса фракталов "Плазма".

Наиболее понятны для нас так называемые природные фракталы.

«Великая книга Природы написана на языке геометрии» (Галилео Галилей).

Природные фракталы .

  • В живой природе:
    • Морские звезды и ежи
    • Цветы и растения (брокколи , капуста)
    • Кроны деревьев и листья растений
    • Плоды (ананас)
    • Кровеносная система и бронхи людей и животных
  • В неживой природе:
    • Границы географических объектов (стран, областей, городов)
    • Морозные узоры на оконных стёклах
    • Сталактиты , сталагмиты , геликтиты .

Почти все природные образования: кроны деревьев, облака, горы, береговые линии имеют фрактальную структуру.
Что это значит?

Если посмотреть на фрактальный объект в целом, затем на его часть в увеличенном масштабе, потом на часть этой части, то нетрудно увидеть, что они выглядят одинаково.

Морские фракталы.

Осьминог – морское придонное животное из отряда головоногих.

Фрактальное строение имеют его тела и присоски на всех восьми щупальцах этого животного.

Еще одни типичнейшим представителем фрактального подводного мира является коралл.

В природе известно свыше 3500 разновидностей кораллов.

Зеленый фрактал – листья папоротника.

Листья папоротника имеют форму фрактальной фигуры - они самоподобны.

Лук – фрактал, который заставляет плакать. Конечно, фрактал он незамысловатый: обычные окружности разного диаметра, можно даже сказать примитивный фрактал.

Ярким примером фрактала в природе является «Романеску », она же «романская брокколи» или «цветная коралловая капуста».

Цветная капуста - типичный фрактал.

Рассмотрим строение цветной капусты.

Если разрезать один из цветков, очевидно, что в руках остаётся всё та же цветная капуста, только меньшего размера. Можно продолжать резать снова и снова, даже под микроскопом - однако все, что мы получим - это крошечные копии цветной капусты.

Матрешка - игрушка-сувенир - типичный фрактал. Принцип фрактальности очевиден, когда все фигурки деревянной игрушки выстроены в ряд, а не вложены друг в друга.

Человек – это фрактал.

Рождается ребенок, растет, и этот процесс сопровождается принципом «самоподобия», фрактальностью.

Широка область применения фракталов.

Фракталы в литературе

Среди литературных произведений есть такие, которые обладают текстуальной, структурной или фрактальной природой. В литературных фракталах бесконечно повторяются элементы текста:

У попа была собака,
он ее любил.
Она съела кусок мяса,
он ее убил.
В землю закопал,
Надпись написал:
У попа была собака…

«Вот дом.
Который построил Джек.
А вот пшеница.

В доме,
Который построил Джек
А вот весёлая птица-синица,
Которая ловко ворует пшеницу,
Которая в тёмном чулане хранится
В доме,
Который построил Джек…».

Фракталы в телекоммуникации .

Для передачи данных на расстояния используются антенны, имеющие фрактальные формы, что сильно уменьшает их размеры и вес.

Фракталы в медицине .

В данное время фракталы находят широкое применение в медицине. Сам по себе человеческий организм состоит из множества фрактальных структур: кровеносная система, мышцы, бронхи, бронхиальные пути в легких, артерии.

Теория фракталов применятся для анализа электрокардиограмм.

Оценка величины и ритмов фрактальной размерности позволяют на более ранней стадии и с большей точностью и информативностью судить о нарушениях гомеостазиса и развитии конкретных заболеваний сердца.

Рентгеновские снимки, обработанные с помощью фрактальных алгоритмов, дают более качественную картинку, а соответственно и более качественную диагностику!!

Еще одна область активного применения фракталов – гастроэнтерология.

Новый метод исследования в медицине, электрогастроэнтерография - метод исследования, позволяющий оценить биоэлектрическую активность желудка, двенадцатиперстной кишки и других отделов ЖКТ.

Фракталы в архитектуре.

Фрактальный принцип развития природных и геометрических объектов проникает вглубь архитектуры и как образ внешнего решения объекта, и как внутренний принцип архитектурного формообразования.

Дизайнеры со всего мира начали использовать в своих работах замечательные фрактальные структуры, только недавно описанные видными математиками.

Использование фракталов поставило практически все направления современного дизайна на новый уровень.

Привнесение фрактальных структур увеличило во многих случаях как визуальную, так и функциональную составляющие дизайна.

Дизайнер Такеси Миякава в детстве мечтал стать математиком.

Иначе как объяснить этот предмет мебели: тумбочка Fractal 23 содержит 23 ящика самых разных размеров и пропорций, которые как-то ухитряются уживаться между собой внутри кубического корпуса, заполняя почти всё доступное им пространства.

Фракталы в экономике.

Последнее время фракталы стали популярны у экономистов для анализа курса фондовых бирж, валютных и торговых рынков.
Фракталы появляются на рынке достаточно часто.

Фракталы в играх.

Сегодня в очень многих играх (пожалуй самый яркий пример Minecraft), где присутствуют разного рода природные ландшафты, так или иначе используются фрактальные алгоритмы. Создано большое количество программ для генерации ландшафтов и пейзажей, основанных на фрактальных алгоритмах.

Фракталы в кино .

В кино для создания различных фантастических пейзажей используется фрактальный алгоритм. Фрактальная геометрия позволяет художникам по спецэфффектам без труда создавать такие объекты как облака, дым, пламя, звёздное небо и т.д. Что уж тогда говорить о фрактальной анимации, это действительное потрясающее зрелище.

Электронная музыка .

Зрелищность фрактальной анимации с успехом используют виджеи. Особенно часто такие видеоинсталляции используются на концертах исполнителей электронной музыки.

Естественные науки .

