Примеры интерферометров. Интерферометры и их применение Определение концентрации растворов с помощью интерферометра рэлея

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра физики

Определение концентрации растворов с помощью интерферометра рэлея

Методические указания к лабораторной работе № 12

по физике

(Раздел «Оптика»)

Ростов-на-Дону 2011

Составители: д.т.н., проф. С.И. Егорова,

к.т.н., доц. И.Н. Егоров,

к.ф.-м.н., доц. Г.Ф. Лемешко.

«Определение концентрации растворов с помощью интерферометра Рэлея»: Метод. указания. - Ростов н/Д: Издательский центр ДГТУ, 2011. - 8 с.

Печатается по решению методической комиссии факультета «Нанотехнологии и композиционные материалы»

Научный редактор проф., д.т.н. В.С. Кунаков

© Издательский центр ДГТУ, 2011

Цель работы: 1. Изучить принцип действия интерферометра Рэлея.

2. Изучить явления интерференции при помощи интерферометра Релея.

3. Определить концентрацию этилового спирта в воде.

Оборудование: Интерферометр Рэлея, кюветы с исследуемыми растворами.

Краткая теория

Интерференция – это наложение когерентных волн, при котором происходит пространственное перераспределение светового потока, в результате чего в одних местах возникают максимумы, а в других минимумы интенсивности света.

Когерентными называются волны одинаковой частоты и постоянной разности фаз. Для получения когерентных волн необходимо разделить световой луч, исходящий из одного источника.

Интерференционную картину можно получить с помощью прибора ИТР-1, в основу которого положена схема интерферометра Рэлея, в котором интерференционная картина получается от двух когерентных световых пучков, прошедших через две параллельные щели (рис.1).

Свет от источника 1 (лампочка накаливания) собирается с помощью конденсора на щели 2 , находящейся в фокальной плоскости объектива коллиматора 3 . Параллельный пучок лучей, выходящих из объектива, разделяется двумя щелями диафрагмы 4 . Эти щели можно рассматривать как два источника вторичных световых волн, которые являются когерентными.

Когерентные световые пучки проходят через объектив 6 , причём, верхняя часть пучков проходит через кюветы 5 (рис.1), а нижняя – непосредственно направляется в объектив. В результате в фокальной плоскости объектива происходит интерференция двух пар когерентных пучков. Интерференционная картина, образовавшаяся от двух щелей, представляет собой систему темных и светлых полос. Положение темной (условие минимума) или светлой (условие максимума) полосы определяется оптической разностью хода интерферирующих лучей:

- условие максимума, (1)

- условие минимума, (2)

где - оптическая разность хода, которая равна разности оптических длин путей, т.е.
, (3)

здесь
- показатели преломления,
- пути, пройденные светом,-длина волны света,
- порядок максимума или минимума.

Наблюдение ведётся через окуляр 7 (рис.1).

Интерференционная картина представлена на рис.2. Лучи, проходящие мимо кювет, образуют нижнюю интерференционную картину, а лучи, проходящие через кюветы – верхнюю. Дополнительная разность хода лучей в кюветах вызывает смещение верхней системы относительно нижней. Если заполнить кюветы газами или жидкостями с разными показателями преломления, то появится дополнительная разность хода, определяемая формулой (3).

С помощью компенсационного устройства системы полос можно совместить (рис. 3).

В данной работе кюветы одинаковой длины (). В одной из них находится дистилированная вода, а в другой – раствор этилового спирта в воде. Поэтому дополнительная разность хода лучей:

, (4)

где - длина кюветы,
- показатели преломления раствора и дистилированной воды соответственно.

Воспользовавшись выводами теории дифракции, можно утверждать, что свет от вторичных источников в опыте Юнга имеет наибольшую интенсивность в направлении геометрических лучей от первичного источника . В опыте Юнга эти лучи за экраном расходятся, но с помощью линзы, поставленной перед отверстиями (рис. 7.12), их можно свести в точку О, сопряженную относительно линзы с Тогда интенсивность интерференционной картины вблизи О увеличивается, и можно наблюдать интерференционные полосы при отверстиях находящихся значительно дальше друг от друга. Расстояние между соседними светлыми полосами по-прежнему равно и если линза дает стигматическое изображение точки то, согласно принципу равенства оптического

пути, полоса нулевого порядка будет располагаться в О. Если же линза не дает стигматического изображения, полоса нулевого порядка сместится на О на величину, зависящую от оптической разности хода от 5 до О через оба отверстия. При оптической разности хода смещение будет в раз больше расстояния между соседними светлыми полосами, где

