Нормальные гемоглобины человека и животных. Структура, соединения и основные виды гемоглобина

В крови взрослых людей и у многих видов животных различают типы гемоглобина, обозначаемые как HbA 1 (от англ. adult – взрослый), имеющий описанное выше типичное строение, HbA 2 и фетальный гемоглобин, HbF (от лат. fetus – плод).

HbA 2 также состоит их четырёх субъединиц: двух α– и двух β–цепей, он с меньшей скоростью мигрирует при электрофорезе, что и позволило выделить его в отдельный тип. На долю HbA 2 приходится около 2,5% от всего гемоглобина.

HbF, фетальный гемоглобин (гемоглобин новорождённых) состоит из двух α– и двух γ-цепей. Последовательность аминокислот в α– и γ-цепях окончательно ещё не расшифрована.

Фетальный гемоглобин отличается от HbA 1 не только по составу аминокислот, но и по ряду физико-хиических свойст: спектральным показателям, электрофоретической подвижности, устойчивости к щелочной денатурации и др. Гемоглобин плода обладает большим сродством к кислороду, чем гемоглобин новорожденного или взрослого. Высокое сродство к О 2 фетального гемоглобина облегчает перенос кислорода от матери к плоду. Кровь новорождённого содержит до 80% HbF, но к концу молочного периода он почти полностью заменяется заменяется на HbA (в крови взрослого однако обнаруживатеся до 1,5 HbF от общего количества гемоглобина).

Существует метод цитологической дифференцировки гемоглобина F путем обработки мазка крови лимоннокислофосфатной буферной смесью с рН = 3,4. В этих условиях эритроциты, содержащие преимущественно гемоглобин А, подвергаются гемолизу и представляются на препарате в виде теней (стром). Эритроциты, в которых преобладает гемоглобин F, оказываются резистентными и контрастно окрашиваются.

Кроме того, в период эмбрионального развития у зародыша обнаруживается так называемый примитивный гемоглобин Р, характерный для желточного кроветворения.

Он характеризуется высокой щелочной резистентностью и малой электрофоретической подвижностью. Находится в эритроцитах зародыша до 18 - недельного возраста затем сменяется фетальным гемоглобином.

* данные приводятся по Boyd J.W. , The interpretation of serum biochemistry test results in domestic animals, in Veterinary Clinical Pathology, Veterinary Practice Publishing Co., Vol. XIII, # II, 1984

На содержание гемоглобина влияет возраст, пол, порода, кормление, физические нагрузки и высота над уровнем моря.

Среднее содержание гемоглобина в эритроците.

Важным диагностическим показателем, позволяющим оценить эритропоэз и провести дифференциальную диагностику различных форм анемии, служит среднее содержание гемоглобина в одном эритроците. (СГЭ) Эта величина отражает абсолютное количество гемоглобина, содержащееся в среднем в одном эритроците. Ее находят путем деления количества гемоглобина в определенном объеме крови на число эритроцитов в том же объеме.

Эритроциты с нормальным содержанием гемоглобина (26–36 пг) называютнормохромными. Если СГЭ патологически снижено, то эритроциты называют гипохромными, а если оно повышено – гиперхромными. Эти же термины употребляют и для обозначения различных форм анемии. Так, когда образование гемоглобина снижается в результате недостатка железа, содержание гемоглобина в расчете на эритроцит падает, и возникает гипохромная анемия. При других разновидностях анемии нарушается образование красных кровяных телец в костном мозгу, и в крови появляются деформированные эритроциты с высоким содержанием гемоглобина – гиперхромная анемия. После значительной кровопотери СГЭ сначала не изменяется (нормохромная анемия), а в последующем вследствие избыточной продукции эритроцитов содержание гемоглобина в них падает (гипохромная анемия).

Нормальная плазма содержит следы гемоглобина, не превышающие 10 мг%. Сильные увеличения (свыше 100 мг%) встречаются при всех гемоглобинуриях.

Измерение содержания гемоглобина.

Для измерения содержания гемоглобина существует много методов, в том числе:

1) определение количества связанного O 2 (1 г НЬ может присоединить до 1,36 мл O 2 . Количество кислорода устанавливают прибором ван-Слайка или прибором Баркрофта.)

2) анализ уровня железа в крови (содержание железа в гемоглобине составляет 0,347%);

3) колориметрия (сравнение цвета крови с цветом стандартного раствора). Гемоглобин колориметрируют как оксигемоглобин или редуцированный гемоглобин или же сперва превращают его в цветные производные (солянокислый гематин, щелочной гемоглобин, метгемоглобин, карбоксигемоглобин, циангемоглобин, азид-метгемоглобин и пр.)

4) измерение экстинкции (спектрофотометрия).

При проведении рутинных определений уровня гемоглобина отдают предпочтение последнему методу, так как при использовании первых двух способов необходима сложная аппаратура, а метод колориметрии неточен. ,

ФИЗИОЛОГИЧЕСКОЕ ЗНАЧЕНИЕ

ЗАНЯТИЕ 17. Получение крови, определение скорости оседания эритроцитов и ретракции кровяного сгустка

Место проведения занятия-клиника и лаборатория.

    Цель занятия:

    Овладеть техникой взятия крови у животных.

    Научиться определять скорость оседания эритроцитов и ретракцию кровяного сгустка.

    Показатели СОЭ у разных видов животных и отклонения.

    Показатели индекса ретракции кровяного сгустка у лошади и крупного рогатого скота и при патологии.

Для получения большого количества крови её берут у КРС, овец, коз, лошадей из яремной вены с помощью кровопускательных игл, у свиней-из хвоста, хвостовой артерии и крониальной полой вены.

Небольшое количество крови можно получить у животных из кровеносных сосудов уха, у кур-из гребня или серёжек.

Определение скорости оседания эритроцитов

по Неводову

В эритроседиометр отвешивается 0,04 г натрия цитрата в порошке, затем набирают в него крови до «0» из яремной вены (предварительно подготовив поле). Осторожно переворачивают эритроседиометр до полного растворения порошка. Если крови больше «0», то излишек отсасывают пипеткой. Установив пробирку в штатив, наблюдают за ходом реакции через каждые 15 минут в течение часа, затем отмечают через 24 часа.

По Панченкову

В капилляр, после промывания свежеприготовленным 5 % раствором лимоннокислого натрия, набирают того же раствора до метки Р или до деления 50 и выпускают на часовое стекло или в пробирку, затем дважды набирают кровь до метки «К» или дел. 100 и выпускают на то же часовое стекло или в пробирку, смешивают и смесь набирают без пузырьков воздуха в другой, промытый лимоннокислым натрием,капилляр, который устанавливают в штатив и наблюдают за ходом реакции. Учитывают СОЭ через 1 час и выражают в миллиметрах.

У здоровых животных показатели за час составляют: у КРС-0,5-1,5; у овец-0,5-1,0; у лошадей-40-70; у свиней-2-9; у собак-2-6; у кур-2-3 мм.

Определение ретракции кровяного сгустка

по П. В. Каймакову

Кровь в количестве 10 мл набирают в хорошо вымытую и очищенную спиртом и эфиром сухую пробирку и отстаивают 24 часа при комнатной температуре.

По истечении 24 часов отстоявшуюся сыворотку отсасывают пипеткой и измеряют её количество в мерной пробирке, после чего определяют индекс ретракции (И.Р.) путём деления количества сыворотки на первоначальный объём крови.

Пример: крови взято 10 мл, а сыворотки 5 мл

И. Р. 10 = 0,5

И. Р. у лошади колеблется от 0,3 до 0,7 в среднем-0,53

У КРС равен 0,4-0,6.

    Результаты исследования.

    Показатели скорости оседания эритроцитов:

    через 15 минут

    через 30 минут

    через 45 минут

    через 1 час

    через 24 часа

    Индекс ретракции кровяного сгустка

    Заключение

    Учебное оборудование, демонстрационный материал, животные

    Пробирки Неводова или эритроседиометры

    Аппарат Панченкова

    Натрий цитрат

    5 % раствор натрия цитрата

    Пробирки диаметром 1,5 см

  1. Иглы для взятия крови

  2. Настойка Йода

    Спирт-эфир

    Таблицы с показателями СОЭ и ИР у животных

Животные: КРС, лошади, поросята

VIII. Оценка выполненной работы студента преподавателем.

ЗАНЯТИЕ 18. Подсчёт количества эритроцитов, определение гемоглобина в крови и цветового показателя

Место проведения занятия-клиника, лаборатория.

    Цель занятия-освоить методики подсчёта эритроцитов и определения гемоглобина.

    Текущий опрос студентов по следующим вопросам:

    Показатели эритроцитов и гемоглобина у разных видов животных.

    Их отклонения при различных физиологических и патологических состояниях.

    Объяснение методики выполнения работы преподавателем.

    Выполнение работы студентами.

Подсчёт количества эритроцитов.

Кровь набирают в смеситель до метки 0,5 или 1. Конец меланжера обтирают от крови, затем в капилляр до метки 101 набирают физиологический раствор. Получается разведение в 200 или 100 раз. Когда смеситель наполнен кровью и физиологическим раствором, концы его зажимают между большим и указательным пальцами и несколько раз энергично встряхивают.

