Получение человеческого инсулина. Из чего делают инсулин: современные наработки для решения нужд диабетиков

Сегодня различные виды иммунотерапии используются:

  • для лечения инсулинозависимых пациентов (сахарный диабет I типа);
  • в качестве временной, предоперационной терапии для больных с диабетом II типа;
  • для больных-диабетиков с заболеванием II типа, при острых респираторных и других инфекционных заболеваниях;
  • инсулин при диабете II типа требуется колоть, в случае низкой эффективности или непереносимости пациентом других фармакологических средств, снижающих процентное содержание глюкозидов в крови.

Сегодня во врачебной практике в основном используются три метода инсулинотерапии:

Интенсифицированный метод инсулинотерапии

Современные методы интенсифицированной инсулинотерапии имитируют естественное, физиологическое выделение поджелудочной железой гормона – инсулина. Его прописывают при отсутствии у пациента избыточного веса и, когда не имеет места вероятность психоэмоциональных перегрузок, из суточного расчета - 0,5-1,0 МЕ (международных единиц действия) гормона на 1 килограмм массы тела. При этом должны выполняться следующие требования:

  • препарат необходимо колоть в дозах, достаточных для полной нейтрализации избыточного содержания сахаридов в крови;
  • введенный извне инсулин при сахарном диабете должен достаточно полно имитировать базальную секрецию гормона, выделяемого островками Лангерганса, которая имеет пиковое значение после приёма пищи.

Их этих принципов складывается интенсифицированная методика, когда суточную, физиологически необходимую дозу делят на более мелкие инъекции, дифференцируя инсулины по степени их временной эффективности – краткосрочного или пролонгированного действия. Последний вид инсулинов необходимо колоть на ночь и утром, сразу после пробуждения, что достаточно точно и полно имитирует естественное функционирование поджелудочной железы.

Инъекции инсулином с коротким сроком действия назначают после приема пищи, с высокой концентрацией углеводов. Как правило, разовая инъекция рассчитывается индивидуально по числу условных хлебных единиц, которым эквивалентен прием пищи.

Традиционная инсулинотерапия

Традиционной (стандартной) инсулинотерапией называют метод лечения больных сахарным диабетом, когда в одной инъекции смешаны инсулины краткосрочного и пролонгированного действия. Достоинством этого способа введения лекарственного препарата считается минимизация числа уколов – обычно требуется колоть инсулин 1-3 раза в день. Основным недостатком этого вида лечения считается отсутствие стопроцентной имитации физиологического выделения гормона поджелудочной железой, что делает невозможным полноценную компенсацию дефектов углеводного метаболизма.

Стандартную схему использования традиционной инсулинотерапии можно представить в следующем виде:

  1. Суточная потребность организма в инсулине вводится больному в виде 1-3 инъекций в сутки:
  2. В одной инъекции содержатся инсулины среднего и краткосрочного срока действия: доля короткодействующих инсулинов составляет 1/3 об общего количества препарата;

на инсулин среднего срока действия приходится 2/3 общего объема инъекции.

Помповая инсулинотерапия

Помповой инсулинотерапией называется метод введения препарата в организм, когда традиционный шприц не требуется, а подкожные инъекции осуществляются специальным электронным устройством – инсулиновой помпой, которая способна колоть инсулины ультракороткого и короткого срока действия в виде микродоз. Инсулиновая помпа достаточно точно имитирует естественное поступление гормона в организм, для чего в ней предусмотрены два режима работы.

  • режим базального введения, когда микродозы инсулина поступают в организм непрерывно в виде микродоз;
  • болюсный режим, при котором периодичность и дозировка введения препарата программируются больным.

Первый режим позволяет создать инсулиногормональный фон, наиболее приближенный к естественной секреции гормона поджелудочной железой, что дает возможность не колоть инсулины пролонгированного действия.

Второй режим обычно применяется непосредственно перед едой, что дает возможность:

  • снизить вероятность повышения гликемического индекса до критического уровня;
  • позволяет отказаться от использования препаратов с ультракоротким сроком действия.

При совмещении обоих режимов максимально точно имитируется естественное физиологическое выделение инсулина в организме человека. При использовании инсулиновой помпы больной должен знать основные правила использования этого устройства, для чего необходимо проконсультироваться с лечащим врачом. Кроме того, он должен помнить, когда необходимо менять катетер, через который происходят подкожные впрыскивания инсулина.

Инсулинотерапия при наличии диабета I типа

Инсулинозависимым больным (сахарный диабет I типа) назначают для полной замены естественной секреции инсулина. Наиболее распространена следующая схема введения препарата в виде инъекций, когда необходимо колоть:

  • базальный инсулин (среднего и пролонгированного действия) – один-два раза в сутки;
  • болюсный (краткосрочный) – непосредственно перед приемом пищи.

В качестве информации для диабетиков, (но ни в коем случае не как рекомендацию), можно привести некоторые фармацевтические, брендовые названия различных препаратов, снижающих уровень крови в крови:

Базальные инсулины:

  • пролонгированного срока действия, «Лантус» («Lantus» - Германия), «Левемир ФлексПен» («Levemir FlexPen» - Дания) и Ультратард ХМ (Ultratard HM - Дания);
  • среднего срока действия «Хумулин НПХ» («Humulin NPH» - Швейцария), «Инсуман Базал ГТ» («Insuman Basal GT - Германия») и «Протафан HM» («Protaphane HM - Дания»).

Болюсные препараты:

  • инсулины короткого срока действия «Актрапид HM Пенфилл» («Actrapid HM Penfill» – Дания);
  • ультракороткого срока действия «НовоРапид» («NovoRapid» - Дания), «Хумалог» («Humalog» - Франция), «Апидра» («Apidra» - Франция).

Комбинация болюсного и базального режимов инъекций называется многократным режимом и является одним из подвидов интенсифицированной терапии. Дозировка каждой инъекции определяется врачам на основе проведенных анализов и общего физического состояния больного. Правильно подобранные комбинации и дозы отдельных инсулинов делают организм человека менее критичным к качеству принимаемой пищи. Обычно доля инсулинов длительного и среднего срока действий составляет 30,0%-50,0% от общей дозы вводимого препарата. Болюсный инулин требует индивидуального подбора дозы для каждого пациента.

Методы инсулинотерапии для больных II типом диабета

Обычно инсулинотерапия при сахарном диабете II типа начинается с постепенного добавления препаратов снижающих уровень сахаридов в крови к обычным лекарственным средам, назначаемых при медикаментозной терапии больных. Для лечения назначают препараты, действующим веществом которого является инсулин гларгин («Лантус» или «Левемир»). При этом колоть раствор для инжекций желательно в одно и то же время. Максимальная суточная дозировка, в зависимости от хода течения и степени запущенности болезни, может достигать 10,0 МЕ.