Очевидно, что такое устройство можно использовать для количественного испытания качества линз, как это было сделано Майкельсоном . Если одно из отверстий неподвижно относительно центра линзы, то, измеряя при различных положениях другого отверстия, можно определить от клонение волнового фронта, идущего из от сферичности после прохождения линзы (волновая аберрация). Аналогично, если прозрачная пластинка толщиной I с показателем преломления помещена в пучок света, идущий от то оптическая длина пути увеличивается на и порядо интерференции в точке О изменится на величину

Измеряя можно определить разность между показателями преломления пластинки и окружающей среды. На этом основано устройство интерферометра Рэлея , применяемого для точных измерений показателей преломления газов. Схема современной модели этого прибора показана на рис. 7.13. Свет от щели коллимируется линзой и затем падает на две другие щели параллельные

Рис. 7.13. Схема интерферометра Рэлея, а - горизонтальное сечение, - вертикальное сечение.

Параллельные пучки света от и проходят через разные газовые кюветы и собираются линзой в фокальной плоскости которой образуются интерференционные полосы, параллельные щелям. Помещение газовых кювет в пучки света заставляет значительно увеличить расстояние между щелями и вследствие чего интерференционные полосы располагаются тесно, и для их наблюдения требуется большое увеличение. Ширина щели также не может быть большой, и, следовательно, яркость картины невелика. Так как увеличение требуется только в направлении, перпендикулярном к полосам, то для этой цели хорошо подходит цилиндрический окуляр в виде тонкой стеклянной палочки с длинной осью, параллельной полосам. Картина, рассматриваемая таким образом, значительно ярче, чем при использовании сферического окуляра. Применение цилиндрического окуляра имеет еще и другое важное преимущество, позволяя получить ьторую фиксированную систему полос с таким же расстоянием между полосами, как и у главной, но образованную светом от источников прошедшим ниже газовых кювет. Вторая система полос может служить шкалой для отсчета. С помощью стеклянной пластинки эту шкалу смещают по вертикали так, чтобы ее верхний край соприкасался с нижним краем главной системы. Резкая линия раздела между пими - это край пластинки наблюдаемый через линзу

Следовательно, определение смещения главной системы полос, обусловленного изменением оптических путец в кюветах целиком зависит от остроты зрения глаза, которая, вообще говоря, велика, и таким способом можно обнаружить смещения, примерно равные 1/40 порядка. Случайные смещения в оптической системе также становятся менее существенными, так как сказываются одновременно на обеих системах полос.

На практике удобнее компенсировать оптическую разность хода, а не считать полосы. Это делается следующим образом: свет, выходящий из газовых кювет, проходит через тонкие стеклянные пластинки, одна из которых неподвижна, а другая может вращаться вокруг горизонтальной оси, что позволяет плавно изменять оптическую длину пути света, выходящего из

Такой компенсатор калибруется в монохроматическом свете для того, чтобы определить величину поворота пластинки, соответствующую смещению на один порядок в главной системе полос. В этом случае система полос служит нуль-индикатором равенства оптических путей и Обычно работа с прибором происходит следующим образом: газовые кюветы откачивают, и в белом свете с помощью компенсатора примерно совмещают полосы главной системы и шкалы; затем добиваются точного совпадения пулевых порядков в монохроматическом свете, после чего одну из кювет заполняют исследуемым газом и снова, сперва в белом свете, а потом в монохроматическом совмещают, используя компенсатор, нулевые порядки. Разница между двумя установками компенсатора позволяет определить по его калибровке смещение порядка в главной системе полос, вызванное присутствием газа в кювете. Показатель преломления этого газа находят из (28), а именно:

где длина газовой кюветы. При обычных значениях и точности установки в 1/40 порядка можно обнаружить изменение около

Оптические пути от и до места наблюдения интерференционной картины проходят среды с различной дисперсией; поэтому, в отличие от простого случая, рассмотренного в нулевые порядки в свете разных длин воли, вообще говоря, не совпадают, и в белом свете отсутствует совершенно белая полоса. У наименее окрашенной полосы для некоторой средней длины волны (в видимой области спектра), которая зависит от цветовой чувствительности глаза. По аналогии с терминологией, принятой при описании линз, эта полоса называется ахроматической. Если компенсатор вводит оптическую разность хода Л, то порядок интерференции в точке О равен

Поэтому в точке О ахроматическая полоса будет тогда, когда

При такой установке компенсатора нулевой порядок картины в монохроматическом свете может не попасть в точку О, так как для их совпадения требуется, чтобы

Это несовпадение может оказаться достаточно большим, чтобы затруднить идентификации полосы нулевого порядка в монохроматическом свете, и поэтому приходится прибегать к предварительным измерениям при малом давлении или с короткой кюветой.