Перед заряжением камеры содержимое смесителя вновь тщательно перемешивается и вводится под покровное стекло. Чтобы высота камеры не изменялась, необходимо покровное стекло плотно протереть до образования т.н. ньютоновских колец.

Заряженная камера помещается под микроскоп без иммерсии. Подсчёт эритроцитов начинают с квадрата, расположенного в левом углу, затем переходят к другим квадратам.

Подсчитывать нужно в 5 больших квадратах все эритроциты, лежащие внутри квадрата, и на его внутренних линиях.

Подсчитанные эритроциты в пяти больших квадратах суммируют и определяют содержание количества эритроцитов в 1 куб. мм. крови по следующей формуле: М . 4 000 . у

Количество эритроцитов Х равно количеству подсчитанных клеток в пяти больших квадратах М. умноженному на 4 000 и степень разведения у, разделённому на 80 (число малых квадратиков).

Объём одного малого квадратика равен 1\ 4 000 куб. м., а поэтому, чтобы получить количество в 1 куб. мм. необходимо число эритроцитов умножить на 4 000.

Расчёт нужно производить следующим образом: количество эритроцитов в 5 квадратах умножается на 10 000 при разведении на 200 и

на 5 000 при разведении на 100.

Пробирочный метод подсчёта эритроцитов.

В чистую пробирку Флоринского наливают 4 мл физраствора. Кровь набирают в пипетку от гемометра Сали 0,02 мл, осторожно выдувают в пробирку с физраствором, промывают пипетку, закрывают пробкой и тщательно перемешивают. Разведение 1:200.

Кровь, взятую в пробирку перед заполнением камеры, встряхивают несколько раз. Камеру заполняют с помощью пастеровской пипетки или концом круглой стеклянной палочки, важно, чтобы вся поверхность, на которой нанесена сетка, была заполнена жидкостью. Расчёт производят обычным способом с учётом разведения.

В связи с переходом к применению в клинической лабораторной диагностике Международной системы единиц СИ в практикуме наряду со старыми физическими единицами приведены также новые единицы. Например: вместо выражения количества эритроцитов в млн/мкл и лейкоцитов в тыс/мкл число эритроцитов следует обозначать в 10 12 л, а лейкоцитов-в 10 9 л.

Количество эритроцитов у взрослых здоровых животных в млн/мкл или 10 12 л;

КРС 4,5-7,5; овцы-7,6-11,2; лошади-5,5-9,0; свиньи-4,0-7,5; собаки-5,2–8,4; куры-2,5–5,0.

Определение гемоглобина. Способ Сали

В градуированную пробирку при помощи пипетки отмеряют до 10-го деления или до круговой метки с цифрой 2 гр проц. децинормального раствора соляной кислоты. В капилляр до 20 мм набирают кровь и осторожно, очистив конец капилляра переносят кровь в пробирку с децинормальным раствором НСl, чтобы на стенках капилляра не осталось следов крови, ещё раза три споласкивают той же кислотой стараясь не пенить жидкость.

Кровь гемолизируется и образуется соляно-кислый гематин.

Спустя 5-7 минут в пробирку добавляют дистиллированной воды. Доводя окраску до стандарта.

Цифра, соответствующая уровню жидкости по нижнему мениску в пробирке, показывает количество гемоглобина по Сали или г\100 мл.

Определение цветового показателя

Цветовой показатель вычисляется по формуле:

где ЦП-цветовой показатель;

Н1-среднее количество гемоглобина в норме, г в 100 мл (или г \ л);

Н2-количество гемоглобина у исследуемого животного, г в 100 мл (или г \л);

Е1-среднее количество эритроцитов в норме млн \ мкл (или 10 12 \л);

Е2-количество эритроцитов у исследуемого животного, мдн\мкл

(или 10 12 \л).

Цветовой показатель крови у здоровых животных составляет: у КРС-0,7-1,1; у овец-0,5-0,7; у лошадей-0,8-1,2 у свиней-0,8-1,0; у собак-0,8-1,2; у кур-2-3.

    Результаты определения:

    Эритроциты.

    Гемоглобин.

    Цветовой показатель.

    Заключение.

    Микроскоп.

    Счётная камера Горяева.

    Смеситель для эритроцитов.

    Физиологический раствор.

    Покровные стёкла.

    Гемоглобинометр Сали.

    Дистиллированная вода.

    Децинормальный раствор соляной кислоты.

    Пипетки градуированные на 1 и 5 мл, пипетки от гемометра Сали.

    Таблицы с показателями эритроцитов и гемоглобина у животных.

Животные: КРС, лошади, поросят.

ЗАНЯТИЕ 19.Подсчёт количества лейкоцитов. Приготовление и окраска мазков. Выведение гемограммы, гематологического и лейкоцитарного профиля

Место проведения занятия-клиника и лаборатория кафедры.

    Цель занятия:

    Освоить методику подсчёта лейкоцитов.

    Приобрести навыки приготовления и окраски мазков.

    Вывести лейкоцитарные формулы разных видов животных.

    Определить лейкоцитарный профиль у крупного рогатого скота.

    Текущий опрос студентов по следующим вопросам:

    Показатели лейкоцитов у разных видов животных.

    Их изменения в зависимости от некоторых физиологических и патологических состояний.

    Понятие о лейкоцитарной формуле и лейкоцитарном профиле.

    Показатели лейкоцитарной формулы у крупного рогатого скота и лошадей.

    Морфологические изменения лейкоцитов.

    Объяснение методики выполнения работы преподавателем.

    Выполнение работы студентами.

Подсчёт количества лейкоцитов.

Кровь набирают в смеситель или меланжер до черты 0,5 или 1 (из уха или цитратной крови). Затем в этот же меланжер набирают 2% раствор уксусной кислоты до метки 11, получается разведение в 20 раз. После тщательно перемешивают, первые две капли удаляют из смесителя и каплю средней величины вводят под покровное стекло к камере (ранее притёртое). Критерием притёртости стекла к камере служит образование ньютоновских колец. Правило подсчёта-заряженная камера помещается под микроскоп без иммерсии. Лейкоциты подсчитывают в 100 больших квадратах (т.е. 1600 малых). Допустимо считать 75 больших квадратов (т.е. 1200 малых).

а х 4000 х в

Формула для подсчёта: Х =

где Х-искомое количество форменных элементов в 1 м 3 ;

а-сумма форменных элементов, сосчитанных в определённом объёме камеры;

б-количество сосчитанных малых квадратов;

в-разведение крови.

Объём малого квадрата равен 1\100 мм 3 , то в 1 мм 3 крови их будет в 400 раз больше.

Пример: (разведение крови в 20 раз).

В 1600 малых квадратах (т. е. 100 больших) сосчитано 150 лейкоцитов, тогда в 1 м 3 будет:

150 х 4000 х 20

1600 = 150 х 50 = 7500

т.е. сумму лейкоцитов, сосчитанных в 100 больших квадратах, надо умножать на 50.

Подсчёт лейкоцитов (пробирочный метод)

В чистую пробирку отмеривают пипеткой 0,4 мл раствора уксусной кислоты. Кровь набирают пипеткой от гемометра Сали-0,02 мл и осторожно переносят её в пробирку с 3 % уксусной кислотой. Разведение 1:20. Камеру заполняют с помощью пастеровской или концом круглой стеклянной палочки, важно, чтобы вся поверхность сетки была заполнена жидкостью. Расчёт производят обычным способом с учётом разведения.

Количество лейкоцитов у взрослых здоровых животных (тыс.\мкл или 10 9 \л); у КРС-6,5-9,5; у овец-6,6-10,6; у лошадей-7,0-12,0; у свиней-6,7-23,0; у собак-8,5-10,5; у кур-20,0-40,0.

Выведение лейкоцитарной формулы .

Подсчёт отдельных классов лейкоцитов ведётся под микроскопом с иммерсией. Всего в мазке должно быть подсчитано не менее 100 клеток, лучше 200. Существуют методы подсчёта по Меандру-4-х полюсный и по Мухину (три линии перпендикулярные мазку в его центре).

Лейкограмма крови здоровых животных, %

Нейтрофилы

Животные Б Э М Ю П С Л М

*) Псевдоэозинофилы.

Определение лейкоцитарного профиля.

Лейкоциты подсчитываются по классам на базе 100 клеток, выводится лейкоцитарная формула, после чего производится перерасчёт по количеству лейкоцитов в мм 3 .

Пример: если на 100 сосчитанных клеток приходится 60 лимфоцитов, а общее количество лейкоцитов в 1 мм 3 равно 10 000, то по формуле:

100-60 10 000 х 60

10 000- Х Х = 100 = 6 000

Затем пересчитываются другие классы.

Полученные данные отмечают точкой в соответствующей графе специального бланка.

Соединив точки линией, получают графическое изображение-лейкоцитарный профиль. Он даёт возможность определить какой лейкоцитоз у животного относительный или абсолютный.

    Результаты исследования.

Показатели лейкоцитарной формулы и патологические

изменения лейкоцитов.

I. Лейкоциты (тыс.\ мкл.):

    базофилы %;

    эозинофилы %;

    миелоциты %;

  • палочкоядерные %;

    сегментоядерные %;

    лимфоциты %;

    моноциты %;

    клетки Тюрка %.

    Патологические изменения:

    анизоцитоз;

    пойкилоцитоз;

Определение лейкоцитарного профиля.