Очень часто фракталы применяются в геологии и геофизике. Не секрет что побережья островов и континентов имеют некоторую фрактальную размерность, зная которую можно очень точно вычислить длины побережий.

Исследование разломной тектоники и сейсмичности порой тоже исследуется с помощью фрактальных алгоритмов.

Геофизика использует фракталы и фрактальный анализ для исследования аномалий магнитного поля, для изучения распространение волн и колебаний в упругих средах, для исследования климата и многих других вещей.

Фракталы в физике .

В физике фракталы применяются очень широко. В физике твёрдых тел фрактальные алгоритмы позволяют точно описывать и предсказывать свойства твёрдых, пористых, губчатых тел, аэрогелей. Это помогает в создании новых материалов с необычными и полезными свойствами.
Пример твёрдого тела - кристаллы.

Изучение турбулентности в потоках очень хорошо подстраивается под фракталы.

Переход к фрактальному представлению облегчает работу инженерам и физикам, позволяя им лучше понять динамику сложных систем.
При помощи фракталов также можно смоделировать языки пламени.

Фракталы в биологии .

В биологии они применяются для моделирования популяций и для описания систем внутренних органов (система кровеносных сосудов). После создания кривой Коха было предложено использовать её при вычислении протяжённости береговой линии.

Фракталы для домохозяек.

Легкоперенести теорию фракталов в домашние условия, в том числе и на кухню.

Результатом применения может быть что угодно: фрактальные сережки, фрактальное вкусное печень и многое другое. Нужно подключить только знания и смекалку!

Широко используются в современном мире фрактальная графика. Пользуются популярностью картины - результат фрактальной графики.

И это не случайно. Полюбуйтесь красотой фрактальной графики!

Практическая часть проекта

  • Создали научную работу «Путешествие в мир фракталов»
  • Изучили программы создания фракталов на языках программирования Pascal и Logo
  • Создали собственные фракталы.
  • Сделали своими руками «Салфетку Серпинского» и «Ковер Серпинского»
  • Сделали «Фрактальные сережки»
  • Создали цикл картин «Чудеса фрактальной графики»
  • Опубликовали работу «Путешествие в мир фракталов « в сети Интернет.
  • Приняли участие с работой « Путешествие в мир фракталов» в VII Всероссийской олимпиаде школьников и студентов «Наука 2.0» по учебному предмету «Математика». Заняли первое место.
  • Приняли участие с работой «Путешествие в мир фракталов» во Всероссийском конкурсе «Великие открытия и изобретения». Заняли первое место.
  • Приняли участие с работой «Путешествие в мир фракталов» в VIII Всероссийской олимпиаде школьников и студентов «Я – исследователь» по учебному предмету Математика. Заняли первое место.
  • Создали презентацию « Удивительный мир фракталов»
  • Создали брошюры «Применение фракталов» и «Фракталы вокруг нас»
  • Провели фестиваль «Удивительный мир фракталов» для учащихся 8-11 классов»

Итак, можно с полной уверенностью сказать об огромном практическом применении фракталов и фрактальных алгоритмов на сегодняшний день.

Спектр областей, где применяются фракталы, очень обширен и разнообразен.

И наверняка, в ближайшем будущем, фракталы, фрактальная геометрия, станут близки и понятны каждому из нас. Мы не сможем обходиться без них в нашей жизни!

Будем надеяться, что появление фрактальной геометрии есть свидетельство продолжающейся эволюции человека и расширения его способов познания и осознания мира. Возможно, наши дети будут также легко и осмысленно оперировать понятиями фракталов и нелинейной динамики, как мы оперируем понятиями классической физики, эвклидовой геометрии.

Результаты работы над проектом

  • Познакомились с историей возникновения и развития фрактальной геометрии;
  • Изучили виды фракталов, их применение в современном мире.
  • Создали собственные фракталы на языках программирования Pascal и Logo
  • Создали научную работу о фракталах.
  • Создали брошюры «Фракталы вокруг нас» и «Применение фракталов»
  • Провели фестиваль «Удивительный мир фракталов» для учащихся 8-11 классов.

Качарава А.С. 1

Холинова О.А. 1

1 Областное Государственное Бюджетное Профессиональное Образовательное Учреждение «Костромской торгово-экономический колледж» (ОГБПОУ «КТЭК»)

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

ВВЕДЕНИЕ

Актуальность исследования.

Нельзя недооценивать возможности математики. Но, к сожалению, многие люди считают, что математика - «сухая» наука, и в ней нет ничего интересного: одни цифры да формулы. С этим можно не согласиться. Бертран Рассел, английский математик и философ, говорил: "Математика, если на нее правильно посмотреть, отражает не только истину, но и несравненную красоту".

Самые гениальные открытия в науке способны кардинально изменить человеческую жизнь. Одно из таких «незаметных» открытий — фракталы.

Мир фракталов - это удивительный, огромный и многообразный мир. Он очаровывает, покоряет, однако иногда в нём трудно разобраться. Фрактальные рисунки - это пик вдохновения мастера на пути к совершенному единству математики, информатики и искусства. Недавно геометрические модели природных объектов изображались с помощью комбинаций простых фигур, таких как прямые, треугольники, окружности, сферы, многогранники. Но с помощью набора этих известных фигур нелегко описать более сложные природные объекты, например, пористые материалы, формы облаков, кроны деревьев и т.д. Новые компьютерные средства выводят математику на чрезвычайно высокий уровень. Когда изучаешь фракталы, понимаешь, что весьма затруднительно провести грань между математикой и информатикой, потому что они тесно переплелись, стремясь открыть неповторимые, уникальные модели. Фракталы приближают нас к пониманию некоторых природных процессов и явлений. Поэтому тема фракталов является наиболее интересной и увлекательной для изучения.