Если улучшения состояния больного не отмечается и диабет прогрессирует, а медикаментозная терапия по схеме «оральные сахаропонижающие препараты + инъекции бальзового инсулина» не дает нужного эффекта, переходят к терапии, лечение которой основано на инъекционном применении инсулиносодержащих препаратов. Сегодня наиболее распространен интенсифицированный режим, при котором препараты необходимо колоть 2-3 раза в день. Для наиболее комфортного состояния, больные предпочитают минимизировать число инъекций. С точки терапевтического эффекта простота режима должна обеспечивать максимальную эффективность сахаропонижающие препаратов. Оценка эффективности проводится после проведения инъекций в течение нескольких дней. При этом совмещение утренней и верней дозы нежелательно.

Особенности инсулинотерапии для детей и беременных

Беременным женщинам, кормящим матерям и детям до 12 лет, у которых диагностирован сахарный диабет II типа, инсулинотерапию назначают с некоторыми ограничениями.

Детям инсулин колют с учетом следующих требований:

  • для уменьшения суточного количества инъекций назначают комбинированные инъекции, в которых индивидуально подбирается соотношение между препаратами с коротким и средним сроком действия;
  • интенсифицированную терапию рекомендуют назначать по достижении двенадцатилетнего возраста;
  • при поэтапной корректировке дозировки преподала диапазон изменения между предыдущей и последующей инъекциями ложен лежать в диапазоне 1,0…2,0 МЕ.

При проведении курса инсулинотерапии терапии беременным женщинам, необходимо придерживаться следующих правил:

  • инъекции препаратов назначать утром, до завтрака уровень глюкозы должен находится в диапазоне – 3,3-5,6 миллимоль/литр;
  • после приема пищи молярность глюкозы в крови должна лежать в пределах 5,6-7,2 миллимоль/литр;
  • для предотвращения утренней и послеобеденной гипергликемии при диабете I и II типа требуется минимум две инъекции;
  • перед первым и последним приемом пищи инъекции проводятся с использованием инсулинов короткого и среднего периода действия;
  • для исключения ночной и «предрассветной» гипергликемии допускает инъекцию сахароснижающего препарата перед ужином, колоть непосредственно перед сном.

Технологии получения фармакологического инсулина

Вопрос об источниках и способах получения инсулина волнует не только специалистов, но и большинство больных. От технологии производства этого гормона зависит эффективность действия препаратов понижающих уровень сахаридов в крови и возможные побочные эффекты от их приема.

Сегодня в фармацевтических средствах, предназначенных для лечения диабета путем понижения уровня глюкозы в организме, используют инсулин, полученный следующими способами:

  • получение препаратов животного происхождения предусматривает использование животного сырья (бычий или свиной инсулин);
  • биосинтетический способ использует животное сырье, при модифицированном способе очистки;
  • рекомбинантным или модифицированным генно-инженерным способом;
  • синтетическим способом.

Наиболее перспективен генно-инженерный способ получения, при котором обеспечивается наивысшая степень очистки и может быть достигнуто практически полное отсутствие проинсулина. Препараты на его основе не вызывают аллергических реакций и имеют достаточный узкий круг противопоказаний.

Возможные негативные последствия инсулинотерапии

При достаточной безопасности и хорошей переносимости больными инсулина, полученного генно-инженерными способами, возможны отдельные негативные последствия, основными из которых являются:

  • появления аллергических раздражений, локализованных в месте инъекции, связанных с неправильным иглоукалыванием или введением слишком холодного препарата;
  • деградация подкожного слоя жировой клетчатки в зонах инъекций;
  • развитие гипогликемии, приводящее к интенсификации потоотделения, постоянному чувству голода, учащению сердечного ритма.

Для снижения вероятности возникновения этих явлений при проведении инсулинотерапии следует строго выполнять все предписания врача.

Из чего производят инсулин

Инсулин – это основное лекарство для лечения больных сахарным диабетом 1 типа. Иногда он также используется для стабилизации состояния пациента и улучшения его самочувствия при втором типе заболевания. Это вещество по своей природе является гормоном, который способен в малых дозах влиять на обмен углеводов. В норме поджелудочная железа вырабатывает достаточное количество инсулина, который помогает поддерживать физиологический уровень сахара в крови. Но при серьезных эндокринных нарушениях единственным шансом помочь больному часто становятся именно инъекции инсулина. Принимать его перорально (в виде таблеток), к сожалению, нельзя, поскольку он полностью разрушается в пищеварительном тракте и утрачивает биологическую ценность.

Варианты получения инсулина для использования в медицинской практике

Многие диабетики наверняка хоть раз задавались вопросом, из чего делают инсулин, который применяется в медицинских целях? В настоящее время чаще всего это лекарство получают с помощью методов генной инженерии и биотехнологии, но иногда его извлекают из сырья животного происхождения.

Препараты, получаемые из сырья животного происхождения

Получение этого гормона из поджелудочной железы свиней и крупного рогатого скота – старая технология, которая сегодня используется довольно редко. Это связано с невысоким качеством получаемого лекарства, его склонностью вызывать аллергические реакции и недостаточной степенью очистки. Дело в том, что, поскольку гормон – это белковое вещество, оно состоит из определенного набора аминокислот.

В начале и середине 20 столетия, когда аналогичных препаратов не существовало, даже такой инсулин стал прорывом в медицине и позволил вывести лечение диабетиков на новый уровень. Гормоны, полученные таким методом, снижали сахар крови, правда, при этом они часто вызывали побочные эффекты и аллергию. Отличия в составе аминокислот и примеси в лекарстве сказывались на состоянии пациентов, особенно это проявлялось у более уязвимых категорий больных (детей и пожилых людей). Еще одна причина плохой переносимости такого инсулина – наличие его неактивного предшественника в лекарстве (проинсулина), избавиться от которого в данной вариации лекарства было невозможно.

В наше время существуют усовершенствованные свиные инсулины, которые лишены этих недостатков. Их получают из поджелудочной железы свиньи, но после этого поддают дополнительной обработке и очистке. Они являются многокомпонентными и содержат в своем составе вспомогательные вещества.

Модифицированный свиной инсулин практически ничем не отличается от человеческого гормона, поэтому его до сих пор используют на практике

Такие лекарства переносятся пациентами гораздо лучше и практически не вызывают побочных реакций, они не угнетают иммунитет и эффективно снижают сахар в крови. Бычий инсулин на сегодняшний день в медицине не используется, так как из-за своей чужеродной структуры он отрицательно влияет на иммунную и другие системы организма человека.