Заметим также, что ахроматическая полоса хорошо распознается, только если в тех точках картины, где область значений для длин волн видимою спектра достаточно мала. При наблюдении в белом свете пути интерферирующих волн в средах с одинаковой дисперсией должны быть по возможности равными.

Большую чувствительность в принципе можно получить, увеличивая I, но этому препятствуют трудности контроля температуры. По той же причине в модели прибора, предназначенного для измерения разности показателей преломления жидкостей, применяются только короткие кюветы. Кроме того, разность хода, которую можно скомпенсировать, ограничена, и поэтому при большой разнице показателей преломления в кюветах длина их должна быть пропорционально уменьшена.


Интерферометр Рэлея

ПНТЕРФЕРОМЕТР РЭЛЕЯ (интерференционный рефрактометр) - интерферометр для измерения показатели преломления, основанный па явлении дифракции света на двух параллельных щелях. Схема Интерферометра Рэлея представлена па (рис.10.) в вертикальной и горизонтальной проекциях.

Ярко освещённая щель малой ширины S служит источником света, расположенным в фокальной плоскости объектива О 1 . Параллельный пучок лучей, выходящий из О 1 , проходит диафрагму D с двумя параллельными щелями и трубки R 1 и R 2 , в которые вводятся исследуемые газы или жидкости. Трубки имеют одинаковые длины и занимают только верхнюю половину пространства между О 1 и объективом зрительной трубы О 2 . В результате интерференции света, дифрагирующего на щелях диафрагмы D, в фокальной плоскости объектива О 2 вместо изображении щели S образуются две системы интерференционных полос, схематически показанные на рис.10. Верхняя система полос образуется лучами, проходящими через трубки R 1 и R 2 , а нижняя -- лучами, идущими мимо них. Интерференционные полосы наблюдаются с помощью короткофокусного цилиндрического окуляра О 3 . В зависимости от разности показателей преломления n 1 и n 2 веществ, помещенных в R 1 и R 2 , верхняя система полос будет смещена в ту или иную сторону. Измеряя величину этого смешения, можно вычислить n 1 - n 2 . Нижняя система полос неподвижна, и от неё отсчитывают перемещения верхней системы. При освещении щели S белым светом центральные полосы обеих интерференционных картин являются ахроматическими, а полосы, расположенные справа и слева от них, окрашены. Это облегчает обнаружение центральных полос. Измерение перемещения верхней системы полос осуществляется применением компенсатора, который вводит между лучами, проходящими через R 1 и R 2 , дополнительную разность фаз до совмещения верхних и нижних систем полос. С помощью интерферометра Рэлея достигается весьма высокая точность измерения до 7- го и даже 8-го десятичного знака. Интерферометр Рэлея применяется для обнаружения малых примесей в воздухе, в воде, для анализа рудничного и печного газов и для других целей.

Интерферометр Фабри - Перо

ИНТЕРФЕРОМЕТР ФАБРИ-ПЕРО -- многолучевой интерференционный спектральный прибор с двумерной дисперсией, обладающий высокой разрешающей способностью. Используется как прибор с пространственным разложением излучения в спектр и фотогр. регистрацией и как сканирующий прибор с фотоэлектрической регистрацией. Интерферометр Фабри-Перо представляет собой плоскопараллельный слой из оптически однородного прозрачного материала, ограниченный отражающими плоскостями. Наиболее широко применяемый воздушный интерферометр Фабри-Перо состоит из двух стеклянных или кварцевых пластинок, расположенных на некотором расстоянии d друг от друга (Рис.11.). На обращённые друг к другу плоскости (изготовленные с точностью до 0.01 длины волны) нанесены высокоотражающие покрытия. интерферометр Фабри-Перо располагается между коллиматорами; в фокальной плоскости входного коллиматора устанавливается освещённая диафрагма, служащая источником света для интерферометра Фабри-Перо. Плоская волна, падающая на интерферометр Фабри-Перо в результате многократных отражений от зеркал и частичною выхода после каждого отражения разбивается на большое число плоских когерентных волн, отличающихся по амплитуде и по фазе. Амплитуда когерентных воли убывает но закону геометрической прогрессии, а разность хода между каждой соседней парой когерентных воли, идущих, в данном направлении, постоянна и равна