Цель: исследовать новую ветвь математики - фракталы и основы применения в реальной жизни.

Задачи:

проанализировать и проработать литературу по теме исследования.

знакомство с понятием, историей возникновения и исследованиями Б. Мандельброта;

дать представление о фракталах, встречающихся в нашей жизни.

нахождение подтверждения теории фрактальности окружающего мира;

определить области применения фракталов;

Объект исследования - фракталы в математике и в реальном мире. фракталы и их практическое применение.

Предмет исследования - фрактальная геометрия.

Методы исследования в работе: анализ, синтез, поиск, моделирование.

История появления понятия «фрактал»

Первые идеи фрактальной геометрии возникли в 19 веке.

Георг Кантор (Cantor, 1845-1918) - немецкий математик, логик, теолог, создатель теории бесконечных множеств, с помощью простой рекурсивной (повторяющейся) процедуры превратил линию в набор несвязанных точек. Он брал линию и удалял центральную треть и после этого повторял то же самое с оставшимися отрезками. Получалась, так называемая, Пыль Кантора .

Джузеппе Пеано (Giuseppe Peano; 1858-1932) — итальянский математик изобразил особую линию. Он брал прямую и заменял ее на 9 отрезков длинной в 3 раза меньшей, чем длина исходной линии. Далее он делал то же самое с каждым отрезком. И так до бесконечности. Уникальность такой линии в том, что она заполняет всю плоскость. Позднее аналогичное построение было осуществлено в трехмерном пространстве.

Само слово «фрактал» появилось благодаря гениальному ученому Бенуа Мандельброту.

Он сам придумал этот термин в семидесятых годах прошлого века, позаимствовав слово fractus из латыни, где оно буквально означает «ломанный» или «дробленный». Что же это такое? Сегодня под словом «фрактал» чаще всего принято подразумевать графическое изображение структуры, которая в более крупном масштабе подобна сама себе.

Определение фрактала, данное Мандельбротом, звучит так: «Фракталом называется структура, состоящая из частей, которые в каком-то смысле подобны целому».

Математическая база для появления теории фракталов была заложена за много лет до рождения Бенуа Мандельброта, однако развиться она смогла лишь с появлением вычислительных устройств. В начале своей научной деятельности Бенуа работал в исследовательском центре компании IBM. В то время сотрудники центра трудились над передачей данных на расстояние. В ходе исследований ученые столкнулись с проблемой больших потерь, возникающих из-за шумовых помех. Перед Бенуа стояла сложная и очень важная задача — понять, как предсказать возникновение шумовых помех в электронных схемах, когда статистический метод оказывается неэффективным.

Просматривая результаты измерений шума, Мандельброт обратил внимание на одну странную закономерность — графики шумов в разном масштабе выглядели одинаково. Идентичная картина наблюдалась независимо от того, был ли это график шумов за один день, неделю или час. Стоило изменить масштаб графика, и картина каждый раз повторялась.

При жизни Бенуа Мандельброт неоднократно говорил, что он не занимается формулами, а просто играет с картинками. Этот человек мыслил очень образно, а любую алгебраическую задачу переводил в область геометрии, где, по его словам, правильный ответ всегда очевиден.

Неудивительно, что именно человек с таким богатым пространственным воображением стал отцом фрактальной геометрии. Ведь осознание сути фракталов приходит именно тогда, когда начинаешь изучать рисунки и вдумываться в смысл странных узоров - завихрений.

Фрактальный рисунок не имеет идентичных элементов, но обладает подобностью в любом масштабе. Построить такое изображение с высокой степенью детализации вручную ранее было просто невозможно, на это требовалось огромное количество вычислений.

Один из первых рисунков фрактала был графической интерпретацией множества Мандельброта, которое родилось благодаря исследованиям Гастона Мориса Жюлиа (Gaston Maurice Julia).

Многие объекты в природе обладают фрактальными свойствами, например, побережья, облака, кроны деревьев, снежинки, кровеносная система и система альвеол человека или животных.

Применение фракталов

Фракталы находят все большее и большее применение в науке. Основная причина этого заключается в том, что они описывают реальный мир иногда даже лучше, чем традиционная физика или математика.

Фрактальная живопись.

Фрактальная живопись - одно из направлений современного арта, популярное среди цифровых художников. Фрактальные картины необычно и завораживающе действуют на зрителя, рождая яркие пылающие образы. Сказочные абстракции создаются посредством скучных математическим формул, но воображение воспринимает их живыми.

Фракталы в графике

Наиболее полезным использованием фракталов в компьютерной науке является фрактальное сжатие данных. В основе этого вида сжатия лежит тот факт, что реальный мир хорошо описывается фрактальной геометрией. При этом, картинки сжимаются гораздо лучше, чем это делается обычными методами (такими как jpeg или gif). Другое преимущество фрактального сжатия в том, что при увеличении картинки, не наблюдается эффекта пикселизации (увеличения размеров точек до размеров, искажающих изображение). При фрактальном же сжатии, после увеличения, картинка часто выглядит даже лучше, чем до него. Фракталы широко применяются в компьютерной графике - при построении изображений деревьев, кустов, поверхности морей, горных ландшафтов, и других природных объектов. Благодаря фрактальной графике был изобретён эффективный способ реализации сложных неевклидовых объектов, чьи образы похожи на природные: это алгоритмы синтеза коэффициентов фрактала, позволяющие воспроизвести копию любой картинки максимально близко к оригиналу. Интересно, что кроме фрактальной «живописи» существуют так же фрактальная музыка и фрактальная анимация. В изобразительном искусстве существует направление, занимающееся получением изображения случайного фрактала - «фрактальная монотипия» или «стохатипия».

