Преобразование графиков тригонометрических функций. Преобразование графиков

Конспект урока алгебры и начала анализав 10 классе

по теме: «Преобразование графиков тригонометрических функций»

Цель урока: систематизировать знания по теме «Свойства и графики тригонометрических функций у=sin (x ), у=cos (x )».

Задачи урока:

  • повторить свойства тригонометрических функций у=sin (x ), у=cos (x );
  • повторить формулы приведения;
  • преобразование графиков тригонометрических функций;
  • развивать внимание, память, логическое мышление; активизировать мыслительную деятельность, умение анализировать, обобщать и рассуждать;
  • воспитание трудолюбия, усердия в достижении цели, интерес к предмету.

Оборудование урока:икт

Тип урока: изучение нового

Ход урока

Перед уроком 2 ученика на доске строят графики из домашнего задания.

    Организационный момент:

    Здравствуйте, ребята!

    Сегодня на уроке мы будем преобразовывать графики тригонометрических функций у=sin (x ), у=cos (x ).

    Устная работа:

    Проверка домашнего задания.

    разгадывание ребусов.

    Изучение нового материала

    Все преобразования графиков функций являются универсальными - они пригодны для всех функций, в том числе и тригонометрических. Здесь же ограничимся кратким напоминанием основных преобразований графиков.

    Преобразование графиков функций.

    Дана функция у = f (x ). Все графики начинаем строить с графика этой функции, затем производим с ним действия.

Функция

Что делать с графиком

y = f(x) + a

Все точки первого графика поднимаем на а единиц вверх.

y = f(x) – a

Все точки первого графика опускаем на а единиц вниз.

y = f(x + a)

Все точки первого графика сдвигаем на а единиц влево.

y = f (x – a)

Все точки первого графика сдвигаем на а единиц вправо.

y = a*f (x),a>1

Закрепляем нули на месте, верхние точки сдвигаем выше в а раз, нижние – опускаем ниже в а раз.

График «вытянется» вверх и вниз, нули остаются на месте.

y = a*f(x), a<1

Закрепляем нули, верхние точки опустятся вниз в а раз, нижние – поднимутся в а раз. График «сожмётся» к оси абсцисс.

y = -f (x )

Зеркально отобразить первый график относительно оси абсцисс.

y = f (ax ), a <1

Закрепить точку на оси ординат. Каждый отрезок на оси абсцисс увеличить в а раз. График растянется от оси ординат в разные стороны.

y = f (ax ), a >1

Закрепить точку на оси ординат, каждый отрезок на оси абсцисс уменьшить в а раз. График «сожмётся» к оси ординат с обеих сторон.

у = | f(x)|

Части графика, расположенные под осью абсцисс зеркально отобразить. Весь график будет расположен в верхней полуплоскости.

Схемы решения.

1)y = sin x + 2.

Строим график у = sin x . Каждую точку графика поднимаем вверх на 2 единицы (нули тоже).

2)y = cos x – 3.

Строим график y = cos x . Каждую точку графика опускаем вниз на 3 единицы.

3)y = cos (x - /2)

Строим график y = cos x . Все точки сдвигаем на п/2 вправо.

4)у = 2 sin x .

Строим график у = sin x . Нули оставляем на месте, верхние точки поднимаем в 2 раза, нижние опускаем на столько же.

    ПРАКТИЧЕСКАЯ РАБОТА Построение графиков тригонометрических функций с помощью программы Advanced Grapher.

    Построим график функции у = -cos 3x + 2.

  1. Построим график функции у = cos x .
  2. Отразим его относительно оси абсцисс.
  3. Этот график надо сжать в три раза вдоль оси абсцисс.
  4. Наконец, такой график надо поднять вверх на три единицы вдоль оси ординат.

y = 0,5 sin x.

y = 0,2cos x-2

у = 5cos 0,5 x

y= -3sin(x+π).

2) Найди ошибку и исправь её.

V. Исторический материал. Сообщение об Эйлере.

Леонард Эйлер – крупнейший математик 18-го столетия. Родился в Швейцарии. Долгие годы жил и работал в России, член Петербургской академии.