где п -- показатель преломления среды между зеркалами (для воздуха n=1), и- угол между лучом и нормалью к зеркалам. Пройдя через объектив выходного коллиматора, когерентные волны интерферируют в его фокальной плоскости F и образуют пространственную интерференционную картину и в виде колец равного наклона (рис. 12.). Распределение интенсивности (освещённости) в интерференционной картине описывается выражением

I =ф k BTу/f 2 2 ,

где B - яркость источника, ф к -- коэффициент пропускания объективов коллиматоров. у - площадь сечения осевого параллельного пучка, f 2 - фокусное расстояние объектива выходного коллиматора, Т - функция пропускания интерферометра Фабри-Перо.

T= T макс (1+з 2 sin 2 k?) -1

Где T макс = , k = 2р/л

з = 2/(1- с), ф, с и a - соответственно коэффициент пропускания, отражения и поглощения зеркал, причем ф+ с+a=1.

Функция пропускания Т, а следовательно, и распределения интенсивности имеет осциллирующий характер с резкими максимумами интенсивности (рис. 13), положение которых определяется из условия

где т (целое число) - порядок спектра, л -- длина волны. Посредине между соседними максимумами функция Т имеет минимумы

Поскольку положение интерференционных максимумов зависит от угла и и равного ему угла ч выхода лучей из второй стеклянной пластинки, то интерференционная картина имеет форму концентрических колец (рис.12.), определяемых из условия, локализованных в области геометрического изображения входной диаграммы (рис.11).

Радиус этих колец равен, откуда следует, что при m = const имеется однозначная зависимость между r т и л и, следовательно, интерферометр Фабри-Перо производит пространственное разложение излучения в спектр. Линейное расстояние между максимумами соседних колец и ширина этих колец (рис.13.) уменьшаются с увеличением радиуса, т. е. с увеличением r т интерференционные кольца становятся уже и сгущаются. Ширина колец?r зависит также от коэффициента отражения с и уменьшается с увеличением с.

Светосила реального Интерферометра Фабри-Перо в несколько сотен раз больше светосилы дифракционного спектрометра при равной разрешающей способности, что является его преимуществом. Так как интерферометр Фабри-Перо, обладая высокой разрешающей силой, имеет очень маленькую область дисперсии, то при работе с ним необходима предварительная монохроматизация, чтобы ширина исследуемого спектра была меньше?л. Для этой цели применяют часто приборы скрещенной дисперсии, сочетая интерферометр Фабри-Перо с призменным или дифракционным спектрографом так, чтобы направления дисперсий Интерферометра Фабри-Перо и спектрографа были взаимно перпендикулярны. Иногда для увеличения области дисперсии используют систему из двух поставленных друг за другом Интерферометров Фабри-Перо с различной величиной расстояния d, так чтобы их отношение d 1 /d 2 равнялось целому числу. Тогда область дисперсии?л определяется более «тонким» Интерферометром Фабри-Перо, а разрешающая сила -- более «толстым». При установке двух одинаковых Интерферометров Фабри-Перо увеличивается разрешающая сила и повышается контраст интерференционной картины.

Интерферометры Фабри-Перо широко применяются в ультрафиолетовой, видимой и инфракрасных областях спектра при исследовании тонкой и сверхтонкой структуры спектральных линий, для исследования модовой структуры излучения лазеров и т. п. Интерферометр Фабри-Перо также используется как резонатор в лазерах.

Двухлучевые интерферометры. Интерферометры Рэлея, Жамена, Майкельсона, Линника. Многолучевые интерферометры (интерферометр Фабри-Перо, пластинка Люммера-Герке). Интерференционные фильтры

Если зеркало М1 расположено так что М´1 и М2 параллельны образуются полосы равного наклона локализованные в фокальной плоскости объектива О2 и имеющие форму концентрических колец. Если же М1 и М2 образуют воздушный клин то возникают полосы равной толщины локализованные в плоскости клина М2 М1 и представляющие собой параллельные линии. Если поверхность исследуемого образца имеет дефект в виде впадины или выступа высотой l то интерференционные полосы искривляются. Если то интерференционная полоса искривляется так что занимает...

51. Двухлучевые интерферометры. Интерферометры Рэлея, Жамена, Майкельсона, Линника. Многолучевые интерферометры (интерферометр Фабри-Перо, пластинка Люммера-Герке). Интерференционные фильтры

Интерферометр – измерительный прибор, действие которого основано на интерференции волн. Оптические интерферометры применяются для измерения оптических длин волн спектральных линий, показателей преломления прозрачных сред, абсолютных и относительных длин объектов, угловых размеров звёзд и пр., для контроля качества оптических деталей и их поверхностей и т.д.