В математической основе фрактальной графики лежит фрактальная геометрия, где в основу методов построения «изображений-наследников» помещён принцип наследования от исходных «объектов-родителей». Сами понятия фрактальной геометрии и фрактальной графики появилось всего около 30 лет назад, но уже прочно вошли в обиход компьютерных дизайнеров и математиков.

Базовыми понятиями фрактальной компьютерной графики являются:

Фрактальный треугольник - фрактальная фигура - фрактальный объект (иерархия в порядке убывания)

Фрактальная прямая

Фрактальная композиция

«Объект-родитель» и «Объект наследник»

Также как в векторной и трёхмерной графике, создание фрактальных изображений математически вычисляемо. Главное отличие от первых двух видов графики в том, что фрактальное изображение строится по уравнению или системе уравнений, - ничего кроме формулы в памяти компьютера для выполнения всех вычислений хранить не нужно, - и такая компактность математического аппарата позволила использование этой идеи в компьютерной графике. Просто изменяя коэффициенты уравнения, можно с лёгкостью получить совершенно иное фрактальное изображение - при помощи нескольких математических коэффициентов задаются поверхности и линии очень сложной формы, что позволяет реализовать такие приёмы композиции, как горизонтали и вертикали, симметрию и асимметрию, диагональные направления и многое другое.

Фракталы в децентрализованных сетях

Принцип фрактального сжатия информации для компактного сохранения сведений об узлах сети «Netsukuku» использует система назначения IP-адресов. Каждый её узел хранит 4 килобайта информации о состоянии соседних узлов. Любой новый узел подключается к общей сети Интернет, не требуя центрального регулирования раздачи IP-адресов. Таким образом, можно сделать вывод, что принцип фрактального сжатия информации обеспечивает децентрализованную работу всей сети, а потому работа в ней протекает максимально устойчиво.

Фракталы в радиотехнике

Фрактальные антенны. Для передачи данных на расстояния используются антенны, имеющие фрактальные формы, что сильно уменьшает их размеры и вес.

Использование фрактальной геометрии при проектировании антенных устройств впервые было применено американским инженером Натаном Коэном, который жил в центре Бостона, где была запрещена установка внешних антенн на задания. Чтобы обойти запрет бостонских властей уста-навливать на домах наружные антенны, он замаскировал ан-тенну своей радиостанции под декоративную фигуру, выпол-ненную на основе фрактальной ломаной, описанной шведс-ким математиком Хельге фон Кохом (Helge von Koch) в 1904 году. Натан вырезал из алюминиевой фольги фигуру в форме кривой Коха и наклеил её на лист бумаги, затем присоединил к приемнику. Коэн основал собственную компанию и наладил их серийный выпуск.

Опубликованные Коэном результаты исследований харак-теристик новой антенной конструкции привлекли внима-ние специалистов. Благодаря усилиям многих исследовате-лей сегодня теория фрактальных антенн превратилась в са-мостоятельный, довольно развитый аппарат синтеза и ана-лиза ЭМА.

Фрактальные антенны — относительно новый класс электрически малых антенн (ЭМА), принципиаль-но отличающийся своей геометрией от извест-ных решений. По сути, традиционная эволюция ан-тенн базировалась на евклидовой геометрии, опе-рирующей объектами целочисленной размернос-ти (линия, круг, эллипс, параболоид и т. п.).

Глав-ное отличие фрактальных геометрических форм — их дробная размерность, что внешне проявляется в рекурсивном повторении в возрастающем либо уменьшаемом масштабах исходных детермини-рованных или случайных шаблонов. Фрактальные технологии получили распространение при фор-мировании средств фильтрации сигналов, синте-зе трехмерных компьютерных моделей природ-ных ландшафтов, сжатии изображений

Вполне ес-тественно, что фрактальная «мода» не обошла сто-роной и теорию антенн. Тем более, что прообра-зом современных фрактальных технологий в ан-тенной технике явились предложенные в середи-не 60-х годов прошлого века логопериодические и спиральные конструкции. Правда, в строгом ма-тематическом смысле такие конструкции на мо-мент разработки не имели отношения к фракталь-ной геометрии, являясь, по сути, лишь фракталами первого рода. Сейчас исследователи, в основ-ном методом проб и ошибок, пытаются использо-вать известные в геометрии фракталы в антенных решениях.

Фракталь-ные антенны позволяют получить практически тот же коэффициент усиления, что и обычные, но при меньших габаритах, что важно для мобильных при-ложений. Рассмотрим результаты, полученные в области создания фрактальных антенн самых различных типов.

Первые публикации по электродинамике фрактальных струк-тур относятся к 80-м годам прошлого века. В публика-циях по истории фрактальных антенн обычно упоминает-ся работа ученых Университета штата Пенсильвания Я.Кима и Д.Джаггарда (Y.Kim and D.L.Jaggard) . Первенство в те-оретических исследованиях возможности применения фрак-тальных форм для формирования многополосных по часто-те антенн приписывают ученому Технологического универси-тета Каталонии К.Пуенте (C.Puente). Первой конструкцией фрактальной антенны с наиболее полно изученными электромагнитными и направленными свойствами стала антенна на основе префрактальной кривой Коха.

Фракталы в цифровой технике

Фрактальная геометрия внесла неоценимый вклад в разработку новых технологий в области цифровой музыки, а так же сделала возможной сжатие цифровых изображений. Существующие фрактальные алгоритмы сжатия изображения основаны на принципе хранения сжимающего изображения вместо самой цифровой картинки. Для сжимающего изображения основная картинка остаётся неподвижной точкой. Фирма «Microsoft» использовала один из вариантов данного алгоритма при издании своей энциклопедии, но по тем или иным причинам широкого распространения эта идея не получила.