Определение гематологического профиля

    Заключение

    Учебное оборудование, демонстрационный материал, животные:

    Микроскоп

    Счётная камера Горяева

    Меланжеры для лейкоцитов

    Шлифованное покровное стекло.

    2-3 % раствор уксусной кислоты, подкрашенный метиленовой синькой.

    Пробирки лабораторные с резиновыми пробками

    Пипетки градуированные на 1 и 5

    Пипетки от гемометра Сали

    Предметное стекло (чистые, обезжиренные)

    Шлифованные стёкла

    Краска Романовского-Гимза

    Дистиллированная вода

    Эмалированные ванночки

    Иммерсионное масло

    Таблицы с показателями лейкоцитарной формулы, лейкоцитарного и гематологического профиля.

VIII. Оценка работы студента преподавателем.

ЗАНЯТИЕ 20. Определение общего кальция и неорганического фосфора в сыворотке крови

    Цель занятия-научиться определять в сыворотке крови количество кальция и неорганического фосфора и давать клиническую оценку результатам исследования.

    Текущий опрос студентов по следующим вопросам:

    Физиологическая роль кальция в организме животного.

    Показатели общего кальция в сыворотке крови у различных видов сельскохозяйственных животных и их изменения.

    Физиологическая роль фосфора в организме животных.

    Показатели неорганического фосфора в сыворотке крови у сельскохозяйственных животных и их изменения

    Объяснение методики выполнения работы преподавателем.

    Выполнение работы студентами.

Определение кальция в сыворотке крови по методу де-Варда .

В одну маленькую центрифужную пробирку помещают 0,5 мл сыворотки крови, в другую-0,5 мл дистиллированной воды. Затем в каждую пробирку добавляют по 0,5 мл насыщенного водного раствора щавелевокислого аммония.

Через 30 минут пробирки центрифугируют в течение 15 минут. Сыворотку отсасывают, к осадку добавляют 1-2 мл дистиллированной воды и вновь центрифугируют 3-5 минут.

После этого жидкость отсасывают, к осадку приливают 0,3 мл серной кислоты в разведении 1: 2 с водой. Смесь нагревают на водяной бане до 50-65% и титруют сантинормальным раствором перманганата (КМпО4) до появления розового окрашивания, сохраняющегося в течение 2 минут.

Количество кальция в миллиграммах-процентах вычисляют по формуле: (а - к) х 2 х 0,2 х 100, где

а - количество сантинормального раствора перманганата, израсходованного на титрование сыворотки;

к - количество перманганата, израсходованного для контрольной титрации дистиллированной воды;

0,2 - количество кальция в миллиграммах, соответствующее 1 мл сантинормального раствора перманганата;

2 - множитель для вычисления количества кальция в 1 мл сыворотки крови;

100 - множитель для вычисления количества кальция в миллиграмм-процентах в 100 мл сыворотки крови.

Количество общего кальция (мг на 100 мл) у КРС 10,1-12,5; у лошадей-12,0-15,щ; у свиней-10,5-12,5; у птиц-11,0-15,0.

Определение неорганического фосфора в сыворотке крови

по Аммону и Гинсбергу (в модификации С.А. Ивановского).

В центрифужную пробирку вносят 3 мл дистиллированной воды, 1 мл исследуемой сыворотки и 1 мл 20 % раствора трихлоруксусной кислоты, хорошо смешивают. Через 5 минут центрифугируют при 3 000 об\мин. в течение 15 мин. (или фильтруют через бензольный фильтр). Затем в пробирку наливают 2,5 мл прозрачного центрифугата (или фильтрата), 0,5 молибденового реактива, 1 мл 1% раствора аскорбиновой кислоты и 6 мл дистиллированной воды. Одновременно в другую пробирку (стандарт) вносят 3 мл рабочего стандартного раствора фосфора, 0,5 мл молибденового реактива, 1 мл 1 % раствора аскорбиновой кислоты и 5,5 мл дистиллированной воды. Через 10 минут жидкости в обеих пробирках колориметрируют на фотоэлектроколориметре при зелёном светофильтре в кюветах шириной 10 мм.

Расчёт производят по формуле:

Ех х 0,05 х 100 Ех х 10

Х = Ек х 0,5 Ек, где

Х - количество неорганического фосфора в исследуемой сыворотке крови, мг в 100 мл;

Ех - оптическая плотность пробы с центрифугатом сыворотки;

Ек - оптическая плотность пробы со стандартным раствором фосфора (стандарт);

0,05 - количество фосфора во взятом для анализа объёме рабочего стандартного раствора фосфора, мг; 100-коэффициент для перечисления количества фосфора на 100 мл сыворотки крови.

В сыворотке крови взрослых животных в норме содержится следующее количество неорганического фосфора (мг на 100 мл); у КРС-5,0-6,5; у свиней-7,7-9,5; у лошадей-5,1-6,0; у птицы-5,6-8,0; у овец-4,5-7,5.

    Результаты.

Количество кальция (мг %).

Количество неорганического фосфора (мг. %).

    Заключение.

    Учебное оборудование, демонстрационный материал.

    Реактивы: насыщенный водный раствор щавелевокислого аммония,

сантинормальный раствор перманганата калия, серная кислота в разведении 1:2, 20 % раствор трихлоруксусной кислоты; молибденовый реактив (готовят смешиванием раствора, состоящего из 5 г молибдата аммония и 60 мл дистиллированной воды, с раствором, приготовленным из 15 мл концентрированной Н2 SO4 и 25 мл дистиллированной воды); 1% раствор аскорбиновой кислоты на 0,1 н растворе НСl; основной стандартный раствор фосфора (4,394 г КН 2 РО 4) высушенного до постоянной массы над НSO в эксикаторе и дистиллированной воды до 1 л); рабочий стандартный раствор фосфора (2 мл основного раствора и дистиллированной воды до 100 мл + 20 мл 20% раствора трихлоруксусной кислоты; в 3 мл раствора содержится 0,5мг фосфора; вода дистиллированная).

    Пробирки.

    Градуированные пипетки.

    Бензольные фильтры.

  1. Фотоэлектроколориметр.

  2. Сыворотка крови.

    Водяная баня.

    Термометр химический.

    Центрифуга.

    Оценка работы студента преподавателем.

ЗАНЯТИЕ 21. Определение кислотной ёмкости и каротина в сыворотке крови

Место проведения занятия-лаборатория кафедры.

    Цель занятия:

    Овладеть методикой исследования кислотной ёмкости крови.

    Научиться определять каротин в сыворотке крови и давать диагностическую оценку результатам анализов.

    Текущий опрос студентов по следующим вопросам:

    Что такое кислотная ёмкость и нормальные показатели кислотной ёмкости у различных видов сельскохозяйственных животных.

    Виды нарушений кислотно-щелочного равновесия.

    Физиологическая роль каротина, содержание его у животных в норме и при патологии.

    Объяснение методики выполнения работы преподавателем.

    Выполнение работы студентами.

Определение резервной щёлочности сыворотки крови

по И.П. Кондрахину.

Посуда: спаренные колбы, пипетки.

Реактивы:

    0,01 н раствор NаОН (едкий натр);

    5% раствор Н2SО4;

    1 % спиртовой раствор фенолфталеина;

    0,01 н раствор Н2SО4 (серной кислоты).

Ход исследования. В одну половину колбы вносят 0,5 мл сыворотки (или плазмы крови), причём выдувание остатков жидкости из пипетки не допускается, плотно закрывают пробкой. Во вторую половину колбы берут 2 мл 0,01 н раствора едкого натра и закрывают пробкой. Затем открывают первую половину колбы и к находящейся там сыворотке крови добавляют 1 мл 5 % раствора серной кислоты и быстро закрывают пробкой. Вращательными движениями тщательно смешивают сыворотку с кислотой. За время прохождения реакции смешивание повторяют 3-4 раза.

В контрольную пробирку вносят 2 мл 0,01 н раствора едкого натра и плотно закрывают пробкой. Во вторую половину спаренной колбы берут 1 мл 5% раствора серной кислоты и закрывают пробкой. Перед закрытием отверстий колбы пробки увлажняют дистиллированной водой.

Для большей точности каждый образец сыворотки исследуют в двух спаренных колбах. Контрольный опыт проводят в трёх сдвоенных колбах.

Через 4-6 ч (допустимо до 12 ч.) открывают колбы. В которых находится раствор едкого натра, вносят одну каплю 1 % спиртового раствора фенолфталеина. Смешивают (появляется красная окраска). Затем жидкость в колбе титруют 0,01 н раствором серной кислоты до полного обесцвечивания, что происходит при рН 8.Титрование следует проводить осторожно и с одинаковой быстротой во всех пробах и контроле.

Расчёт проводят по формуле:

Х = (а - 6) х 0,224 х 200 = (а - 6) х 44,8

где: Х-резервная щёлочность (в объёмных процентах) СО;

а-количество 0,01 н раствора серной кислоты, израсходованное на титрование опытной пробы, мл;

б-количество 0,01 н раствора серной кислоты, израсходованное на титрование опытной пробы, мл;

0,224-фактор пересчёта 0,01 н раствора серной кислоты на СО при данной реакции;

200-коэффициент для пересчёта взятого для анализа количества сыворотки (плазмы) крови (0,5 мл на 100 мл.)