Генноинженерный инсулин

Человеческий инсулин, который применяется для диабетиков, в промышленном масштабе получают двумя способами:

  • с помощью ферментативной обработки свиного инсулина;
  • с использованием генномодифицированных штаммов кишечной палочки или дрожжей.

При физико-химическом изменении молекулы свиного инсулина под действием специальных ферментов становятся идентичными инсулину человека. Аминокислотный состав полученного препарата ничем не отличается от состава натурального гормона, который вырабатывается в организме людей. В процессе производства лекарство проходит высокую очистку, поэтому не вызывает аллергических реакций и других нежелательных проявлений.

Но чаще всего инсулин получают с помощью модифицированных (генетически измененных) микроорганизмов. Бактерии или дрожжи с помощью биотехнологических методов изменены таким образом, что могут сами производить инсулин.

Существует 2 методики подобного получения инсулина. Первая из них основана на использовании двух разных штаммов (видов) какого-то одного микроорганизма. Каждый из них синтезирует только одну цепь молекулы ДНК гормона (всего их две, и они спирально закручены между собой). Затем эти цепи соединяются, и в полученном растворе уже можно отделить активные формы инсулина от тех, которые не несут никакого биологического значения.

Второй способ получения лекарства с помощью кишечной палочки или дрожжей основан на том, что микроб сначала производит неактивный инсулин (то есть его предшественник – проинсулин). Потом с помощью ферментативной обработки эту форму активируют и используют в медицине.

Персонал, который имеет доступ в определенные производственные помещения, всегда должен быть одет в стерильный защитный костюм, благодаря чему контакт препарата с биологическими жидкостями человека исключается

Все эти процессы обычно автоматизированы, воздух и все соприкасающиеся поверхности с ампулами и флаконами стерильны, а линии с оборудованием герметично закрыты.

Методы биотехнологии дают возможность ученым думать об альтернативных решениях проблемы сахарного диабета. Например, на сегодняшний день проводятся доклинические исследования производства искусственных бета-клеток поджелудочной железы, которые могут быть получены с помощью методов генной инженерии. Возможно, в будущем их будут использовать для улучшения функционирования этого органа у больного человека.

Производство современных препаратов инсулина – сложный технологический процесс, который предусматривает автоматизацию и минимальное вмешательство человека

Дополнительные компоненты

Производство инсулина без вспомогательных веществ в современном мире практически невозможно представить, ведь они позволяют улучшить его химические свойства, продлить время действия и достичь высокой степени чистоты.

По своим свойствам все дополнительные ингредиенты можно разделить на такие классы:

  • пролонгаторы (вещества, которые используются для обеспечения более длительного действия лекарства);
  • дезинфицирующие компоненты;
  • стабилизаторы, благодаря которым в растворе лекарства поддерживается оптимальная кислотность.

Пролонгирующие добавки

Существуют инсулины продленного действия, биологическая активность которых продолжается в течение 8 – 42 часов (в зависимости от группы препарата). Такой эффект достигается, благодаря добавлению в инъекционный раствор специальных веществ – пролонгаторов. Чаще всего с этой целью применяется одно из таких соединений:

Белки, которые продлевают действие лекарства, проходят детальную очистку и являются низкоаллергенными (например, протамин). Соли цинка также не оказывают отрицательного влияния ни на активность инсулина, ни на самочувствие человека.

Антимикробные составляющие

Дезинфекторы в составе инсулина необходимы для того, чтобы при хранении и использовании в нем не размножалась микробная флора. Эти вещества являются консервантами и обеспечивают сохранность биологической активности лекарства. К тому же, если пациент вводит гормон из одного флакона только самому себе, то лекарства ему может хватить на несколько дней. За счет качественных антибактериальных компонентов у него не будет потребности выбрасывать неиспользованный препарат из-за теоретической возможности размножения в растворе микробов.

В качестве дезинфицирующих составляющих при производстве инсулина могут использоваться такие вещества:

Если в растворе содержатся ионы цинка, они также выступают дополнительным консервантом из-за своих антимикробных свойств

Для производства каждого вида инсулина подходят определенные дезинфицирующие компоненты. Их взаимодействие с гормоном обязательно исследуют на этапе доклинических испытаний, поскольку консервант не должен нарушать биологическую активность инсулина или как-то по-другому отрицательно влиять на его свойства.

Использование консервантов в большинстве случаев позволяет вводить гормон под кожу без ее предварительной обработки спиртом или другими антисептиками (производитель обычно упоминает об этом в инструкции). Это упрощает введение лекарства и сокращает количество подготовительных манипуляций перед самой инъекцией. Но данная рекомендация работает только в случае введения раствора с помощью индивидуального инсулинового шприца с тонкой иглой.

Стабилизаторы

Стабилизаторы необходимы для того, чтобы pH раствора поддерживался на заданном уровне. От уровня кислотности зависит сохранность лекарства, его активность и стабильность химических свойств. При производстве инъекционного гормона для больных диабетом с этой целью обычно используют фосфаты.

Для инсулинов с цинком стабилизаторы растворов нужны не всегда, поскольку ионы металла помогают поддерживать необходимый баланс. Если же они все-таки применяются, то вместо фосфатов используют другие химические соединения, так как комбинация этих веществ приводит к выпадению осадка и непригодности лекарства. Важное свойство, предъявляемое ко всем стабилизаторам – безопасность и отсутствие возможности вступать в любые реакции с инсулином.

Подбором инъекционных лекарств при диабете для каждого конкретного пациента должен заниматься компетентный эндокринолог. Задача инсулина – не только удерживать нормальный уровень сахара в крови, но и не вредить другим органам и системам. Препарат должен быть нейтральным в химическом плане, низкоаллергенным и желательно доступным по цене. Довольно удобно также, если подобранный инсулин можно будет смешивать с другими его версиями по длительности действия.

Комментарии

Копирование материалов с сайта возможно только с указанием ссылки на наш сайт.

ВНИМАНИЕ! Вся информация на сайте является популярно-ознакомительной и не претендует на абсолютную точность с медицинской точки зрения. Лечение обязательно должно проводиться квалифицированным врачом. Занимаясь самолечением вы можете навредить себе!

Из чего делают инсулин: современные наработки для решения нужд диабетиков

Инсулин – гормон поджелудочной железы, играющий важнейшую роль в организме. Именно это вещество способствует адекватному усвоению глюкозы, которая в свою очередь является основным источником энергии, а также питает ткани мозга.