Фракталы в естественных науках.

В физике фракталы естественным образом возникают при моделировании нелинейных процессов, таких как турбулентное течение жидкости, сложные процессы диффузии-адсорбации, пламя, облака и т.д. фракталы применяются для моделирования пористых материалов, например, в нефтехимии. Изучение турбулентности в потоках очень хорошо подстраивается под фракталы. Турбулентные потоки хаотичны и поэтому их сложно точно смоделировать. И здесь помогает переход к из фрактальному представлению, что сильно облегчает работу инженерам и физикам, позволяя им лучше понять динамику сложных потоков. В биологии они применяются для моделирования популяций и для описания систем внутренних органов. На данное время фракталы находят, и вероятно будут находить применение в медицине. Сам по себе человеческий организм состоит из множества фракталоподобных структур: кровеносная система, мышцы, бронхи и т.д..

Очень часто фракталы применяются в геологии и геофизике. Не секрет что побережья островов и континентов имеют некоторую фрактальную размерность, зная которую можно очень точно вычислить длины побережий.

Физическая интерпретация фракталов

Чтобы понять алгебраический фрактал, рассмотрим простой опыт. Шарик, подвешенный на нитке, отклоняют от вертикали и отпускают. Возникают колебания. Если шарик отклонили немного, то его движение описывается линейными уравнениями. Если отклонение сделать достаточно большим - уравнения будут уже нелинейными. Что при этом изменится? В первом случае частота колебаний (и, соответственно, период) не зависит от степени начального отклонения. Во втором - такая зависимость имеет место. Полный аналог механического маятника как колебательной системы - колебательный контур, или «электрический маятник». В простейшем случае он состоит из катушки индуктивности, конденсатора (емкости) и резистора (сопротивления). Если все три указанных элемента линейны, то колебания в контуре эквивалентны колебаниям линейного маятника. Но если, к примеру, емкость нелинейна, период колебаний будет зависеть от их амплитуды.

Динамика колебательного контура определяется двумя переменными, например током в контуре и напряжением на емкости. Если откладывать эти величины вдоль осей Х и Y , то каждому состоянию системы будет соответствовать определенная точка на полученной координатной плоскости. Такую плоскость называют фазовой. (Соответственно, если динамическая система определяется n переменными, то вместо двумерной фазовой плоскости ей можно поставить в соответствие n-мерное фазовое пространство).

Теперь начнем воздействовать на наши маятники внешним периодическим сигналом. Реакция линейной и нелинейной систем будет различной. В первом случае постепенно установятся регулярные периодические колебания с той же частотой, что и частота вынуждающего сигнала. На фазовой плоскости такому движению соответствует замкнутая кривая, называемая аттрактором (от английского глагола to attract - притягивать), - множество траекторий, характеризующих установившийся процесс. В случае нелинейного маятника могут возникнуть сложные, непериодические колебания, когда траектория на фазовой плоскости не замкнется за сколь угодно долгое время. При этом поведение детерминированной системы будет внешне напоминать совершенно случайный процесс.

Таким образом, фазовое пространство системы разбивается на области притяжения аттракторов. Если фазовым является двухмерное пространство, то окрашивая области притяжения различными цветами, можно получить цветовой фазовый портрет этой системы (итерационного процесса). Меняя алгоритм выбора цвета, можно получить сложные фрактальные картины с причудливыми многоцветными узорами.

Фракталы используются для описания кривизны поверхностей. Неровная поверхность характеризуется комбинацией из двух разных фракталов.

Фракталы в природе.

Природа зачастую создаёт удивительные и прекрасные фракталы с идеальной геометрией и такой гармонией, что просто замираешь от восхищения.

Фракталы в природе - это частое явление. Природа создаёт удивительные и прекрасные фракталы, с идеальной геометрией и такой гармонией, что просто замираешь от восхищения. Это и молния, пронизывающая небо до горизонта; изрезанная береговая линия материка и горные массивы; подводные кораллы, в природе их насчитывается свыше 3500 разновидностей, и морские раковины; осьминог с фрактальным строением тела и присосок на всех восьми щупальцах, и брюхоногий голожаберный моллюск; цветная коралловая капуста, обладающая нестандартным выпуклым рельефом; деревья листья цветы; кровеносная система человека и многое др. На картине японского художника Хокусаи «Большая волна» можно заметить, что художник, рисуя гребень волны, использовал фрактал, подмеченный в природе, как бы состоящий из многочисленных хищных водяных лап.

Фракталы широко применяются в компьютерной графике для построения изображений природных объектов, таких, как деревья, кусты, горные ландшафты, поверхности морей и т. д. Роль фракталов в машинной графике сегодня достаточно велика. Они приходят на помощь, например, когда требуется, получить линии и поверхности очень сложной формы. Фракталы используются для описания кривизны поверхностей. Неровная поверхность характеризуется комбинацией из двух разных фракталов. С точки зрения машинной графики, фрактальная геометрия незаменима при генерации искусственных облаков, объемных рельефных гор, поверхности моря. Фактически найден способ легкого представления сложных неевклидовых объектов, образы которых весьма похожи на природные. Фрактальная компьютерная графика широко используется при создании мультфильмов и фантастических художественных фильмов. Используются антенны, имеющие фрактальные формы, что сильно уменьшает их размеры и вес. Если же рассматривать фракталы с точки зрения биологии, то это моделирование любых хаотических процессов, в частности при описании моделей популяций.