Нормальные показатели кислотной емкости крови (мг в 100 мл); КРС-460-540, овцы-460-540, козы-380-520, лошади-500-600, свинья-500-600, собаки-450-550.

Определение каротина в сыворотке крови

(по В.Ф. Коромыслову и Л.А.Кудрявцевой)

В пробирку вносят 1 мл сыворотки крови и 3 мл 95 % этилового спирта, тщательно смешивают стеклянной палочкой, добавляют 6 мл петролейного эфира, энергично встряхивают в течение 2 минут и осторожно по стенке пробирки приливают 0,5 мл дистиллированной воды, оставляют стоять до чёткого разделения водной и органической фаз. После этого осторожно сливают 4,5 мл экстракта каротина и переносят в кювету.

Колориметрируют на фотоэлектроколориметре в кюветах 1см при синем светофильтре против петролейного эфира (бензина). Одновременно колориметрируют рабочий стандартный раствор бихромата калия (5 мл дистиллированной воды смешивают с 5 мл основного бихромата калия).

Расчёт делают по формуле: А

где: Х-количество каротина в сыворотке, мг на 100 мл;

А-оптическая плотность исследуемой пробы;

Б-оптическая плотность рабочего стандартного раствора

бихромата;

1,248-коэффициент для перечисления каротина в мг на 100 мл сыворотки крови.

    Результаты исследования.

    1. Показатели кислотной ёмкости сыворотки крови.

    Заключение.

    Учебное оборудование, демонстрационный материал, животные.

    0,5 % раствор химически чистого хлорида натрия, приготовленного на нейтральной бидистиллированной воде.

    Сантинормальный раствор соляной кислоты.

    Индикатор-1% водный раствор краски ализаринрот.

    Петролейный эфир.

    Рабочий стандартный раствор бихромата калия.

    Вода дистиллированная

    Пробирки

  1. Сыворотка крови от различных животных

    Фотоэлектроколориметр

Всю используемую при анализах посуду для нейтрализации предварительно обрабатывают хромовой смесью.

VIII. Оценка работы студента преподавателем.

ЗАНЯТИЕ 22. Определение билирубина и общего белка

в сыворотке крови

Место проведения занятия-лаборатория кафедры.

    Цель занятия-научиться определять в сыворотке крови билирубин, общий белок и давать клиническую оценку результатам исследования.

    Текущий опрос студентов по следующим вопросам:

    Значение исследования сыворотки крови на содержание в ней билирубина для дифференциации различных форм желтух.

    Показатели общего белка сыворотки крови у здоровых животных и их изменения.

    Объяснение методики выполнения работы преподавателем

    Выполнение работы студентами.

Качественное определение билирубина в сыворотке крови

(по Ван-ден-Бергу)

Берут 2 маленькие пробки. В первую вносят 0,5 мл исследуемой сыворотки и добавляют 0,3 мл смеси диазореактивов; во вторую-0,5 сыворотки, 0,5 мл 96 0 спирта и 0,3 мл смеси диазореактивов (спирт во вторую пробирку добавляют для разрушения связи непрямого билирубина с глобулином крови).

Содержимое пробирки размешивают тонкой чистой палочкой. Розовое окрашивание в первой пробирке указывает на прямую, во второй пробирке-на непрямую реакцию.

Количественное определение (по Бокальчуку)

Для кратных разведений сыворотки берут 6 маленьких пробирок и наливают в каждую, за исключением первой, по 0,5 мл физиологического раствора поваренной соли, потом вносят по 0,5 мл исследуемой сыворотки в первую и вторую пробирки.

Сыворотку во второй пробирке тщательно смешивают с физиологическим раствором, после чего 0,5 мл смеси переносят в третью пробирку и также тщательно смешивают, 0,5 мл смеси из третьей пробирки переносят в четвёртую пробирку и т.д. Остаток (0,5 мл) из последней пробирки выливают в полоскательную чашку. В результате получают разведения:

№ пробирки 1 2 3 4 5 6

Степень разведения 1 2 4 8 16 32

Затем в каждую пробирку вносят по 0,5 мл абсолютного (или 96 град. спирта), встряхивают и получают взвесь белка в спиртовой вытяжке билирубина. В жидкость, помутневшую вследствие осаждения белка, наливают по 0,5 мл смеси диазореактивов, стеклянной палочкой осторожно перемешивают содержимое пробирок. В результате реакции сыворотка принимает розовое окрашивание. Концом реакции считают разведение, которое даёт едва различимое розовое окрашивание. Умножив степень разве

дения на 0,016, устанавливают количество билирубина в 1 мл сыворотки крови, а умножив её на 100--количество билирубина в миллиграмм % в 100 мл сыворотки. В первой пробирке это количество будет составлять 1,6 мг %, во второй-3,2, в третьей-6,4, в четвёртой-12,8, в пятой-25,6 и в шестой-51,2 мг %.

Определение билирубина в сыворотке крови (по Казакову)

Восемь чистых и сухих пробирок устанавливают в штативе. Затем в каждую пробирку вносят 0,5 мл исследуемой сыворотки и смешивают содержимое. Из этой пробирки при помощи пипетки набирают 0,5 мл смеси и переносят во вторую пробирку, из второй 0,5 мл жидкости переносят в третью и т.д. Из последней (восьмой) пробирки 0,5 мл смеси удаляют в сливательницу. Таким образом получают разведения сыворотки, кратные двум. Затем в каждую пробирку вносят по 1 мл 20% раствора трихлоруксусной кислоты и тщательно встряхивают. После этого содержимое пробирок выливают в приготовленные заранее воронки из фильтровальной бумаги, на которых должны быть обозначения в соответствии с разведением крови. Воронки оставляют для высушивания при комнатной температуре. Учёт реакции производят на следующий день. Концом реакции считают разведения, при котором остаётся на фильтре хорошо различимое зелёное окрашивание.

Для расчёта можно пользоваться таблицей.

№ пробирки Степень разведения Количество билирубина

в 100 мл сыворотки

Определение общего белка в сыворотке крови

рефрактометрическим методом

Показатель преломления лучей света (рефракция) является характерной величиной для различных веществ. Существует зависимость между концентрацией вещества (в данном случае-белков) и степенью рефракции, что и используется для определения белков в сыворотке крови.

Для обогревания призм через резиновые трубки пропускают воду для установления постоянное температуры + 20 0 . Перед работой откидывают верхнюю часть измерительной головки. На поверхность измерительной призмы стеклянной палочкой наносят одну каплю исследуемой сыворотки и осторожно закрывают головку.

Наблюдая в окуляр зрительной трубы и вращая маховичок слева, находят границу раздела света и тени. Маховичком справа устраняют цветную кайму. Затем маховичком слева точно совмещают границу раздела с перекрестием сетки и снимают отсчёт по шкале показателей преломления. Расчёт содержания белка в исследуемой сыворотке ведут по специальной таблице.

Коэффициенты преломления сыворотки крови и соответствующие им количества общего белка.

Показатели общего белка в сыворотке крови у здоровых животных (г на 100 мл); у КРС –6-8,5; у овец-6-7,5; у свиней-6,5-8,5; у лошадей-6,5-7,8; у собак-5,9-7,6; у кур-4,3-5,9.

    Результаты исследования.

Количество билирубина (мг %)

Количество общего белка (г %)

    Заключение.

    Учебное оборудование, демонстрационный материал, животные.

1. Реактивы:

    сульфаниловая кислота-1г; соляная кислота (уд. вес 1,19) - 10 г;

    дистиллированная вода-200,0;

    азотистокислый натрий-0,5 г, дистиллированная вода-100мл.

Перед исследованием готовят смесь из расчёта на 10 мл 1-го реактива 0,3 или 0,6 мл 2-го реактива.

    Пробирки.

    Градуированные пипетки

  1. Рефрактометр ИРФ-22

    Полоскательные чашки

    Глазные пипетки

    Спирт-эфир

    Сыворотка крови

    Физиологический раствор поваренной соли.

    96 0 спирт.

    20% раствор трихлоруксусной кислоты

    Фильтровальная бумага

VIII. Оценка работы студента преподавателем.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ИССЛЕДОВАНИЕ СИСТЕМЫ КРОВИ

План

1. Определение гемоглобина и клиническая интерпретация результатов

2. Подсчет количества эритроцитов и клиническая оценка изменения их числа

3. Расчет индексов красной крови и их значение в дифференциальной диагностике анемий

4. Методы и клиническое значение определения количества лейкоцитов

1. Определение гемоглобина и клиническая интерпретация результатов

Для определения концентрации гемоглобина предложено довольно большое количество различных методик. Наибольшее распространение получили колориметрические, основанные на колориметрии производных гемоглобина.

Кроме этих иногда применяют газометрические методы (Hb насыщают кислородом или углекислым газом и по их количеству определяют концентрацию Hb). Также существует метод, основанный на определении железа в гемоглобине, который содержит 0,347% элемента.

В качестве унифицированного и даже стандартного метода в медицине принят цианметгемоглобиновый метод с применением ацетонангидрина. Принцип методики основан на том, что гемоглобин окисляется в метгемоглобин (гемиглобин) под действием железосинеродистого калия (красной кровяной соли). Образующийся с ацетонангидрином окрашенный цианметгемоглобин (гемоглобинцианид) определяют на фотоэлектроколориметре, спектрофотометре или гемоглобинометре.