Интерферометры различаются методами получения когерентных волн и тем, какая величина непосредственно измеряется. По числу интерферирующих пучков света оптические интерферометры можно разделить на многолучевые и двулучевые . Многолучевые интерферометры применяются главным образом как интерференционные спектральные приборы для исследования спектрального состава света. Двулучевые интерферометры используются и как спектральные приборы, и как приборы для физических и технических измерений.

Двулучевые интерферометры

Параллельный пучок света, сформированный в результате прохождения от источника L через объектив O 1 , попадает на полупрозрачную пластинку P и разделяется на два когерентных пучка 1 и 2 . После отражения от зеркал M 1 и M 2 и повторного прохождения пучка 2 через пластинку P оба пучка проходят в направлении АО через объектив О 2 и интерферируют в его фокальной плоскости D .

Наблюдаемая интерференционная картина соответствует интерференции в воздушном слое, образованном зеркалом М 2 и мнимым изображением М’ 1 зеркала М 1 в пластинке Р 1 . Оптическая разность хода при этом равна , где l – расстояние между М’ 1 и М 2 . Если зеркало М 1 расположено так, что М´ 1 и М 2 параллельны, образуются полосы равного наклона, локализованные в фокальной плоскости объектива О 2 и имеющие форму концентрических колец. Если же М’ 1 и М 2 образуют воздушный клин, то возникают полосы равной толщины, локализованные в плоскости клина М 2 М’ 1 и представляющие собой параллельные линии.

Интерферометром Майкельсона широко пользуются в физических измерениях и технических приборах. С его использованием впервые была измерена абсолютная величина длины волны света, доказана независимость скорости света от движения источника и др. Он используется и как спектральный прибор для анализа спектров излучения с высоким разрешением (до ~ 0,005 см -1 ).

Аналогично интерферометру Майкельсона устроен микроинтерферометр Линника. В нём светоделительным устройством служит склеенный из двух прямоугольных призм кубик. Граница, по которой склеены призмы, полупрозрачна, поэтому интерферирующие пучки одинаковы по интенсивности. В фокальной плоскости объектива одновременно видны поверхность исследуемого объекта, которым заменяют зеркало М 2 , и интерференционную картину. Если поверхность исследуемого образца имеет дефект в виде впадины или выступа высотой l , то интерференционные полосы искривляются. Если , то интерференционная полоса искривляется так, что занимает положение полосы, для которой порядок интерференции отличается на единицу от анализируемой полосы. Если искривление полосы составляет k полос, то оптическая разность хода, обусловленная дефектом поверхности , откуда легко найти высоту неровности: . Микроинтерферометр Линника применяют для контроля качества полированных металлических поверхностей.

Для измерения показателей преломления газов и жидкостей применяют интерференционные рефрактометры. Один из них – интерферометр Жамена .

Пучок S монохроматического света после отражения от передней и задней поверхностей первой стеклянной пластинки Р 1 разделяется на два пучка S 1 и S 2 . После прохождения через кюветы К 1 и К 2 и отражения от поверхностей стеклянной пластинки Р 2 , наклонённой под малым углом относительно пластинки Р 1 , пучки попадают в зрительную трубу Т и интерферируют, образуя прямые полосы равного наклона.

Если одна из кювет наполнена веществом с показателем преломления n 1 , а другая – веществом с показателем преломления n 2 , то по смещению интерференционной картины на число полос m по сравнению с ситуацией, когда обе кюветы наполнены одним и тем же веществом, можно найти разность показателей преломления , где l – длина кюветы. Точность измерения величины очень высока и может достигать седьмого и даже восьмого десятичного знака.При измерениях интерференционную полосу нулевого порядка возвращают к центру поля зрения зрительной трубы посредством компенсатора К , для которого предварительно строят график зависимости угла наклона от разности хода, выраженной в числе полос. Для монохроматизации излучения в схему прибора введён светофильтр Ф .

Для прецизионных измерений показателей преломления газов и жидкостей применяют также интерферометр Рэлея . Его оптическая схема – на рисунке 4.