Диабетики, которые вынуждены принимать гормон в виде инъекции, рано или поздно задумываются о том, из чего же делают инсулин, чем отличается один препарат от другого и каким образом искусственные аналоги гормона влияют на самочувствие человека и функциональный потенциал органов и систем.

Отличия разных видов инсулина

Инсулин - жизненно важный препарат. Люди, страдающие сахарным диабетом, не могут обойтись без этого средства. Фармакологический ряд медикаментов для диабетиков относительно широк.

Препараты отличаются друг от друга во многих аспектах:

  1. Степень очистки;
  2. Источник (производство инсулина предполагает использование человеческого ресурса и животных);
  3. Наличие вспомогательных компонентов;
  4. Концентрация действующего вещества;
  5. РН раствора;
  6. Потенциальная возможность комбинировать сразу несколько препаратов. Особо проблематично сочетать в одних терапевтических схемах инсулин короткого и длительного действия.

В мире каждый год передовые фармацевтические компании вырабатывают колоссальное количество «искусственного» гормона. Производители инсулина в России также внесли свой вклад в развитие данной отрасли.

Источники для получения гормона

Из чего делают инсулин для диабетиков, знает далеко не каждый человек, а ведь происхождение этого ценнейшего препарата действительно интересно.

Современная технология производства инсулина использует два источника:

  • Животные. Препарат получают, обрабатывая поджелудочные железы крупного рогатого скота (реже), а также свиней. Бычий инсулин содержит в себе целых три «лишних» аминокислоты, которые являются чужеродными по своей биологической структуре и происхождению человеку. Это может стать причиной развития аллергических реакций стойкого характера. Свиной инсулин отличим от человеческого гормона только на одну аминокислоту, что делает его гораздо безопаснее. В зависимости от того, как производят инсулин, насколько тщательно произведут очистку биологического продукта, будет зависеть степень восприятия лекарства организмом человека;
  • Человеческие аналоги. Продукты данной категории производятся по сложнейшим технологиям. Передовые фармацевтические компании наладили производство бактериями человеческого инсулина в лечебных целях. Широко распространены методики ферментативной трансформации для получения полусинтетических гормональных продуктов. Еще одна технология предполагает использование инновационных техник в сфере генной инженерии для получения уникальных ДНК-рекомбинантных составов с инсулином.

Как получали инсулин: первые попытки фармацевтов

Препараты, получаемые из животных источников, считаются медикаментами, производимыми по старой технологии. Лекарства считаются относительно невысокого качества из-за недостаточной степени очистки конечного продукта. В начале 20-х годов минувшего столетия инсулин, даже вызывавший сильную аллергию, стал настоящим «фармакологическим чудом», спасавшим жизни инсулинозависимых людей.

Препараты первых выпусков тяжело переносились также из-за наличия проинсулина в составе. Гормональные инъекции особо плохо переносили дети и люди пожилого возраста. Со временем от этой примеси (проинсулина) удалось избавиться методом более тщательной очистки состава. От бычьего инсулина отказались совсем, так как он почти всегда вызвал побочные явления.

Из чего сделан инсулин: важные нюансы

В современных схемах терапевтического воздействия на пациентов используют оба типа инсулина: и животного, и человеческого происхождения. Последние наработки позволяют производить продукты высочайшей степени очистки.

Ранее инсулин мог содержать целый ряд нежелательных примесей:

Ранее такие «добавки» могли вызвать серьезные осложнения, особенно у пациентов, которые вынуждены принимать большие дозы препарата.

Усовершенствованные лекарства лишены нежелательных примесей. Если рассматривать инсулин животного происхождения, лучшим является монопиковый продукт, который производится с выработкой «пика» гормонального вещества.

Длительность фармакологического эффекта

Производство гормональных препаратов налажено сразу в нескольких направлениях. В зависимости от того, как делают инсулин, будет зависеть продолжительность его действия.

Выделяют следующие типы препаратов:

  1. С ультракоротким эффектом;
  2. Короткого действия;
  3. Пролонгированного действия;
  4. Средней степени продолжительности;
  5. Длительного действия;
  6. Комбинированного типа.

Препараты ультракороткого действия

Типичные представители группы: Лизпро и Аспарт. Инсулин в первом варианте производят методом перестановки аминокислотных остатков в гормоне(речь идет о лизине и пролине). Таким образом, в ходе производства минимизируют риск возникновения гексамеров. За счет того, что подобный инсулин быстрее распадается на мономеры, процесс усвоение препарата не сопровождается осложнениями и побочными эффектами.

Аналогичным образом производят и Аспарт. Разница только в том, что аминокислоту пролин заменяют аспарагиновой кислотой. Препарат быстро распадается в организме человека на ряд простых молекул, мгновенно впитывается в кровь.

Препараты короткого действия

Инсулины короткого действия представлены буферными растворами. Они предназначены именно для подкожных инъекций. В ряде случае допускается иной формат введения, но подобные решения может принимать только врач.

Препарат начинает «работать» через 15 – 25 минут. Максимальная концентрация вещества в организме наблюдается спустя 2 – 2,5 час после инъекции.

В целом препарат воздействует на организм пациента около 6 часов. Инсулины данной категории создаются для лечения диабетиков в условиях стационара. Они позволяют быстро вывести человека из состояния острой гипергликемии, диабетической прекомы или комы.

Инсулин средней длительности

Препараты медленно поступают в кровь. Инсулин получают по стандартной схеме, но на конечных этапах производства совершенствуют состав. Чтобы увеличить их гипогликемическое действие, к составу подмешивают специальные пролонгирующие вещества – цинк или протамин. Чаще всего инсулин представлен в виде суспензий.

Инсулин длительного действия

Инсулины пролонгированного действия являются самыми современными фармакологическими продуктами на сегодняшний день. Самый популярный препарат - Гларгин. Производитель никогда не скрывал, из чего делают инсулин человеческий для диабетиков. При помощи ДНК-рекомбинантной технологии удается создавать точный аналог гормона, который синтезирует поджелудочная железа здорового человека.

Чтобы получить итоговый продукт проводят чрезвычайно сложную модификацию молекулы гормона. Заменяют аспарагин глицином, присоединяя аргининовые остатки. Препарат не используют для лечения коматозных или прекоматозных состояний. Его назначают только подкожно.

Роль вспомогательных веществ

Производство любого фармакологического продукта, в частности инсулина, без использования специальных добавок представить себе невозможно.

По своим классам все добавки для инсулинсодержащих препаратов можно условно разделить на следующие категории:

  1. Вещества, предопределяющие пролонгацию лекарств;
  2. Дезинфицирующие компоненты;
  3. Стабилизаторы кислотности.