При определении гемоглобина этим методом 0,02 мл (20 мкл) крови (стабилизированной или свежеполученной) вносят в 5 мл трансформирующего раствора, который состоит из ацетонциангидрина, железосинеродистого калия и гидрокарбоната натрия. Раствор хорошо перемешивают, оставляют на 10 мин, после чего колориметрируют при длине волны 500-560 нм (зеленый светофильтр) против «холостой пробы» (трансформирующий раствор). Расчет производят по колибровочному графику.

Наиболее простым и также достаточно широко распространенным в лабораторной практике является колориметрия солянокислого гематина, на котором основан метод Сали (1895 г.). Для этого необходим гемометр, представляющий собой штатив, в котором имеются три пробирки. В крайних пробирках находится стандарт и они запаяны, средняя пробирка имеет градуировку. В нее, до нижней метки наливают 0,1 н раствор соляной кислоты, затем вносят 0,02 мл стабилизированной крови. Для того, чтобы эритроциты полностью разрушились, ждут 5 мин. (при исследовании крови млекопитающих) или 10 мин. (при исследовании крови птиц). Гемоглобин, взаимодействуя с HCl, превращается в солянокислый гематин, имеющий темно-коричневый цвет. Затем в пробирку приливают по каплям дистиллированную воду до тех пор, пока проба по цвету не будет соответствовать стандарту. Результат считывают по шкале, нанесенной на пробирку.

Метод чрезвычайно прост и быстро выполним, но недостаточно точен. При суммировании различных погрешностей этого метода ошибка составляет +30%. Поэтому в настоящее время метод не может быть рекомендован для лабораторной практики.

У здоровых животных концентрация гемоглобина составляет (г/л): крупный рогатый скот - 100-130; овца - 90-133; коза - 100-150; лошадь - 80-140; свинья - 90-110; собака - 110-170.

Увеличение концентрации гемоглобина называется гиперхромемия. Наблюдается при диарее, рвоте, гипергидрозе, образовании экссудатов и транссудатов, миоглобинурии, эмфиземе легких. Гипохромемия (олигохромемия) или уменьшение количества гемоглобина чаще регистрируется при анемии. При этом следует иметь ввиду, этот симптом является типичным для т.н. дефицитных форм анемии (недосточность железа, витамина В 12 , ферментов идр.).

Определение концентрации гемоглобина имеет также прогностическое значение. Прекращение снижения или постепенное повышение концентрации гемоглобина является благоприятным симптомом, уменьшение же его количества до 50 г/л - это неблагоприятный признак. Выявление показателя в 30 г/л является угрожающим для жизни животного симптомом.

ГЕМАТОКРИТ

Гематокрит представляет собой объемную фракцию эритроцитов в цельной крови. Зависит от количества эритроцитов и их объема. В современных гематологических анализаторах показатель гематокрита устанавливается расчетным методом -- по параметрам, выводимым из количества эритроцитов и их объема.

В норме гематокрит составляет 0,40-0,50 л/л крови; у новорожденных несколько выше.

Биологическим материалом для исследования служит венозная или капиллярная кровь. Венозная кровь берется с трилоном Б (ЭДТА); капиллярная собирается в гематокритный капилляр, обработанный гепарином.

Повышение гематокрита может быть связано либо с гиперпродукцией эритроцитов, либо с увеличением их размера.

Показатель гематокрита увеличивается при: эритроцитозах;

полицитемии -- заболевании, связанном с усилением продукции клеток «красной» крови;

компенсаторной реакции, направленной на улучшение снабжения тканей кислородом, например, у больных, страдающих хроническими заболеваниями легких, легочной недостаточностью, тяжелыми пороками сердца, при нахождении на больших высотах, при почечной патологии (сужении почечных артерий, вызывающем недостаточное кровоснабжение и гипоксию ткани почек;

заболеваниях самих почек при образовании в почках полостей, заполненных жидкостью; новообразованиях почек, сопровождающихся усилением образования эритропоэтина. При всех этих состояниях усиливается выработка в почечной ткани особого вещества -- эритропоэтина, способствующего повышению продукции эритроцитов костным мозгом, возрастанию гематокрита. Его увеличение происходит и при беременности.

Увеличение гематокрита относительного характера наблюдается при обезвоживании организма, вызванном разными причинами, в том числе: перемещением жидкости в кишечник (при его непроходимости); потерей содержимого желудочно-кишечного тракта при неукротимой рвоте, профузных поносах (сопровождается сгущением крови, а следовательно, и увеличением гематокрита), чрезмерном потоотделении, ожоговой болезни, перитоните;

нахождении на больших высотах.

Уменьшение содержания эритроцитов и показателя гематокрита может наблюдаться при:

потере крови (острых кровотечениях);

снижении темпа образования эритроцитов в костном мозге;

ускоренном разрушении красных кровяных телец;

увеличении объема крови при нормальном содержании в ней эритроцитов (например, после внутривенного введения жидкости больным со сниженной выделительной функцией почек); анемии;

увеличенном объеме циркулирующей плазмы при беременности (особенно во второй половине); гиперпротеинемии; гипергидратации.

2. Подсчет количества эритроцитов и клиническая оценка изменения их числа

Эритроциты, также как лейкоциты и тромбоциты относятся к форменным элементам крови. Эритроциты - самые многочисленные форменные элементы крови, которые содержат гемоглобин. Следовательно, их основная функция в организме - осуществление газообмена. С помощью гемоглобина эритроциты переносят кислород и углекислоту. Кроме того, эритроциты доставляют клеткам аминокислоты и липиды, принимают участие в регуляции кислотно-щелочного равновесия, выполняют защитную и другие жизненно важные функции, которые более подробно рассматривали в курсе физиологии.

Содержание эритроцитов в крови здоровых животных и птицы довольно постоянное, поэтому установление изменения их количества имеет диагностическое значение. Правда, колебания их числа можно наблюдать в зависимости от времени суток исследования, возраста, пола, продуктивности, физической нагрузки животного. Так, например, количество эритроцитов днем несколько меньше чем вечером, у новорожденных их содержание выше чем у взрослых, также как и у самцов по сравнению с самками. У высокопродуктивных коров показатели содержания эритроцитов выше чем у малопродуктивных. Установлено также, что у лошадей после физической нагрузки (например 10- минутная прогонка рысью - проба по Домрачеву) число эритроцитов увеличивается на 20 и более процентов.

Все эти факторы необходимо учитывать при клинической оценке результатов определения количества эритроцитов. Для подсчета эритроцитов предложено несколько методов, из которых унифицированными в медицинской практике являются два:

1. Подсчет в счетной камере с применением микроскопа;

2. Подсчет посредством электронных автоматических счетчиков. Ранее практиковались методы определения числа эритроцитов с помощью эритроседиометра (градуированной пробирки для определения СОЭ по Неводову), эритрогемометра и фотоэлектроколориметра, однако, из-за низкой их точности, в настоящее время они не используются. Погрешность же метода подсчета форменных элементов в камере составляет + 2-5%, а в автоматических анализаторах и того меньше - до + 2%. Это и предопределяет широкое применение названных методов не только в лабораторной практике, но и в научных исследованиях.

Подсчет эритроцитов в камере. Принцип метода заключается в том, что точное количество крови равномерно смешивают с определенным количеством жидкости. Разведенную кровь помещают в камеру с известным объемом. На дно камеры нанесена сетка, благодаря которой возможен точный подсчет эритроцитов посредством микроскопии.

Предложено несколько счетных камер, из которых наибольшее распространение в странах бывшего СССР получила счетная камера с стекой Горяева. Ее нередко так и называют "камера Горяева", хотя фактически это камера Бюркера с сеткой Горяева (1910).

Счетная камера - это толстое предметное стекло с четырьмя поперечными желобками, между которыми расположены три плоскости. Средняя плоскость на 0,1 мм тоньше боковых и разделена продольным желобом на две равные половины, на каждой из которых выгравирована сетка Гряева. Если на боковые плоскости камеры наложить покровное стекло и притереть его до появления радужных колец, т.н. "колец Ньютона", то над средней плоскостью будет щелевидное пространство высотой 1/10 мм.

Сетка Горяева имеет размер 3x3 мм, т.е. ее площадь равна 9 мм 2 . На ней нанесено 225 больших квадратов, 25 из которых разделены на 16 маленьких, 100 квадратов не разграфлено и еще 100 разделены на прямоугольники. Площадь одного маленького квадратика составляет 1/400 мм, а объем камеры над ним - 1/4000 мм.

Что касается техники подсчета эритроцитов, то здесь соблюдают следующую последовательность этапов: 1) разведение крови; 2) заправка счетной камеры; 3) собственно подсчет клеток; 4) расчет абсолютного количества эритроцитов.

1 этап. Поскольку эритроцитов в крови содержится значительное количество, например у коровы массой 400 кг - более 125 млрд. клеток, то определить их количество возможно только после разведения крови. Для разведения чаще применяют 0,85-3%-й раствор натрия хлорида или 5%-й раствор натрия цитрата. Применение растворов большей или меньшей концентрации недопустимо, поскольку приведет к разрушению эритроцитов.