Использование фракталов при торговле на рынке Форекс

Фракталы используются в торговле очень многими форекс трейдерами. Активное использование их в торговле начал применять Билл Вильямс, но, надо заметить, что пользовались ими задолго до него, хотя и под другим названием. Доктор Вильямс, в результате проделанной научной работы, пришел к выводу, что рынок движется так же, как и хаотические системы. Другими словами, течение крови в сердце, береговая линия и цена на хлопок движутся сходным образом с одинаковой структурой. Исследования Билла Вильямса свидетельствуют, что рынок - это не линейная система, а именно хаотическая. Соответственно, использование для ее анализа стандартных индикаторов, основанных на линейных функциях, не принесет адекватного результата. Отсюда же вытекает и то, что стабильность рынка носит временный характер, а постоянный - именно хаос. Обнаружены были фракталы Форекс в процессе компьютерного моделирования, тогда же были обнаружены обратные связи, которыми описывается структура рынка. Фрактал по своей сути является повторяющейся формацией, которая присуща любым стоп-лоссов. На форекс это любые рынки, любые таймфреймы. И происхождение их, что у фракталов товарного и фондового рынка, что у фракталов береговой линии, имеет одинаковую природу.

Фракталы - это индикатор, разработанный Биллом Уильямсом. Он является простым и в тоже время многогранным. Его можно использовать и как самостоятельный индикатор, и в сочетании с другими инструментами технического анализа.

Торговля с использованием фракталов согласно “Теории Хаоса” Билла Уильямса

Фрактальный индикатор является одним из пяти индикаторов торговой системы Билла Уильямса. Согласно системе, сигналы, поступающие от фракталов, необходимо фильтровать с помощью индикатора под названием Аллигатор.

Вот как следует торговать с помощью фракталов:

· Если фрактал, дающий сигнал на покупку, находится выше зубов Аллигатора (красная линия), трейдерам следует выставлять отложенный ордер на покупку на несколько пунктов выше фрактала.

· Если фрактал, дающий сигнал на продажу, находится ниже зубов Аллигатора, трейдерам следует выставлять отложенный ордер на продажу на несколько пунктов ниже фрактала.

В других случаях не стоит доверять торговым сигналам, которые предоставляет фрактальный индикатор.

Когда вы торгуете по методу Билла Уильямса, следует соблюдать самое главное правило: никогда не доверяйте торговым сигналам других индикаторов (Gator indicator, Awesome Oscillator, MFI и т.д.), если первый бычий/медвежий фрактал сформирован не за пределами зубов Аллигатора (то есть по другую сторону от красной линии)

Сигнал остается актуальным до тех пор, пока не сработает отложенный ордер или не появится новый сигнал (в этом случае необходимо изменить уровень отложенного ордера). Каждый новый фрактал по тренду может быть использован для наращивания торговой позиции.

Фрактальные антенны.

Развитие мобильных телекоммуникационных технологий, радаров и СВЧ датчиков перемещений диктует необходимость разработки новых многоэлементных антенных систем, состоящих из излучателей, имеющих малые размеры и оптимальную конфигурацию. Антенна является неотъемлемой составной частью любого радиотехнического устройства, которое предназначено для передачи или приёма информации с помощью радиоволн через окружающее пространство. Как было сказано выше, фрактальные антенны имеют отличающуюся от всех других видов антенн геометрию. Главная особенность фрактальных геометрических форм — их дробная размерность. Среди большого разнообразия фрактальных структур одной из наиболее удобных для создания антенн являются фракталы Минковского. «Инициатором» фрактала является отрезок, а «генератором» является ломаная из восьми звеньев (два равных звена продолжают друг друга).

В антенных решениях используются не под-линные фракталы, а лишь несколько первых их итерационных форм, получивших в геометрии название кривых, заполняю-щих пространство (Space-Filling Curves, SFC) или плос-кость (Plane-Filling Curves, PFC). Реже используется тер-мин «префракталы». Все эти понятия применительно к антен-ным конструкциям могут употребляться как синонимы. Такова исторически сложившаяся терминология теории фракталь-ных антенн, хотя она и не соответствует принятым математи-ческим определениям.

SFC могут применяться в качестве шаблонов для изготов-ления монополей и плеч диполей, формирования топологии печатных антенн, частотно-селективных поверхностей (Fre-quency Selection Surfaces, FSS) или обечаек зеркальных реф-лекторов, построения контуров рамочных антенн и профилей апертуры рупоров, а также фрезеровки пазов в щелевых ан-теннах. В англоязычной литературе соответствующие антен-ны нередко называют «space-filling antenna» (SFA) (антенны, заполняющие пространство).

В случае проволочных антенн самопересечение SFC до-пускается только в начальном (или конечном) пункте. Ина-че говоря, фрактальная линия может иметь вид замкнуто-го контура, но ни одна из ее частей не может быть замкну-тым фрагментом. Отсутствие точек самоконтакта в SFC-объ-ектах позволяет говорить о них как о «самоизбегающих» кри-вых. Отсюда, кстати, происходит еще одно название этих ломаных линий — FASS-кривые (space-Filling self-Avoidance Simplicity Similarity — самоуклоняющиеся кривые подобных сегментов, заполняющих пространство) .

Существует и другое ограничение всех типов фрактальных антенн: сегменты используемых в них SFC-линий долж-ны быть короче одной десятой рабочей длины волны антен-ны в свободном пространстве. При этом желательно, чтобы общее число связанных SFC-сегментов в антенных топологи-ях превышало 10.

Экспериментальные данные, полученные специалистами компании Cushcraft для кривой Коха, четырех итераций ме-андра и спиральной антенны, позволяют сопоставить элек-трические свойства антенны Коха с другими излучателями с периодической структурой. Все сопоставленные излуча-тели обладали многочастотными свойствами, что проявилось в наличии периодических резонансов на графиках импедансов. Однако для многодиапазонных приложений более всего пригоден фрактал Коха, у которого с ростом частоты пиковые значения реактивных и активных сопротивлений уменьшают-ся, тогда как у меандра и спирали они возрастают.