Пролонгаторы

С целью удлинитель время воздействия на пациента к раствору инсулина подмешивают препараты-пролонгаторы.

Чаще всего используют:

Антимикробные компоненты

Антимикробные составляющие продляют срок пригодности медикаментов. Наличие дезинфицирующих компонентов позволяет не допустить размножения микробов. Эти вещества по своей биохимической природе являются консервантами, не влияющими на активность самого препарата.

Самые популярные антимикробные добавки, используемые в производстве инсулина:

Для каждого конкретного препарата используют свои особые добавки. Их взаимодействие друг с другом в обязательном порядке детально изучают на доклиническом этапе. Главное требование – консервант не должен нарушать биологическую активность препарата.

Качественный и умело подобранный дезинфицирующий препарат позволяет не просто сохранить стерильность состава на протяжении длительного периода, но даже делать внутрикожные или подкожные инъекции, предварительно не обеззараживая дермальное полотно. Это чрезвычайно важно пи возникновении экстремальных ситуаций, когда времени на обработку места для инъекций нет.

Стабилизаторы

В каждом растворе должен быть стабильным рН и не меняться со временем. Стабилизаторы используют, как раз для того, чтобы уберечь лекарство от повышения уровня кислотности.

Для инъекционных растворов чаще всего используют фосфаты. Если инсулин дополнен цинком, стабилизаторы не используют, поскольку сами ионы металла исполняют роль стабилизаторов кислотности раствора.

Как и в случае с антимикробными компонентами, стабилизаторы не должны вступать в какие-либо реакции с самим действующим веществом.

Задача инсулина заключается не только в поддерживании оптимального уровня сахара в крови диабетика, но гормон должен еще и не быть опасным для других органов, тканей человеческого тела.

Что такое калибровка инсулиновых шприцев

В самых первых препаратах с инсулином в 1 мл раствора содержалась всего 1 ЕД. Только со временем концентрацию удалось повысить. На территории РФ распространены флаконы с маркировочными символами - U-40 или 40 ед/мл. Это значит, что в 1 мл раствора сконцентрировано 40 ЕД.

Современные шприцы дополнены четкой продуманной калибровкой, которая позволит ввести необходимую дозу, избежав риска получить неожиданную передозировку. Все нюансы, касательно использования шприцов с калибровкой объясняет лечащий врач, подбирая препарат для диабетика впервые или же в момент коррекции старой схемы лечения.

Из чего делают инсулин (изготовление, производство, получение, синтезирование)

Инсулин является жизненно важным лекарственным препаратом, он произвел настоящую революцию в жизни многих людей, страдающих сахарным диабетом.

Во всей истории медицины и фармации 20 века можно выделить, пожалуй, только одну группу медикаментов, имеющих такую же важность – это антибиотики. Они, равно как и инсулин, очень быстро вошли в медицину и помогли спасти множество человеческих жизней.

День борьбы против сахарного диабета отмечается по инициативе Всемирной Организации Здравоохранения каждый год, начиная с 1991 г в день рождения канадского физиолога Ф.Бантинга, который открыл гормон инсулин вместе с Дж.Дж.Маклеодом. Давайте рассмотрим, как получают делают этот гормон.

Чем отличаются препараты инсулина друг от друга

  1. Степень очистки.
  2. Источник получения – бывает свиной, бычий, человеческий инсулин.
  3. Дополнительные компоненты, входящие в раствор препарата – консерванты, пролонгаторы действия и другие.
  4. Концентрация.
  5. рН раствора.
  6. Возможность смешивания препаратов короткого и продленного действия.

Инсулин представляет собой гормон, который вырабатывается специальными клетками поджелудочной железы. Он является двухцепочечным белком, в состав которого включена 51 аминокислота.

В мире ежегодно употребляется около 6 миллиардов единиц инсулина (1 единица – это 42 мкг вещества). Производство инсулина является высокотехнологичным и осуществляется только промышленными способами.

Источники получения инсулина

В настоящее время в зависимости от источника получения выделяют свиной инсулин и препараты человеческого инсулина.

Свиной инсулин сейчас имеет очень высокую степень очистки, обладает хорошим сахароснижающим эффектом, на него практически не бывает аллергических реакций.

Препараты инсулина человека полностью соответствуют по химическому строению человеческому гормону. Они производятся обычно путем биосинтеза с применением генно-инженерных технологий.

Крупные фирмы производители используют такие методики производства, которые гарантируют соответствие их продукции всем стандартам качества. Больших различий в действии человеческого и свиного монокомпонентного инсулина (то есть высокоочищенного) не выявлено, в отношении иммунной системы, по данным многих исследований, разница минимальна.

Вспомогательные компоненты, используемые при производстве инсулина

Во флаконе с препаратом содержится раствор, содержащий не только сам гормон инсулин, но также и другие соединения. Каждое из них играет свою определенную роль:

  • продление действия препарата;
  • дезинфекция раствора;
  • наличие буферных свойств раствора и поддержание нейтрального рН (кислотно-щелочной баланс).

Продление действия инсулина

Для создания инсулина продленного действия к раствору обычного инсулина добавляют одно из двух соединений – цинк или протамин. В зависимости от этого все инсулины можно разделить на две группы:

  • протамин-инсулины – протафан, инсуман базал, НПХ, хумулин Н;
  • цинк-инсулины – инсулин-цинк-суспензии моно-тард, ленте, хумулин-цинк.

Протамин представляет собой белок, но побочные реакции в виде аллергии на него бывают очень редко.

Для создания нейтральной среды раствора к нему добавляют фосфатный буфер. При этом нужно помнить, что инсулин, содержащий фосфаты, категорически запрещено соединять с инсулин-цинк-суспензией (ИЦС), так как фосфат цинка при этом выпадает в осадок, и действие цинк-инсулина укорачивается самым непредсказуемым образом.

Дезинфицирующие компоненты

Обеззараживающим действием обладают некоторые из соединений, которые по фармако-технологическим критериям и так должны быть введены в препарат. К ним относятся крезол и фенол (оба они имеют специфический запах), а еще метилпарабензоат (метилпарабен), у которого запах отсутствует.

Введение какого-либо из данных консервантов и обуславливает специфический запах некоторых препаратов инсулина. Все консерванты в количестве, в котором они находятся в препаратах инсулина, не имеют какого-либо негативного влияния.

В протамин-инсулины обычно включают крезол или фенол. В растворы ИЦС фенол добавлять нельзя, потому что он изменяет физические свойства частиц гормона. В данные препараты включают метилпарабен. Также антимикробным действие обладают ионы цинка, находящиеся в растворе.