Почему же мы должны знать и помнить имя этого ученого?

К началу 18 века тригонометрия была еще недостаточно разработана: не было условных обозначений, формулы записывались словами, усваивать их было трудно, неясным был и вопрос о знаках тригонометрических функций в разных четвертях круга, под аргументом тригонометрической функции понимали только углы или дуги. Только в трудах Эйлера тригонометрия получила современный вид. Именно он стал рассматривать тригонометрическую функцию числа, т.е. под аргументом стали понимать не только дуги или градусы, но и числа. Эйлер вывел все тригонометрические формулы из нескольких основных, упорядочил вопрос о знаках тригонометрической функции в разных четвертях круга. Для обозначения тригонометрических функций он ввел символику: sin x, cos x, tg x, ctg x.

На пороге 18-го века в развитии тригонометрии появилось новое направление – аналитическое. Если до этого главной целью тригонометрии считалось решение треугольников, то Эйлер рассматривал тригонометрию как науку о тригонометрических функциях. Первая часть: учение о функции – часть общего учения о функциях, которое изучается в математическом анализе. Вторая часть: решение треугольников – глава геометрии. Такие вот нововведения были сделаны Эйлером.

VI. Повторение

Самостоятельная работа “Допиши формулу”.

VII. Итоги урока:

1) Что нового вы узнали сегодня на уроке?

2) Что еще вы хотите узнать?

3) Выставление оценок.

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

Преобразование графиков функции является одним из основных математических понятий, непосредственно связанные с практической деятельностью. Преобразование графиков функций впервые встречается в алгебре 9 класса при изучении темы «Квадратичная функция». Квадратичная функция вводится и изучается в тесной связи с квадратными уравнениями и неравенствами. Так же многие математические понятия рассматриваются графическими методами, например в 10 - 11 классах исследование функции дает возможность найти область определения и область значения функции, области убывания или возрастания, асимптоты, интервалы знакопостоянства и др. Так же этот немаловажный вопрос выносится на ГИА. Отсюда следует, построение, и преобразование графиков функции является одной из главных задач обучения математике в школе.

Однако для построения графиков многих функций можно использовать ряд методов, облегчающих построение. Выше сказанное определяет актуальность темы исследования.

Объектом исследования является изучение преобразование графиков в школьной математике.

Предмет исследования - процесс построение и преобразование графиков функции в общеобразовательной школе.

Проблемный вопрос : можно ли построить график не знакомой функции, имея навык преобразования графиков элементарных функций?

Цель: построение графиков функции в незнакомой ситуации.

Задачи:

1. Проанализировать учебный материал по исследуемой проблеме. 2. Выявить схемы преобразования графиков функции в школьном курсе математики. 3. Отобрать наиболее эффективные методы и средства построение и преобразование графиков функции. 4.Уметь применять данную теории в решении задач.

Необходимые начальные знания, умения, навыки:

Определять значение функции по значению аргумента при различных способах задания функции;

Строить графики изученных функций;

Описывать по графику и в простейших случаях по формуле поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;

Описания с помощью функций различных зависимостей, представления их графически, интерпретации графиков.

Основная часть

Теоретическая часть

В качестве исходного графика функции y = f(x) выберу квадратичную функциюy = x 2 . Рассмотрю случаи преобразования данного графика, связанные с изменениями формулы, задающей эту функцию и сделаю выводы для любой функции.

1. Функция y = f(x) + a

В новой формуле значения функции (ординаты точек графика) изменяются на число a, по сравнению со «старым» значением функции. Это приводит к параллельному переносу графика функции вдоль оси OY:

вверх, если a > 0; вниз, если a < 0.

ВЫВОД

Таким образом график функции y=f(x)+a, получается из графика функции y=f(x) с помощью параллельного переноса вдоль оси ординат на a единиц вверх, если a > 0, и на a единиц вниз, если a < 0.