Свет от щели S коллимируется линзой L 1 и затем падает на две другие щели S 1 и S 2 , параллельные щели S . Параллельные пучки света от S 1 и S 2 проходят через разные кюветы Т 1 и Т 2 , наполненные газом или жидкостью, и собираются линзой L 2 , в фокальной плоскости которой образуются интерференционные полосы, параллельные щелям. Наличием вещества в кюветах обусловлено то, что ширина интерференционных полос мала, и для наблюдения требуется большое увеличение. Так как ширина щели S мала, то невелика яркость интерференционной картины. Увеличение требуется только в направлении, перпендикулярном к полосам, поэтому используется цилиндрический окуляр O , длинная ось которого параллельна полосам. Одновременно с изучаемой интерференционной картиной формируется вторая интерференционная картина, расположенная ниже кювет. Она может служить шкалой для отсчёта. Посредством стеклянной пластинки G эту шкалу смещают по вертикали так, чтобы ей верхний край соприкасался с нижним краем главной системы полос. Резкая линия раздела между ними – это изображение края пластинки G , наблюдаемого через линзу L 2 . Таким способом можно обнаружить смещения, приблизительно равны 1/40 ширины полосы. На практике удобнее компенсировать оптическую разность хода, а не считать полосы. Компенсация достигается следующим образом: свет, выходящий из кювет, проходит через тонкие стеклянные пластинки, одна из которых (С 1 ) неподвижна, а другая (С 2 ) может вращаться вокруг горизонтальной оси. При этом удаётся плавно изменять оптическую длину пути источника, выходящего из щели S 2 . Компенсатор С 2 калибруется в монохроматическом свете, чтобы определить угол поворота, соответствующий смещению на один порядок в главной системе полос. Нижняя система полос служит нуль-индикатором. При работе сначала с откачанными кюветами добиваются приблизительного совмещения нулевых полос в обеих картинах, затем совмещают их точно в монохроматическом свете, пользуясь компенсатором. После этого одну кювету заполняют исследуемым газом и снова совмещают нулевые порядки. По разности углов поворота компенсатора определяют смещение Δ m в главной системе полом, пользуясь градуировочным графиком компенсатора. Показатель преломления газа n ´ находят по формуле , где l длина кюветы с газом, λ 0 – длина волны в вакууме. Обнаруживается порядка 10 -8 .

Многолучевые интерферометры

Простейший многолучевой интерферометр реализуется на основе пл а стинки Люммера – Герке , которая представляет собой высококачественную прозрачную плоскопараллельную пластинку, толщина которой l и показатель преломления n . Показатель преломления среды вне пластинки n ´ = 1 (рисунок 5). Амплитудные коэ ф фициенты отражения и пропускания – соответственно  и  .

Интерферирующие пучки усилят друг друга, если разность хода между ними равна целому числу длин волн: , где т = 0, 1, 2, … . Минимальная интенсивность будет наблюдаться при т =1/2, 3/2, … . Наибольший порядок интерференции , который можно получить в многолучевом интерферометре, (т ~ 20000). Область свободной дисперсии мала. Поэтому многолучевой интерферометр используют только для исследования контуров спектральных линий, выделенных другим спектральным прибором.

Пластинка Люммера – Герке применяется редко. Более распространённый способ получения интерференции многих пучков основан по использовании интерферометров Фабри – Перо .

Основные части интерферометра Фабри – Перо – две стеклянные или кварцевые платины P 1 и P 2 с плоскими поверхностями. Поверхности, образующие воздушный зазор, покрыты частично прозрачными плёнками и строго параллельны друг другу. Чтобы устранить вредное влияние света, отражённого внешними поверхностями, пластины делают немного клиновидными. Интерферометр Фабри – Перо формирует интерференционные полосы равного наклона в виде концентрических колец. Достаточно просто можно наблюдать интерференционную картину от интерферометра Фабри−Перо, используя в качестве источника лазер.

В условиях нормального падения света на однородную прозрачную пластинку многолучевая интерференция может быть использована для выделения излучения в узкой (10 – 20 нм) спектральной области. Именно таков принцип действия интерференционных светофильтров (рисунок 7).