Кровь разводят или в меланжере-смесителе для эритроцитов, или в пробирке (по Н.М.Николаеву, 1954). Меланжер представляет собой капиллярную трубочку длиной 10 см с шаровидным расширением. Внутри расширения находится шарик, который способствует равномерному перемешиванию крови и жидкости. Поскольку предложены меланжеры как для эритроцитов, так и для лейкоцитов, то цвет этого шарика может быть различным: красный шарик - это меланжер для эритроцитов, белый - для лейкоцитов.

Для исследования используется как стабилизированная кровь, так и не- стабилизированная сразу же после взятия. Кровь набирают в меланжер до метки "0,5" или "1". Конец смесителя очищается ваткой от крови и сразу же набирается до метки "101" разбавляющая жидкость. Отверстия смесителя закрывают большим и средним пальцами и перемешивают в течение 2-3 мин., после чего удаляют на вату первые три капли, а четвертую вносят в счетную камеру. Если кровь набирали до метки "0,5", то получают разведение в 200 раз, если до "1" - в 100 раз.

При пробирочном способе разведения крови берут 4 мл раствора натрия хлорида и вносят в пробирку. Капилляром от гемометра Сали набирают 0,02 мл крови и выдувают в пробирку, затем несколько раз промывают капилляр раствором. Разведенную при этом в 200 раз кровь тщательно перемешивают.

2 этап. Камеру располагают горизонтально и заполняют так, чтобы вся поверхность, на которую нанесена сетка, была заполнена жидкостью. При этом не должно быть образования пузырьков воздуха. После заполнения камеру оставляют строго в горизонтальном положении в течение 1 минуты для оседания эритроцитов на дно.

3 этап. Подсчет эритроцитов проводят под микроскопом, лучше при среднем увеличении (объектив х40, окуляр х7) при несколько затемненном поле, чтобы лучше просматривались линии сетки. Учет клеток ведется в пяти больших квадратах, разделенных на 16 малых. Начинают подсчет с верхнего левого большого квадрата сетки. Затем переходят к следующему квадрату, расположенному по диагонали, затем аналогично к следующему и т.д. Есть и другой принцип подсчета - в 4-х квадратах по углам ив 1-м квадрате в центре сетки.

Подсчет клеток в большом квадрате начинают с верхнего левого малого квадратика. Затем переходят ко второму, третьему и четвертому квадратику того же ряда. Сосчитав клетки первого ряда, переходят на второй и считают в обратном порядке. Таким образом подсчитывают эритроциты во всех 16 малых квадратиках и переходят к следующему большому квадрату.

Чтобы избежать повторного учета эритроцитов в большом квадрате существует два правила их подсчета:

1) подсчитываются все эритроциты, лежащие внутри квадрата и на его левой и верхней линиях. Клетки, лежащие на правой и нижней линиях, подсчитываются с другими квадратами. В крайних правых квадратах как верхних, так и нижних, клетки, лежащие на правой и нижней линиях, подсчитываются с последними квадратами. Этот метод предусматривает подсчет только тех клеток, которые лежат внутри квадратов, на линиях и прилегают к ним с внутренней стороны. Эритроциты, лежащие вне квадрата не учитываются.

2) второй метод предусматривает подсчет в том же порядке, но отличается от первого тем, что учитываются клетки, прилегающие к линиям не только изнутри, но и снаружи. Подсчет эритроцитов при этом ведется без учета таковых, прилегающих к правым и нижним линиям. По мнению большинства исследователей первый метод является более точным.

4 этап. Расчет абсолютного количества эритроцитов производится по формуле:

Где X - количество эритроцитов в 1 мкл крови;

А - количество эритроцитов, подсчитанное в 5 больших квадратах;

Б - степень разведения крови (200);

В - количество маленьких квадратиков в 5 больших квадратах (80);

Таким образом, формула имеет вид: X = А10000. Например, в 5 квадратах количество эритроцитов 590, тогда в абсолютных единицах получаем 5 900 000 клеток в 1 мкл крови. Для пересчета количества клеток в 1 л (сист. ед. СИ) необходимо результат умножить на 106, т.е. 5 900 000 10= 5,9.10 12 /л.

Подсчет эритроцитов посредством электронных автоматических счетчиков. Эти методы получают все большее распространение, поскольку позволяют автоматизировать исследование, повышают его точность и исключают субъективизм. Используются различные кондуктометрические счетчики, из которых наиболее известные типы это Культер (Франция), Целлоскоп (Швеция), Пикоскел (Венгрия) и др. Принцип работы таких счетчиков основан на различии электропроводности форменных элементов крови и жидкости, в которой они находятся. При этом клетки, проходя через микроотверстие капиллярной трубки, изменяют сопротивление электрической цепи, что регистрируется электромагнитным устройством. Число эритроцитов через 15-30 с высвечивается на цифровом табло.

В крови здоровых животных и птицы содержится следующее количество эритроцитов: крупный рогатый скот - 5,0-7,5; овцы - 7,0-12,0; козы - 12-18; лошади - 6,0-9,0; свиньи - 6,0-7,5; собаки - 5,2-8,4; куры - 3,0-4,0 на 10 /л.

Уменьшение числа эритроцитов (эритроцитопения, олигоцитемия) отмечается наиболее часто при анемиях различного происхождения (постгеморрагических, гемолитических, железо- и витаминодефицитных, гипо- и апластических, которые связаны с нарушением кроветворения). Эритроцитопения развивается также при инфекционной анемии лошадей, гематурии крупного рогатого скота, при многих острых и хронических интоксикациях.

Увеличенное содержание эритроцитов в крови - эритроцитоз (полицитемия) наблюдается чаще при заболеваниях, связанных с потерей организмом жидкости, в частности при диспептическом неонатальном и диарейном синдромах. Она бывает в начальную стадию инфекционных и лихорадочных заболеваний, при болевом абдоминальном синдроме, при пороках сердца в стадию декомпенсации, при отравлении фосфором, ртутью, окисью углерода, альвеолярной эмфиземе легких.

ЦП дает представление об отношении концентрации гемоглобина к количеству эритроцитов. Метод определения основан на сравнении полученных результатов с нормативными показателями здоровых животных.

ЦП рассчитывается по формуле:

ЦП = Hb2.E1/Hb1.E2,

где гемоглобин 1 и эритроциты 1 - это средние показатели у здорового животного данного вида и возраста; гемоглобин 2 и эритроциты 2 - это найденные показатели у исследуемого животного. Например:

У всех здоровых животных ЦП равен 1+0,15, т.е. пределы колебаний составляют от 0,85 до 1,15.

Для определения средней насыщенности эритроцитов гемоглобином рассчитывают еще один индекс: СГЭ. При этом руководствуются формулой:

СГЭ = Hb (г/л):Е (10/л).

СГЭ равно: у крупного рогатого скота - 15-20; свиней - 16-19; лошадей 17-20 пг.

Определение индексов красной крови имеет значение в дифференциальной диагностике анемий. При подострой постгеморрагической анемиии, когда одновременно уменьшается содержание гемоглобина и количество эритроцитов, ЦП приближается к 1, а СГЭ такое же как и у здоровых животных. ЦП меньше единицы и снижение СГЭ, или гипохромия, бывает при алиментарной, а также при хронической посгеморрагической анемии. Для этих нозологических форм анемии симптом гипохромии является типичным. Гиперхромия, это когда ЦП больше единицы и увеличивается СГЭ, - характерный признак гемолитической анемии, поскольку значительно уменьшается количество эритроцитов.

острой или хронической кровопотери, либо усиленного разрушения крови (гемолиз), либо нарушения образования эритроцитов в костном мозге. При многих болезнях и патологических состояниях анемия, ее глубина и характер является ведущим синдромом и определяет прогноз заболевания.

Симптомы анемии: бледность слизистых оболочек и кожи; одышка; тахикардия со стучащим сердечным толчком; гипохромемия (олигохромемия), эритроцитопения (олигоцитемия), увеличение СОЭ. При глубокой анемии может развиться коллапс. Тяжелая гемолитическая анемия проявляется гемоглобинурией.

Анемическим синдромом у животных проявляются следующие патологические состояния и болезни: наружные и внутренние, острые и хронические кровотечения; отравления гемолитическими ядами и интоксикации; гемоспоридиозы; дефицит или нарушения усвоения железа, гиповитаминозы; нарушения эритропоэза; аутоиммунные и инфекционные заболевания с геморрагическим синдромом (см.), лучевая болезнь. Анемия развивается также при недостаточном кормлении животных.

Полицитемический синдром - патологическое состояние, характеризующееся увеличением количества форменных элементов в единице объема крови. Поскольку большая часть массы форменных элементов приходится на эритроциты, такое состояние нередко именуют эритремией, хотя этот термин правомочен лишь по отношению к системным абсолютным и первичным эритроцитозам, обусловленным патологией эритроидного ростка костномозгового кроветворения. Абсолютные эритроцитозы бывают обусловлены гипоксией, стенозом легочной артерии, метгемоглобинемией. Относительные (временные) эритроцитозы связаны с потерей организмом жидкости, стрессом, системной артериальной гипертензией, повышенной физической нагрузкой.

Симптомы полицитемического синдрома: темно-вишневая окраска слизистых оболочек, кровоизлияния; эритро- и лимфоцитоз; замедление СОЭ (у рогатого скота практически отсутствует); гепатомегалия у крупного рогатого скота, спленомегалия у лошадей.