2. Функция y = f(x-a),

В новой формуле значения аргумента (абсциссы точек графика) изменяются на число a, по сравнению со «старым» значением аргумента. Это приводит к параллельному переносу графика функции вдоль оси OX: вправо, если a < 0, влево, если a >0.

ВЫВОД

Значит график функции y= f(x - a), получается из графика функции y=f(x) с помощью параллельного переноса вдоль оси абсцисс на a единиц влево, если a > 0, и на a единиц вправо, если a < 0.

3. Функция y = k f(x), где k > 0 и k ≠ 1

В новой формуле значения функции (ординаты точек графика) изменяются в k раз, по сравнению со «старым» значением функции. Это приводит к: 1) «растяжению» от точки (0; 0) вдоль оси ОY в k раз, если k > 1, 2) «сжатию» к точке (0; 0) вдоль оси OY в раз, если 0 < k < 1.

ВЫВОД

Следовательно: чтобы построить график функции y = kf(x), где k > 0 и k ≠ 1 нужно ординаты точек заданного графика функции y = f(x) умножить на k. Такое преобразование называется растяжением от точки (0; 0) вдоль оси ОY в k раз, если k > 1; сжатием к точке (0; 0) вдоль оси OY в раз, если 0 < k < 1.

4. Функция y = f(kx), где k > 0 и k ≠ 1

В новой формуле значения аргумента (абсциссы точек графика) изменяются в k раз, по сравнению со «старым» значением аргумента. Это приводит к: 1) «растяжению» от точки (0; 0) вдоль оси ОX в 1/k раз, если 0 < k < 1; 2) «сжатию» к точке (0; 0) вдоль оси OX. в k раз, если k > 1.

ВЫВОД

И так: чтобы построить график функции y = f(kx), где k > 0 и k ≠ 1 нужно абсциссы точек заданного графика функции y=f(x) умножить на k. Такое преобразование называется растяжением от точки (0; 0) вдоль оси ОX в 1/k раз, если 0 < k < 1, сжатием к точке (0; 0) вдоль оси OX. в k раз, если k > 1.

5. Функция y = - f (x).

В данной формуле значения функции (ординаты точек графика) изменяются на противоположные. Это изменение приводит к симметричному отображению исходного графика функции относительно оси Ох.

ВЫВОД

Для построения графика функции y = - f (x) необходимо график функции y= f(x)

симметрично отразить относительно оси OX. Такое преобразование называется преобразованием симметрии относительно оси OX .

6. Функция y = f (-x).

В данной формуле значения аргумента (абсциссы точек графика) изменяются на противоположные. Это изменение приводит к симметричному отображению исходного графика функции относительно оси ОY.

Пример для функции у = - х² это преобразование не заметно, т. к. данная функция чётная и график после преобразования не меняется. Это преобразование видно, когда функция нечётная и когда ни чётная и ни нечётная.

7. Функция y = |f(x)|.

В новой формуле значения функции (ординаты точек графика) находятся под знаком модуля. Это приводит к исчезновению частей графика исходной функции с отрицательными ординатами (т.е. находящихся в нижней полуплоскости относительно оси Ох) и симметричному отображению этих частей относительно оси Ох.

8. Функция y= f (|x|).

В новой формуле значения аргумента (абсциссы точек графика) находятся под знаком модуля. Это приводит к исчезновению частей графика исходной функции с отрицательными абсциссами (т.е. находящихся в левой полуплоскости относительно оси ОY) и замещению их частями исходного графика, симметричными относительно оси ОY.

Практическая часть

Рассмотрим несколько примеров применения вышеизложенной теории.

ПРИМЕР 1.

Решение. Преобразуем данную формулу:

1) Построим график функции

ПРИМЕР 2.

Построить график функции, заданной формулой

Решение. Преобразуем данную формулу, выделив в данном квадратном трехчлене квадрат двучлена:

1) Построим график функции

2) Выполним параллельный перенос построенного графика на вектор

ПРИМЕР 3.

ЗАДАНИЕ ИЗ ЕГЭПостроение графика кусочной функции

График функции График функции y=|2(x-3)2-2|; 1