Благодаря такой многоступенчатой антибактериальной защите с помощью консервантов предотвращается развитие возможных осложнений, причиной которых могло бы стать бактериальное обсеменение при многократном введении иглы во флакон с раствором.

За счет наличия такого механизма защиты пациент может использовать для подкожных инъекций препарата один и тот же шприц в течение 5 – 7 дней (при условии, что шприц использует только он один). Более того, консерванты дают возможность не использовать спирт для обработки кожи перед инъекцией, но опять же только в том случае, если больной делает инъекцию сам себе шприцем с тонкой иглой (инсулиновым).

Калибровка инсулиновых шприцев

В первых препаратах инсулина в одном мл раствора содержалась только дона единица гормона. Позднее концентрацию увеличили. Большая часть препаратов инсулина во флаконах, применяемых в России, содержит в 1 мл раствора 40 ед. Флаконы при этом обычно маркируются символом U-40 или 40 ед/мл.

Инсулиновые шприцы для широкого использования предназначаются, как раз, для такого инсулина и их калибровка произведена по следующему принципу: при наборе шприцем 0,5 мл раствора человек набирает 20 единиц, 0,35 мл соответствует 10 единицам и так далее.

Каждая отметка на шприце равна определенному объему, и больной уже знает, сколько единиц в этом объеме содержится. Таким образом, калибровка шприцев представляет собой градуировку по объему препарата, рассчитанную на применение инсулина U-40. 4 единицы инсулина содержатся в 0,1 мл, 6 единиц – в 0,15 мл препарата и так далее до 40 единиц, которые соответствуют 1 мл раствора.

В некоторых станах применяется инсулин, 1 мл которого содержит 100 единиц (U-100). Для таких препаратов выпускаются специальные инсулиновые шприцы, которые похожи на те, что были рассмотрены выше, но на них нанесена другая калибровка.

Она учитывает именно данную концентрацию (она в 2,5 раза превышает стандартную). При этом доза инсулина для пациента, естественно, остается прежней, так как она удовлетворяет потребность организма в конкретном количестве инсулина.

То есть если ранее больной использовал препарат U-40 и в сутки вводил 40 единиц гормона, то эти же 40 единиц он должен получать и при инъекциях инсулина U-100, но вводить его в количестве в 2,5 раза меньше. То есть те же самые 40 единиц будут содержаться в 0,4 мл раствора.

К сожалению, не все врачи и тем более больные сахарным диабетом об этом знают. Первые сложности начались, когда некоторые из пациентов перешли на использование инъекторов инсулина (шприц-ручки), в которых применяются пенфиллы (специальные картриджи), содержащие инсулин U-40.

Если в такой шприц набрать раствор с маркировкой U-100, к примеру, до отметки 20 единиц (то есть 0,5 мл), то в данном объеме будет содержаться целых 50 единиц препарата.

Каждый раз, наполняя инсулином U-100 обычные шприцы и смотря при этом на отсечки единиц, человек будет набирать дозу в 2,5 раза большую, чем та, которая показана на уровне данной отметки. Если ни врач, ни пациент своевременно не заметят эту ошибку, то высока вероятность развития тяжелой гипогликемии из-за постоянной передозировки препарата, что на практике нередко и происходит.

С другой стороны, иногда встречаются инсулиновые шприцы, откалиброванные именно для препарата U-100. Если такой шприц ошибочно наполнить привычным многим раствором U-40, то доза инсулина в шприце будет в 2,5 раза меньше, чем та, которая написана около соответствующей отметки на шприце.

В результате этого возможно на первый взгляд необъяснимое повышение глюкозы в крови. На самом деле, конечно, все вполне логично – для каждой концентрации препарата необходимо использовать подходящий шприц.

В некоторых странах, например в Швейцарии, был тщательно продуман план, согласно которому был осуществлен грамотный переход на препараты инсулина с маркировкой U-100. Но это требует тесного контакта всех заинтересованных сторон: врачей многих специальностей, пациентов, медсестер из любых отделений, фармацевтов, производителей, органов власти.

В нашей стране очень сложно осуществить переход всех пациентов только на использование инсулина U-100, потому что, скорее всего, это приведет к увеличению количества ошибок при определении дозы.

Совместное применение инсулинов короткого и продленного действия

В современной медицине лечение сахарного диабета, особенно первого типа, обычно происходит с использованием комбинации двух типов инсулина – короткого и пролонгированного действия.

Для пациентов было бы намного удобнее, если бы препараты с разной продолжительностью действия можно было соединять в одном шприце и вводить одновременно, чтобы избежать двойного прокола кожи.

Многие врачи не знают, чем определяется возможность смешивания различных инсулинов. В основе этого лежит химическая и галеновая (определяемая составом) совместимость инсулинов продленного и короткого действия.

Очень важно, чтобы при смешивании двух типов препаратов быстрое начало действия короткого инсулина не растягивалось и не исчезало.

Доказано, что препарат короткого действия можно комбинировать в одной инъекции с протамин-инсулином, при этом начало работы короткого инсулина не откладывается, потому что не происходит связывания растворимого инсулина с протамином.

При этом производитель препарата не имеет никакого значения. Например, инсулин актрапид можно соединять с хумулином Н или протафаном. Более того, смеси этих препаратов можно хранить.

Относительно препаратов цинк-инсулина давно установлено, что инсулин-цинк-суспензию (кристаллическую) нельзя соединять с коротким инсулином, так он связывается с излишком ионов цинка и трансформируется в продленный инсулин, иногда частично.

Некоторые больные сначала вводят препарат короткого действия, потом, не вынимая иглы из-под кожи, немного изменяют ее направление, и вводят через нее же цинк-инсулин.

По такому способу введения проводилось довольно мало научных исследований, поэтому нельзя исключать тот факт, что в некоторых случаях при таком способе инъекции под кожей может образовываться комплекс цинк-инсулина и препарата короткого действия, что приводит к нарушению всасывания последнего.

Поэтому лучше вводить короткий инсулин совершенно отдельно от цинк-инсулина, делать две раздельные инъекции в участки кожи, находящиеся друг от друга на расстоянии не менее 1 см. это не удобно, чего не сказать о стандартном приеме.

Комбинированные инсулины

Сейчас фармацевтической промышленностью выпускаются комбинированные препараты, содержащие инсулин короткого действия вместе с протамин-инсулином в строго определенном процентном соотношении. К таким препаратам относятся:

Наиболее эффективными являются комбинации, в которых соотношение короткого и продленного инсулина составляет 30:70 или 25:75. Это соотношение всегда указывается в инструкции по применению каждого конкретного препарата.