гемоглобин лейкоцит эритроцит анемия

4. Методы и клиническое значение определения количества лейкоцитов

Лейкоциты, или белые кровяные тельца, в организме выполняют прежде всего защитную функцию. В зависимости от форм они участвуют в фагоцитозе, выработке интерферона, лизоцима, гистамина и других биологически активных веществ. Лимфоциты играют основную роль в специфических защитных реакциях - формировании клеточного и гуморального иммунитета.

Для подсчета лейкоцитов предложены два метода:

1. Подсчет в счетной камере (ошибка метода +7%).

2. Подсчет в автоматических счетчиках (ошибка +2%).

При подсчете лейкоцитов используют ту же камеру с сеткой Горяева, что и для эритроцитов. Разводят кровь жидкостью Тюрка в меланжере или в пробирке. Состав жидкости Тюрка: 100 мл 3%-го р-ра уксусной к-ты и 1 мл 1%-го р-ра генциан фиолетового или метиленового синего. Ее назначение состоит в том, чтобы разрушить эритроциты и окрасить лейкоциты.

При разведении в меланжере набирают кровь в смеситель для лейкоцитов до метки "0,5" или "1", а до метки "11" - жидкость Тюрка и перемешивают в течение 2-3 мин. Получают разведение соответственно в 10 или 20 раз. Для разведения пробирочным методом в пробирку отмеривают 0,4 мл жидкости Тюрка и в нее вносят 0,02 мл крови, которую набирают капилляром Сали. Содержимое пробирки тщательно перемешивают.

Заполнение счетной камеры проводят также как и при подсчете эритроцитов. Через 1-2 мин., после оседания лейкоцитов на дно камеры, проводят подсчет лейкоцитов в 100 больших неразграфленных квадратах. Расчет абсолютного количества клеток производят по формуле:

X = А.Б/В.Г,

Где X - количество лейкоцитов в 1 мкл крови;

А - количество лейкоцитов, подсчитанное в 100 больших квадратах;

Б - степень разведения крови (20);

В - количество маленьких квадратиков в 100 больших квадратах (1600);

Г - объем счетной камеры над маленьким (1/4000 мм3).

Таким образом, формула имеет вид:

Например, подсчитано 180 лейкоцитов, тогда в абсолютных единицах получаем 9 000 клеток в 1 мкл крови. Для пересчета количества клеток в 1 л (сист. ед. СИ) необходимо результат умножить на 10 6 , т.е. 9 000*10 6 = 9*10%.

Принцип подсчета лейкоцитов посредством автоматических счетчиков такой же как и при определении числа эритроцитов.

В крови здоровых животных и птицы содержится следующее количество лейкоцитов: крупный рогатый скот - 4,5-12,0; овцы - 6,0-14,0; козы - 8,0-17,0; лошади - 7,0-12,0; свиньи - 8,0-16,0; собаки - 8,5-10,5; куры - 20,0-40,0 на 10 9 /л.

Увеличение количества лейкоцитов в крови - лейкоцитоз - может быть физиологическим, медикаментозным и патологическим. Физиологический лейкоцитоз бывает при беременности, после физических нагрузок, после приема корма у плотоядных, при стрессе. Медикаментозный лейкоцитоз наблюдается после парентерального введения животным белковых препаратов, вакцин, сывороток, алкалоидов и т.д.

Патологический лейкоцитоз отмечается при гнойно-воспалительных процессах, сопровождающих целый ряд внутренних болезней: бронхопневмонию, пневмонию, плеврит, перикардит, ретикулоперитонит и др. Выраженный лейкоцитоз наблюдается при многих инфекционных болезнях, лейкозах, хирургической инфекции. Возникает он и при отравлении животных ртутью, мышьяком, передозировке камфары.

Снижение числа лейкоцитов - лейкцитопения - является результатом угнетения органов кроветворения, их истощения, пониженной реактивности организма. Лейкоцитопения развивается в результате инфекционных заболеваний (классическая чума свиней, инфекционный энцефаломиелит лошадей, сальмонеллез, стахиботриотоксикоз и др.), радиационных поражений, передозировки препаратов (сульфаниламидов, левомецитина, синтомицина и др.). Выявление лейкоцитопении при заболеваниях, для которых характерен лейкоцитоз, указывает на сниженную естественную резистентность организма и тяжелое течение болезни.

Размещено на Allbest.ru

Подобные документы

    Клиническое обследование коровы, состояние основных органов и систем. Анализ состояния зубов животного. Снижение количества эритроцитов и гемоглобина по результатам лабораторного исследования крови. Причины увеличения надвыменных лимфатических узлов.

    курсовая работа , добавлен 24.03.2013

    Форменные элементы крови: эритроциты, лейкоциты, гемоглобин, гематокрит. Методика подсчёта количества эритроцитов в единице объёма крови в камере Горяева, техника взятия крови. Функции: трофическая, экскреторная, респираторная, защитная, коррелятивная.

    практическая работа , добавлен 09.10.2009

    Группы крови крупного рогатого скота как основа селекционного процесса. Тестирование типов крови и их использование для определения линий и пород. Использование иммуногенетического мониторинга и биотехнологии трансплантации эмбрионов в воспроизводстве.

    курсовая работа , добавлен 02.08.2010

    Проектирование и анализ кормового рациона для спортивной лошади. Основная роль железа в организме. Сущность эритроцитов, лимфоцитов и гемоглобина. Характеристика эффективного использования имеющихся кормовых ресурсов в личных подсобных хозяйствах.

    контрольная работа , добавлен 29.03.2015

    Стресс-факторы и их влияние на физиологическое состояние и состав крови животных. Показатели осеменения коров. Повышение резистентности организма и биохимические показатели крови после лечения. Результаты экономической эффективности лечебных мероприятий.

    дипломная работа , добавлен 04.05.2009

    Основные функции крови: трофическая (питательная), экскреторная (выделительная), респираторная (дыхательная), защитная терморегулирующая, коррелятивная. Плазма крови, белки плазмы, небелковые азотсодержащие соединения, безазотистые органические вещества.

    практическая работа , добавлен 09.10.2009

    Воздействие имуномодулятора на показатели периферической крови глубокостельных коров. Нахождение эффективного метода коррекции естественной резистентности организма и внутриутробно развивающегося потомства. Воздействие тимогена на организм коров.

    статья , добавлен 15.12.2009

    Система органов крово- и лимфообращения, или сосудистая система. Общая характеристика кровоснабжения отдельных органов. Составные компоненты крови и их основные функции. Лимфатическая система млекопитающих животных. Ход и строение лимфатических сосудов.

    реферат , добавлен 19.06.2014

    Профилактика незаразных болезней. Экологические основы диспансеризации. Объем и сроки диспансерного обследования сельскохозяйственных животных. Анализ условий кормления и содержания животных. Лабораторный анализ крови, мочи, молока, рубцового содержимого.

    курсовая работа , добавлен 19.12.2015

    Отравление животных растениями, содержащими органические кислоты и соли, понижающими свертываемость крови, фото-сенсибилизирующими, нарушающими углеводный обмен. Клинические признаки, патологоанатомические изменения, токсикодинамика и профилактика.

Количество гемоглобина можно определить или спектроскопически, посредством определения количества железа, или путем измерения красящей способности крови (колориметрически).

Для клинических целей используется последний метод, который требует небольшого количества крови и дает возможность быстро определить количество гемоглобина. Наиболее распространенным является метод Говерса в видоизменении Сали.

Определение гемоглобина по Сали основано на том, что гемоглобин крови в растворе соляной кислоты переходит в солянокислый гематин, который и сравнивается с гематином определенной концентрации, взятом в качестве стандарта. Процент гемоглобина в этом случае определяется колориметрически.

Набор Сали состоит из запаянной стандартной пробирки, наполненной раствором солянокислого гематина. Ввиду того, что стандартная жидкость довольно быстро выцветает, в последнее время выпущены стандарты из цветного стекла, окрашенные под цвет солянокислого гематина металлическими окислами. Эти стандарты не выцветают даже под действием прямого солнечного света.

Между стандартными пробирками помещается пробирка, имеющая деления от 10 до 140 или от 10 до 170 такого же диаметра, как и первая. Пробирка с делением от 10 до 140 предназначена для определения гемоглобина в единицах Сали, а от 10 до 170-в процентах.

Подставка, в которой помещаются стандартные и градуированные пробирки, представляет собою деревянную колодку с вырезанными продольными отверстиями и углублениями для них. Сзади колодки прикреплено матовое стекло, которое дает рассеянный свет; на его фоне резко оттеняется окраска стандарта и испытуемой сыворотки.

Для взятия крови прилагается капиллярная пипетка с меткой 20 мм, которая определяет количество крови, взятой для исследования.

Кроме гемоглобинометра, для определения гемоглобина необходимо иметь N/10 раствор НС1 и дистиллированную воду.

Техника определения следующая. В градуированную пробирку до метки 20 набирается N/10 раствор НС1, затем в капилляр до метки 20 мм3 насасывается кровь и, осторожно очистив конец капилляра, переносят ее в пробирку

С соляной кислотой. Кровь осторожно выдувают в А710 раствор соляной кислоты, содержимое пробирки из верхнего прозрачного слоя набирается в капилляр и снова выдувается в пробирку.