В целом следует отметить, что теоретически представить механизм взаимодействия фрактальной приемной антен-ны и падающих на нее электромагнитных волн сложно из-за отсутствия аналитического описания волновых процессов в проводнике со сложной топологией. В такой ситуации основ-ные параметры фрактальных антенн целесообразно опреде-лять путем математического моделирования. Численному ис-следованию электромагнитных процессов, протекающих во фрактальных антеннах и при их взаимодействии с предме-тами окружающей среды, посвящено достаточно много ра-бот. Их подробный обзор и анализ выходит за рамки данной статьи. Общий недостаток всех известных публикаций по ре-зультатам исследований фрактальных антенн — отсутствие указаний на статистическую обработку результатов экспери-ментов. В частности, в них не приводятся сведения о довери-тельных интервалах для измеренных параметров, что не поз-воляет судить о точности полученных в итоге эмпирических соотношений. В целом же, статистическая теория фракталь-ных антенн при расчете их численными методами пока еще ждет своих разработчиков.

Таким образом, возможность выбора множества разно-образных параметров антенной системы на основе лома-ной Коха позволяет при проектировании удовлетворять раз-личные требования, предъявляемые к значению внутренне-го сопротивления и распределению резонансных частот. Од-нако, поскольку взаимозависимость рекурсивной размернос-ти и характеристик антенны может быть получена только для определенной геометрии, справедливость рассмотренных свойств для других рекурсивных конфигураций нуждается в дополнительном исследовании.

ЗАКЛЮЧЕНИЕ

Наука о фракталах очень молода, потому что они стали появляться с развитием компьютерных технологий. Поэтому многое еще не изучено и многое еще предстоит открыть. Основная причина применения фракталов в различных науках заключается в том, что они описывают реальный мир иногда даже лучше, чем традиционная физика или математика. Мы выяснили, что фракталы можно применять не только в точных науках, но и практически во всем, что нас окружает: одежда, элемент декора интерьера, дизайн открыток, штор и многого другого.

Помимо той полезной роли, которую играет фрактальная геометрия при описании сложности природных объектов, она предлагает ещё хорошую возможность популяризации математических знаний. Понятия фрактальной геометрии наглядны и интуитивны. Её формы привлекательны с эстетической точки зрения и имеют разнообразные приложения. Поэтому фрактальная геометрия, возможно, поможет опровергнуть взгляд на математику как на сухую и недоступную дисциплину и станет дополнительным стимулом для учащихся в освоении этой интересной и увлекательной науки.

Во всем, что нас окружает, мы часто видим хаос, но на самом деле это не случайность, а идеальная форма, разглядеть которую нам помогают фракталы. Природа — лучший архитектор, идеальный строитель и инженер. Она устроена очень логично, и если где-то мы не видим закономерности, это означает, что ее нужно искать в другом масштабе. Люди все лучше и лучше это понимают, стараясь во многом подражать естественным формам. Инженеры проектируют акустические системы в виде раковины, создают антенны с геометрией снежинок и так далее. Уверены, что фракталы хранят в себе еще немало секретов, и многие из них человеку еще лишь предстоит открыть.

После того как были открыты фракталы, для многих стало очевидно, что старые, добрые формы евклидовой геометрии сильно проигрывают большинству природных объектов из-за отсутствия в них некоторой нерегулярности, беспорядка и непредсказуемости. Возможно, что новые идеи фрактальной геометрии помогут изучить многие загадочные явления окружающей природы.

Нам удалось показать, все, что существует в реальном мире, является фракталом. Мы убедились, что тому, кто занимается фракталами, открывается прекрасный, удивительный мир, в котором царят математика, природа и искусство. Мы надеемся, что после знакомства с нашей работой, вы, как и мы, убедитесь в том, что математика прекрасна и удивительна.

Кроме большой функциональности, возможности применения фракталов в самых различных сферах жизни, это очень яркие, сочные, изумительные по своей красоте изображения, которые доставляют огромное эстетическое удовольствие, позволяют насладиться ими. Создавать свои собственные фракталы может каждый, используя доступные графические программы. От самого процесса создания совершенно для нас нового и одновременно невероятно красивого, порой фантастического, получаешь массу удовольствия. Фракталы очень разнообразны, как и их применение. Изучая фрактальные модели для практического применения, каждый сможет выбрать подходящее для себя направление.

Область применения фрактальных антенн не ограничивается только приемом/передачей тв-сигнала. Они успешно применяются для организации wi-fi сетей, сотовой связи, в том числе и закрытых военных радиоканалов. Таким образом, можно сделать вывод, что освоение приемов построения фракталов и знание области их применения способствуют повышению эффективности изучения многих объектов и процессов живой и неживой природы. В свою очередь это, с одной стороны, мотивирует к изучению практических областей применения геометрии, физики, информатики и других предметов естественно-научного цикла, с другой, позволяет проследить связь между наукой и реальной жизнью и между отдельными разделами

Можно сказать, что фактически найден способ легкого, удобного представления сложных неевклидовых объектов, образы которых похожи на природные.

Фракталы позволяют посмотреть на математику совсем с другой стороны. Казалось бы, производятся обычные расчёты с обычными цифрами, однако это даёт уникальные, неповторимые результаты, которые позволяют почувствовать себя творцом природы. Фракталы дают понять, что математика — это тоже наука о прекрасном.

Значение открытия фракталов для науки трудно переоценить. Создание практически точных моделей окружающей среды позволит точнее рассмотреть и оценить факторы, влияющие на ее состояние и развитие.