Рисунок 1 - Схема интерферометра Майкельсона

О 2

О 1

М 1

М ’ 1

Рисунок 2 - Схема микроинтерферометра Линника

О 2

О 1

М 1

М ’ 1

Рисунок 3 - Схема интерферометра Жамена

а – горизонтальное сечение; б – вертикальное сечение

Рисунок 4 – Схема интерферометра Рэлея

Рисунок 5 - Ход лучей через пластинку Люммера - Герке

E 00

 2

 E 00

 E 00

 2 E 00

 2 E 00

 2  2 E 00 e i 

Рисунок 6 – Схема интерферометра Фабри - Перо

Промежуточный слой из диэлектрика

Частично отражающие плёнки

Стекло

Рисунок 7 – Интерференционный фильтр типа Фабри - Перо


А также другие работы, которые могут Вас заинтересовать

12971. ПОЖАРНАЯ СИГНАЛИЗАЦИЯ 731.5 KB
ПОЖАРНАЯ СИГНАЛИЗАЦИЯ. Охранно-пожарная сигнализация. Извещатели пожарной сигнализации. Размещение пожарных извещателей. Приёмноконтрольные приборы...
12972. АППАРАТ ДЛЯ ВОССТАНОВЛЕНИЯ ДЫХАНИЯ «ГОРНОСПАСАТЕЛЬ - 8 М» 146 KB
АППАРАТ ДЛЯ ВОССТАНОВЛЕНИЯ ДЫХАНИЯ ГОРНОСПАСАТЕЛЬ 8 М СанктПетербург 2009 год АППАРАТ ДЛЯ ВОССТАНОВЛЕНИЯ ДЫХАНИЯ ГОРНОСПАСАТЕЛЬ 8 м Аппарат Горноспасатель 8м ГС8м предназначен для производства пострадавшему искусственного дыхания методо...
12973. ИССЛЕДОВАНИЕ СРЕДСТВ ЗВУКОИЗОЛЯЦИИ 496.5 KB
ИССЛЕДОВАНИЕ СРЕДСТВ ЗВУКОИЗОЛЯЦИИ ИССЛЕДОВАНИЕ СРЕДСТВ ЗВУКОИЗОЛЯЦИИ. Цель работы ознакомиться с типами глушителей шума принципами работы и методами оценки их эффективности. Физическая сущность звукоизоляции. Звукоизолирующая способность преграды коэ
12974. ИЗОЛИРУЮЩИЕ РЕГЕНЕРАТИВНЫЕ РЕСПИРАТОРЫ КАК ЭЛЕМЕНТ ТЕХНИЧЕСКОГО ОСНАЩЕНИЯ ВГСЧ 1.06 MB
ИЗОЛИРУЮЩИЕ РЕГЕНЕРАТИВНЫЕ РЕСПИРАТОРЫ КАК ЭЛЕМЕНТ ТЕХНИЧЕСКОГО ОСНАЩЕНИЯ ВГСЧ СОДЕРЖАНИЕ: Техническое оснащение ВГСЧ. Изолирующие регенеративные респираторы. респиратор р12: устройство и принцип действия...
12975. Правила оказания первой (доврачебной) помощи при несчастных случаях и заболеваниях. 1.13 MB
Правила оказания первой доврачебной помощи при несчастных случаях и заболеваниях. Оглавление Оглавление 1. Организация первой помощи при травмах и заболеваниях 2. Оказание первой помощи при остановке дыхания и сердечной деятельности 3. Раны и кровотечения време
12976. ПРОМЫШЛЕННАЯ ПЫЛЬ И СРЕДСТВА ПЫЛЕУЛАВЛИВАНИЯ 180.5 KB
ПРОМЫШЛЕННАЯ ПЫЛЬ И СРЕДСТВА ПЫЛЕУЛАВЛИВАНИЯ Характеристика промышленной пыли Производственная пыль является наиболее распространенным вредным фактором производственной среды. Многочисленные технологические процессы и операции в промышленности на транспорте...
12977. ПРОМЫШЛЕННЫЕ СРЕДСТВА ЗАЩИТЫ ОРГАНОВ ДЫХАНИЯ 380.5 KB
ПРОМЫШЛЕННЫЕ СРЕДСТВА ЗАЩИТЫ ОРГАНОВ ДЫХАНИЯ ВВЕДЕНИЕ В нашей стране в системе профилактических мероприятий направленных на обеспечение безопасных условий труда и снижение профессиональных отравлений и заболеваний в металлургической химической промышленн...
12978. Математичний аналіз. Відповіді до екзамену 4.31 MB
Математичний аналіз Числова послідовність та її границя. Означення. Послідовність це будьяка функція fn визначена на множині N натуральних чисел. Означення. Послідовність називають обмеженою якщо існують такі числа т і М що для всіх п викону
12979. Математичне моделювання та диференціальні рівняння 300.5 KB
Лекція 1 Математичне моделювання та диференціальні рівняння. 1.1. Поняття математичного моделювання. Поняття математичного моделювання трактується різними авторами по своєму. Ми будемо його повязувати з нашою спеціалізацією прикладна математика. Під ма

7. Интерферометр Рэлея

ПНТЕРФЕРОМЕТР РЭЛЕЯ (интерференционный рефрактометр) - интерферометр для измерения показатели преломления, основанный па явлении дифракции света на двух параллельных щелях. Схема Интерферометра Рэлея представлена па (рис.10.) в вертикальной и горизонтальной проекциях.