Такие препараты лучше всего подойдут для людей, соблюдающих постоянный режим питания, имеющих регулярную двигательную активность. Например, их часто используют пожилые больные диабетом второго типа.

Комбинированные инсулины не подходят для осуществления так называемой «гибкой» инсулинотерапии, когда возникает необходимость постоянно менять дозировку инсулина короткого действия.

Например, это нужно делать при изменении количества углеводов в продуктах питания, уменьшении или усилении физической активности и т.д. При этом доза базального инсулина (пролонгированного) практически не изменяется.

Сахарный диабет занимает третье место на планете по распространенности. Он отстает только от сердечно-сосудистых болезней и онкологии. По разным данным количество больных диабетом в мире составляет от 120 до 180 миллионов человек (примерно 3% от всех жителей Земли). По некоторым прогнозам каждые 15 лет число больных будет возрастать в два раза.

Чтобы проводить эффективную инсулинотерапию достаточно иметь всего один препарат, инсулин короткого действия, и один пролонгированный инсулин, их разрешено сочетать друг с другом. Также в некоторых случаях (в основном для больных пожилого возраста) возникает необходимость в препарате комбинированного действия.

  1. Высокая степень очистки.
  2. Возможность смешивания с другими видами инсулина.
  3. Нейтральный уровень рН.
  4. Препараты из разряда продленных инсулинов должны иметь продолжительность действия от 12 до 18 часов, чтобы достаточно было их вводить 2 раза в сутки.

Комментариев: 0

Комментариев:

Инсулин представляет собой вещество, которое образуется в поджелудочной железе («островки Лангерганса»). Этот гормон имеет ключевое значение в обмене веществ практически в любых тканях организма, так как обеспечивает открытость клеточных мембран для компонентов глюкозы. Пока получение инсулина не было налажено синтетическим способом, многие пациенты с сахарным диабетом были обречены на гибель, так как глюкоза используется для производства всех видов молекул, содержащих углерод, и представляет собой единственный источник энергии для митохондрий. При отсутствии инсулина мембрана клетки пропускает ничтожное количество глюкозы, что ведет к смерти клеток от недостатка питания.

Абсолютная и относительная недостаточность инсулина

Диабет, как нам известно, бывает двух типов. Первый тип возникает тогда, когда у человека присутствует деструкция в бета-клетках вышеупомянутых «островков Лангерганса». Это абсолютная недостаточность инсулина. Диабет же второго типа развивается при относительной инсулиновой недостаточности — некорректном воздействии инсулина на тот или иной вид ткани. О том, что уровень сахара в крови регулируется каким-то гормоном в поджелудочной железе, сделал предположение еще русский врач И.М. Соболев в середине 19 века. Несколько позже П. Лангерганс установил, что в железе имеются какие-то особые участки, а О. Минковский и Д. Меринг установили связь именно между этими «островками» и уровнем сахара в крови в ходе опытов на собаках. Около 20 лет ушло на то, чтобы извлечь из «островков Лангерганса» то, что они производят и попытки ввести полученные вещества в виде водных растворов тем же собакам. Нужно сказать, что опыты излечения диабетических состояний у четвероногих друзей увенчались успехом к 1916 году, но их развитие прервала Первая мировая война (работы Н. Паулеску).

В ходе же опытов Ф. Бантинга на собаках животным таким образом оперировалась поджелудочная железа, что большая часть ее вырождалась, оставляя только участки с клетками Лангерганса. После ряда опытов Бантинг решил взять для приготовления экстрактов эмбриональную поджелудочную железу теленка, которая еще не содержала пищеварительные железы, и полученное вещество было испытано на 14-летнем Л. Томпсоне, который получил тяжелую аллергическую реакцию из-за побочных компонентов. Очистить от примесей взялся Д. Коллип, в результате чего был выделен первый инсулин, который вернул из комы десятилетнего мальчика. Схожим образом инсулин получают сегодня еще в некоторых странах из поджелудочных желез крупного рогатого скота (бычий) или свиней. Из 1 кг вещества можно извлечь 0,1 г инсулина.

Технологии прошлого века

Для производства измельченное (часто замороженное) исходное сырье подвергают кислотно-спиртовой экстракции (двухстадийная обработка подкисленным этиловым спиртом), после чего результаты химической реакции нейтрализуют и подвергают процедуре высаливания — выделения из раствора путем добавления другого вещества, чаще солей цинка. Раствор кристаллизуют и высушивают. Экстракт после таких манипуляций содержит около 90% инсулина. Остальные доли занимают дополнительные вещества:

  • полипептид панкреатический;
  • глюкагон;
  • проинсулин;
  • соматостатин.

Эти элементы делают получаемый препарат иммуногенным, то есть организм человека вырабатывает антитела, вызывая аллергические реакции. Иммуногенность препарата базируется в основном на проинсулине, который представляет собой предшественник самого инсулина и содержит дополнительную молекулу (С-пептида), которая имеет различные модификации у разных живых существ.

Поэтому полученное вещество подвергали повторной обработке в виде растворения и рекристаллизации, что позволяло повысить содержание инсулина до уровня более 90% (стандартная степень очищения). Нужно сказать, что препарат, получаемый из поджелудочных желез копытных, менее подходит человеку, чем инсулин, экстрагированный из внутренностей свиньи. Сам по себе инсулин состоит из 51 аминокислоты, из которых у человека и копытных не совпадают 3 (сказывается, полагается, вегетарианский рацион быков), а у людей и, скорее, всеядной свиньи только одна аминокислота. Поэтому бычий инсулин (и его смеси со свиным) не назначаются больным сахарным диабетом на ранних этапах заболевания, беременным и при краткосрочной терапии (к примеру, послеоперационной). Он может вызвать самые разнообразные побочные реакции, вплоть до изменений подкожной жировой клетчатки в местах укола.

Монокомпонентный инсулин

Перед врачами и учеными после открытия инсулина встал вопрос о повышении степени его очистки для уменьшения аллергических реакций пациентов. Для этого вышеуказанный экстракт стандартной степени очистки направляют на хроматографию (чаще жидкостную) в ходе которой на стенках аппаратуры образуется монопиковый инсулин (в том числе монодезамино- моноагрегин- и моноэтилинсулины). Если полученное вещество подвергнуть хроматографии несколько раз, то получится монокомпонентный инсулин, который дает существенно меньше побочных эффектов, а также имеет высокую активность. Такие инсулины на флаконе обладают обычно маркировкой «МС».