За фракталами таятся огромные практические перспективы развития. Фракталы оказались принципиально новым открытием в геометрии, способным изменить древние, бытующие до недавних пор, представления о геометрической структуре мира.

В наши дни теория фракталов находит широкое применение в различных областях человеческой деятельности. Помимо чисто научного объекта для исследований и уже упоминавшейся фрактальной живописи, фракталы используются в теории информации для сжатия графических данных (здесь в основном применяется свойство самоподобия фракталов — ведь чтобы запомнить небольшой фрагмент рисунка и преобразования, с помощью которых можно получить остальные части, требуется гораздо меньше памяти, чем для хранения всего файла). Добавляя в формулы, задающие фрактал, случайные возмущения, можно получить стохастические фракталы, которые весьма правдоподобно передают некоторые реальные объекты — элементы рельефа, поверхность водоемов, некоторые растения, что с успехом применяется в физике, географии и компьютерной графике для достижения большего сходства моделируемых предметов с настоящими. В радиоэлектронике в последнее десятилетие начали выпускать антенны, имеющие фрактальную форму. Занимая мало места, они обеспечивают вполне качественный прием сигнала. Экономисты используют фракталы для описания кривых колебания курсов валют (это свойство было открыто Мандельбротом более 30 лет назад). На этом мы завершим эту небольшую экскурсию в удивительный по красоте и разнообразию мир фракталов.

В ходе данной исследовательской работы поставленные задачи были выполнены, цель достигнута, а гипотеза нашла своё подтверждение.

Список используемой литературы

Красота математических поверхностей. - М.: Куб, 2005;

Леонтьев В.П., Новейшая энциклопедия Интернет. - М.: ОЛМА-ПРЕСС, 2003;

Мандельброт Б. Фрактальная геометрия природы. — М.: «Институт компьютерных исследований», 2002;

Маршак С.Я. , Изд.: Художественная литература.1985;

Шляхтина С.,«В мире фрактальной графики». - СПб., Компьютер Price, 2005;

Газета «Информатика», № 24, 2008;

Пайтген Х.-О., Рихтер П. Х. Красота фракталов. — М.: «Мир», 1993;

Кроновер Р. М. Фракталы и хаос в динамических системах. Основы теории;

Мандельброт Б. Самоаффинные фрактальные множества, «Фракталы в физике». М.: Мир 1988 г.;

Морозов А.Д. Введение в теорию фракталов. Н.Новгород: Изд-во Нижегород. Ун-та 1999 г.;

Божокин С.В., Паршин Д.А. Фракталы и мультифракталы. РХД 2001 г.

Дж.Милнор Голоморфная динамика. РХД 2000 г.

Витолин Д. Применение фракталов в машинной графике. // Computerworld-Россия.-1995.

Пайтген Х.-О., Рихтер П. Х. Красота фракталов. — М.: «Мир», 1993.

Кроновер Р. М. Фракталы и хаос в динамических системах. Основы теории

Мандельброт Б. Самоаффинные фрактальные множества, «Фракталы в физике». М.: Мир 1988 г.

Мандельброт Б. Фрактальная геометрия природы.

Морозов А.Д. Введение в теорию фракталов. Н.Новгород: Изд-во Нижегород. Ун-та 1999.

Интернет-ресурсы

http://elementy.ru;

http://ru.wikipedia.org;

http://www.deviantart.com;

http://fractals.nsu.ru;

http://fraktals.ucoz.ru;

http://www.bsu.burnet.ru/library/berson/index.html;

http://www.uni-dubna.ru/kafedr/mazny/page11.htm;

http://robots.ural.net/fractals/;

Берут начало именно из основ математического анализа. Теория фракталов в математическом понятии, строится на том, что все явления которые нас окружают, зачастую состоят из своего рода само повторяющихся фигур.

К примеру, береговую линию или лист дерева, можно назвать фрактальными фигурами. В теории математики, фрактал – это безгранично само — подобный , у которой при уменьшении масштаба, повторяется каждый фрагмент.

Если посмотреть на линию какого-либо берега, с борта самолета, можно увидеть линию без единого изгиба, но как только мы начнем снижаться, на береговой линии будет появляться все больше и больше изгибов, другими словами, фигура начнет приобретать более четкие очертания.

Основные особенности теории фракталов

Теория фракталов изучает закономерности образования подобных случайных явлений. Рынок это совершенная фигура, которая состоит из различных размерностей. В связи с этим, нахождение важных точек графика, можно выполнять при помощи методов, в основе которых лежит фрактальный анализ.

Наиболее доступно для , тезисы теории фракталов изложил знаменитый трейдер своего времени Бил Гильмс.

Именно он установил фрактал в виде пятибарных минимумов и максимумов на графике. Основная идея данной гипотезы в том, что ценовой уровень в течение 5 отдельно взятых временных интервалов не должен подниматься выше, или опускаться ниже, чем максимум заданного времени, (к примеру, минуты, часа или дня).

Рекомендуем: Фракталы используемые специалистами в трейдинге:

Не столь важно какие это будут графики, но все же на практике, в сфере российского рынка, наибольшую эффективность дают . Во многих случаях уровни минимумов и максимумов образуют линии поддержки и сопротивления. И после того как цена проходит эти уровни, она обычно продолжает движение в том же направлении некоторое время.

Преимущественно на трендовом рынке, при прохождении указанных выше уровней, (пусть то будет ) продажа или покупка, часто дает трейдеру получать хороший доход.

Но если на рынке наступает затишье, весь доход инвестора может перекрыть комиссия, а для того чтобы этого не произошло, есть смысл ввести дополнительные , в Вашу торговую стратегию.