Ярко освещённая щель малой ширины S служит источником света, расположенным в фокальной плоскости объектива О 1 . Параллельный пучок лучей, выходящий из О 1 , проходит диафрагму D с двумя параллельными щелями и трубки R 1 и R 2 , в которые вводятся исследуемые газы или жидкости. Трубки имеют одинаковые длины и занимают только верхнюю половину пространства между О 1 и объективом зрительной трубы О 2 . В результате интерференции света, дифрагирующего на щелях диафрагмы D, в фокальной плоскости объектива О 2 вместо изображении щели S образуются две системы интерференционных полос, схематически показанные на рис.10. Верхняя система полос образуется лучами, проходящими через трубки R 1 и R 2 , а нижняя -- лучами, идущими мимо них. Интерференционные полосы наблюдаются с помощью короткофокусного цилиндрического окуляра О 3 . В зависимости от разности показателей преломления n 1 и n 2 веществ, помещенных в R 1 и R 2 , верхняя система полос будет смещена в ту или иную сторону. Измеряя величину этого смешения, можно вычислить n 1 - n 2 . Нижняя система полос неподвижна, и от неё отсчитывают перемещения верхней системы. При освещении щели S белым светом центральные полосы обеих интерференционных картин являются ахроматическими, а полосы, расположенные справа и слева от них, окрашены. Это облегчает обнаружение центральных полос. Измерение перемещения верхней системы полос осуществляется применением компенсатора, который вводит между лучами, проходящими через R 1 и R 2 , дополнительную разность фаз до совмещения верхних и нижних систем полос. С помощью интерферометра Рэлея достигается весьма высокая точность измерения до 7- го и даже 8-го десятичного знака. Интерферометр Рэлея применяется для обнаружения малых примесей в воздухе, в воде, для анализа рудничного и печного газов и для других целей.

Ультразвуковой интерферометр - прибор для измерения фазовой скорости и коэффициента поглощения, принцип действия которого основан на интерференции акустических волн. Типичный Ультразвуковой интерферометр (рис...

Интерферометры и их применение

Интерферометр Жамена (интерференционный рефрактометр) -- интерферометр для измерения показателей преломления газов и жидкостей, а также для определения концентрации примесей в воздухе. Интерферометр Жамена (рис.3...

Интерферометры и их применение

ИНТЕРФЕРОМЕТР ЗВЁЗДНЫЙ -- интерферометр для измерения угловых размеров звёзд и углового расстояний между двойными звёздами. Если угловое расстояние между двумя звездами очень мало, в телескоп они видны как одна звезда...

Интерферометры и их применение

ИНТЕРФЕРОМЕТР ИНТЕНСИВНОСТИ -- устройство, в котором измеряется коэффициент корреляции интенсивности излучения, принимаемого в двух разнесённых точках...

Интерферометры и их применение

Интерферометр Майкельсона является одной из наиболее распространенных скелетных схем интерферометра, предназначенной для различных применений в случае, когда пространственное совмещение объектов, порождающих интерферирующие волны...

Интерферометры и их применение

Интерферометр Рождественского - это двухлучевой интерферометр, состоящий из 2-х зеркал M1 , M2 и двух параллельных полупрозрачных пластин P1 , P2 (Рис.8.); M1, P1 и M2, P2 устанавливаются попарно параллельно...

Интерферометры и их применение

ИНТЕРФЕРОМЕТР ФАБРИ-ПЕРО -- многолучевой интерференционный спектральный прибор с двумерной дисперсией, обладающий высокой разрешающей способностью. Используется как прибор с пространственным разложением излучения в спектр и фотогр...

Квантовая оптика

Из рассмотрения законов Стефана - Больцмана и Вина следует, что термодинамический подход к решению задача о нахождении универсальной функции Кирхгофа r?,T не дал желаемых результатов...

Развитие взглядов на природу света. Явление интерференции света

Естественно, что принцип интерференции можно применять при наблюдении не только бактерий, но и при наблюдении звёзд. Это настолько очевидно...

Теория голубого неба

Каких только гипотез не выдвигалось в разное время для объяснения цвета неба. Наблюдая, как дым на фоне темного камина приобретает синеватый цвет, Леонардо да Винчи писал: „...светлота поверх темноты становится синей, тем более прекрасной...