Капилляр промывается 2 или 3 раза и осторожно удаляется из пробирки. Кровь гемолизируется, и при распаде образуется солянокислый гематин. Жидкость постепенно становится коричневой. Спустя 5-7 минут после выдувания крови, в пробирку начинают прибавлять дистиллированную воду. Вначале прибавляют по нескольку капель, а затем, по мере изменения цвета и приближения его к стандарту,-то одной капле. Кровь смешивается или стеклянной палочкой с утолщением на конце или же покачиванием прсбирочки. Необходимо следить за тем, чтобы жидкость при смешивании не терялась.

Уровень жидкости после разведения указывает на количество гемоглобина. Учет ведется по нижнему мениску жидкости. Допустимой ошибкой при вторичном исследовании той же самой крови считается расхождение в пределах пяти делений. Метка 80 на пробирке с делением до 140 и цифра 100 на пробирке с делением до 170 соответствует 16,0-17,0 гемоглобина в 100 мл крови. Чтобы получить абсолютную цифру, показывающую количество гемоглобина в граммах в 100 мл крови, необходимо показания гемометра в процентах Сали умножить на 0,17, а количество в единицах- на коэффициент 0,2125.

Количество гемоглобина у здоровых животных колеблется в следующие пределах (см. табл. на стр. 418).

Колебания гемоглобина зависят от возраста, пола, породы, характера кормления и некоторых других условий. При патологических процессах количество гемоглобина может быть увеличено и уменьшено по сравнению с нормальными показателями.

Увеличение количества гемоглобина носит название плейохромии. Она может возникнуть вследствие сгущения крови при потере жидкости организмом (понос, рвота, потливость), при образовании экссудатов и транссудатов, Плейохромию отмечают при кровепятнистой болезни лошадей, интоксикациях и отравлениях. Повышение количества гемоглобина отмечается при физическом напряжении лошади. При хорошей подготовке (тренировка) количество гемоглобина остается почти без изменений.

Уменьшение гемоглобина (олигохромемия) встречается довольно часто и особенно при заболеваниях, связанных с анемией. Олигохромемия является симптомом острых и хронических заболеваний, различных по своему происхождению.

Олигохромемия связана с уменьшением общего количества эритроцитов или обеднением эритроцитов гемоглобином. Следовательно, олигохромемия определяет не только степень, но и характер анемии. Необходимо, однако, учесть, что правильная оценка может быть сделана только при условии подсчета эритроцитов и определения величины цветного показателя.

Определение цветного показателя. Цветной показатель дает представление об отношении гемоглобина к красным кровяным тельцам. Метод определения цветного показателя основан на сравнении. Если в норме цветной показатель равен примерно единице, то изменение этой цифры в сторону увеличения или уменьшения рассматривается, как весьма важный показатель нарушения соотношения между эритроцитами и гемоглобином.

У животных определение цветного показателя проводится по формуле:

Гемоглобин 2 Эритроциты 2 Гемоглобин 2 х эритроциты 1

Гемоглобин 1 / эритроциты 1 = гемоглобин 1 x эритроциты 2

Где гемоглобин 1 и эритроциты 1 показывают среднее количество гемоглобина и эритроцитов у здорового животного и гемоглобин 2 и эритроциты 2-найденное количество гемоглобина и эритроцитов у исследуемых животных. Если у лошади взять за норму количество гемоглобина 75, а эритроцитов 7 500 000, то цветной показатель будет равен единице. Всякое отклонение в количестве гемоглобина и эритроцитов поведет к изменению цветного показателя. Необходимо учитывать только такие отклонения от нормы, которые превышают 15%. Небольшие отклонения учитывать не следует.

Определение цветного показателя имеет значение в дифференциации анемий. При постгеморрагических анемиях, когда имеется одновременно уменьшение как количества эритроцитов, так и гемоглобина, цветной показатель приближается к единице; ниже единицы цветной показатель бывает при вторичных анемиях, при которых снижается количество гемоглобина, при почти нормальном или слегка сниженном количестве эритроцитов; выше единицы цветной показатель отмечается при гемолитических анемиях, когда в ток крови выбрасывается значительное количество молодых клеток (повышенная регенерация).

Для суждения о средней насыщенности эритроцитов гемоглобином практически можно использовать определение кровяного числа. Оно получается делением найденного количества гемоглобина на число эритроцитов в миллионах, например:

75% / 7(000000) = 11 или 90% / 10(000000) =9

Величина кровяного числа неодинакова у различных животных и зависит от количества эритроцитов и гемоглобина в норме, но в среднем она приближается к 10.

Кровеносная система выполняет транспортную функцию в организме всех теплокровных животных, доставляя к тканям питательные вещества и кислород. Транспортировка кислорода и углекислого газа осуществляется благодаря красным тельцам крови, в состав которых входит важное вещество - гемоглобин. В этой статье мы рассмотрим виды и соединения гемоглобина.

Что такое гемоглобин

Гемоглобин - это компонент эритроцитов, относящийся к группе белков. Состоит из 96% белкового вещества глобина и 4% вещества с атомом - гем. В 1 клетке эритроцита его содержится порядка 280 млн молекул, что и формирует красный цвет крови.

Главное свойство гемоглобина - это способность железа присоединять и отщеплять газы, формируя перемещение кислорода из лёгких к тканям и углекислого газа от тканей к лёгким. Таким образом, его роль в процессе газообмена в организме незаменима.

Структура и виды гемоглобина крови человека

На разных стадиях развития человеческого организма состав гемоглобина отличается по структуре полипептидных цепей. В зависимости от того, какие полипептидные цепи содержит гемоглобиновая структура, виды гемоглобина у человека следующие:

Патологические виды гемоглобина

В ряде случаев под влиянием генетических дефектов возникает аномальный синтез гемоглобиновых клеток. Патологические виды гемоглобина от физиологических отличаются составом полипептидных связей, а точнее, их мутацией.

В результате мутации ДНК, синтез компонентов эритроцитов осуществляется не с глутаминовой, а валиновой аминокислотой. Эта «кадровая» замена приводит к образованию белковой структуры типа 2 с «липким» участком на поверхности, способным присваивать структуры себе подобные. Таким образом, происходит полимеризация HbS-молекул и, как следствие, оседание тяжёлых и плохо транспортируемых эритроцитов в кровеносных сосудах. Данное отклонение носит название

Нормальные значения содержания гемоглобина в крови, не считающиеся патологическим отклонением:

  • У мужчин - 130-150 г/л.
  • У женщин - 120-140 г/л.
  • У детей до года 100-140 г/л, причём в первый месяц эти значения могут достигать до 220 г/л за счёт повышенной концентрации фетального гемоглобина. У детей с года до 6 лет - 110-145 г/л, а с 6 года жизни - 115-150 г/л вне зависимости от пола ребёнка.
  • При беременности наблюдается снижение концентрация HbA до 110 г/л, что однако не считается анемией.
  • У пожилых людей нормой считается тенденция понижения на 5 единиц от заявленной нормы в зависимости от пола пациента.

По отличается и состав крови, содержащей одновременно разные виды гемоглобина. Так, например, у взрослого человека естественным соотношением является 99% HbA и до 1% HbF. У детей до года процент HbF значительно выше, чем у взрослых, что объясняется постепенным распадом изначально имеющейся формы фетального гемоглобина.

Физиологические формы

Поскольку дыхательный красный пигмент непрерывно участвует в газообменных процессах в организме, то его главным свойством является способность образовывать соединения с молекулами различных газов. В результате подобных реакций создаются физиологические виды гемоглобина, которые считаются нормальным явлением.


Патологические соединения

Эритроциты могут присоединять не только газы, участвующие в дыхательном процессе, но и другие, образуя патологические виды гемоглобина, представляющие опасность для человеческого здоровья и даже жизни. Эти соединения обладают низкой степенью распада, поэтому приводят к кислородному голоданию тканей и серьёзным нарушениям дыхательного процесса.

Диагностика гемоглобина

Для выявления концентрации глобиновых дыхательных структур в крови человека проводятся качественные и количественные виды анализов. Гемоглобин также исследуется на количество содержания в нём ионов железа.

Основным количественным методом определения концентрации гемоглобина сегодня является колориметрический анализ. Он представляет собой исследование цветовой насыщенности биологического материала при добавлении к нему специального реактива.

Качественные методы включают исследование крови на содержание в нём соотношения типов HbA и HbF. Также к относится определение количества содержания в крови молекул гликолизированного гемоглобина (соединения с углеродами) - метод используется для диагностики сахарного диабета.

Отклонение концентрации гемоглобина от нормы

Баланс HbA может варьировать как ниже, так и выше нормы. В любом случае это приводит к негативным последствиям. При понижении HbA ниже установленной нормы возникает патологический синдром, который носит название "железодефицитная анемия". Выражается вялостью, упадком сил, невнимательностью. Негативно влияет на нервную систему, особенно опасен в детском возрасте, так как часто является причиной отставания в психо-моторном развитии.

Повышенный гемоглобин не является отдельным заболеванием, это, скорее, синдром, свидетельствующий о различных патологиях, таких как сахарный диабет, лёгочная недостаточность, порок сердца, заболевания почек, переизбыток фолиевой кислоты или витаминов группы В, онкология и др.