Как получают инсулин в 21 веке? До сих пор не устарел вышеуказанный полусинтетический метод, когда исходное сырье проходит многие стадии очистки. Недостатком в данном случае является зависимость от поставок с животноводческих ферм. Два других способа — полный химический цикл или производство из поджелудочных желез людей не представляются возможными в связи с неэкономичностью, неэтичностью в отношении использования тканей человека. Поэтому с конца 20 века западные компании («Хехст», «Ново Нордиск», «Эли Лилли», «Авентис») освоили и запатентовали биосинтетическую технологию, базирующуюся на генной инженерии.

Роль кишечной палочки и дрожжей в генерации инсулина

Описание процесса получения инсулина через биологическое синтезирование выглядит в общих чертах примерно следующим образом: выделенный геном инсулина человека внедряется в геном кишечной палочки, которая быстро синтезирует проинсулин, от которого потом отщепляется фермент С-пептид (технология фирмы «Эли Лилли»). «Ново Нордиск» добывает гормон несколько по-другому. Здесь создали искусственный ген минипроинсулина, у которого есть С-пептидный «хвостик». Он значительно короче, чем у инсулина, требуемого для лекарства. Ген помещают в клетку пекарских дрожжей, которая делится, генерируя необходимые объемы сырья. После чего в полученном материале удаляют мини С-пептид и получают вещество с высокой степень очистки, идентичное инсулину людей.

Корпорация же «Авентис» берет за основу ген макаки, у которой инсулин совпадает с человеческим инсулином. Используя матричную рибонуклеиновую кислоту, получают клонирование ДНК от этого гена и внедряют в клетки кишечной палочки. Основной задачей производящих компаний является полная очистка готового продукта от примесей в виде следов деятельности микроорганизмов и остатков самих организмов. Современные методы контроля на производстве позволяют это сделать настолько эффективно, что биосинтетический инсулин является практически идентичным у основных мировых поставщиков.

Период действия препаратов

На заре своего появления инсулин имел достаточно короткий срок действия (начинал действовать через 15-40 мин, но «работал» не больше 1,5-4 часов), что привело к потребности создания пролонгированных лекарств. В их химический состав вошли протамин (белок, добывается из молоки рыбы, имеет щелочную реакцию), фосфатный буфер (поддержание нейтрального уровня рН) и цинк, а также фенол (креазон) для обеспечения процесса кристаллизации. В результате таких дополнений получился НПХ-инсулин.

После того как ученые выяснили, что добавление небольших объемов цинка в условиях нейтрального рН пролонгирует срок , был изобретен инсулин-цинк-суспензия (ИСЦ), первой лекарственной формой которого был инсулин «Ленте». Он и его последующие аналоги позволили получать лечебный эффект в 6-8 часов для инсулина промежуточного действия и в 8-10 часов — для длительного действия. Однако нужно помнить, что инсулин промежуточного и длительного действия начинает «работать» через 2 и 4 часа и действуют 6-8 и 8-10 часов соответственно.

Поэтому каждый больной диабетом должен обладать индивидуальной круглосуточной схемой приема инсулина.

Инсулин как готовый лекарственный препарат содержит также консерванты и дезинфицирующие вещества. Это крезон и фенол (если они есть, то лекарство неприятно пахнет), метилпарабен, ионы цинка. Каждая лекарственная форма содержит свой дезинфицирующий компонент. К примеру, в ИСЦ не вносят фенол, так как он меняет физические свойства инсулина (в ИСЦ применяют метил парабензоат). Кроме того, в препаратах есть ингредиенты, которые придают буферные свойства и переводят инсулин в кристаллическое состояние. Для ИСЦ это NaCl, для других лекарственных форм — фосфаты. Пациенты могут получать инсулин в разных формах, включая аэрозоль, раствор или суспензию. Лекарство может быть как рН нейтральным, так и кислым. Стандартными концентрациями выпуска являются: 500 ед\мл, 250, 100, 80 и 40.

Благодарим за отзыв

Комментарии

    Megan92 () 2 недели назад

    А у кого-нибудь получилось полностью вылечить сахарный диабет?Говорят полностью излечить невозможно...

    Дарья () 2 недели назад

    Я тоже думала что невозможно, но прочитав эту статью , уже давно забыла про эту "неизлечимую" болезнь.

    Megan92 () 13 дней назад

    Дарья () 12 дней назад

    Megan92, так я же в первом своем комментарии написала) Продублирую на всякий случай - ссылка на статью .

    Соня 10 дней назад

    А это не развод? Почему в Интернете продают?

    Юлек26 (Тверь) 10 дней назад

    Соня, вы в какой стране живете? В интернете продают, потому-что магазины и аптеки ставят свою наценку зверскую. К тому-же оплата только после получения, то есть сначала посмотрели, проверили и только потом заплатили. Да и в Интернете сейчас все продают - от одежды до телевизоров и мебели.

    Ответ Редакции 10 дней назад

    Соня, здравствуйте. Данный препарат для лечения сахарного диабета зависимости действительно не реализуется через аптечную сеть во избежание завышенной цены. На сегодняшний день заказать можно только на официальном сайте . Будьте здоровы!

    Соня 10 дней назад

    Извиняюсь, не заметила сначала информацию про наложенный платеж. Тогда все в порядке точно, если оплата при получении.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ КАЗАХСТАН

КАЗАХСКИЙ АГРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ С.СЕЙФУЛЛИНА

Кафедра микробиологии и биотехнологии

КУРСОВАЯ РАБОТА

По дисциплине «Биотехнологии мокроорганизмов»

На тему: Технология получения инсулина

Выполнила: Мырзабек М?лдір Курбанбек?ызы

Проверила: Акимбаева А.К (к. б. н.)

Астана - 2013

ОПРЕДЕЛЕНИЯ

СОКРАЩЕНИЯ И ОБОЗНАЧЕНИЯ

ВВЕДЕНИЕ

1. История открытия

2. Получение инсулина в биотехнологии

3. Способы получения инсулина человека

4. Экспрессия проинсулина в клетках Е.coli

5. Очистка инсулина

6. Способ применения и дозы

ЗАКЛЮЧЕНИЕ

СПИСОК ЛИТЕРАТУРЫ

ОПРЕДЕЛЕНИЯ

В данной курсовой работе применялись следующие определения:

Белок носитель - обеспечивающий транспортировку гибридного белка в периплазматическое пространство клетки или культуральную среду;

Аффинный компонент - существенно облегчающий выделение гибридного белка.

Инсулин (от лат. insula - остров) - гормон пептидной природы, образуется в бета-клетках островков Лангерганса поджелудочной железы.

Интерлейкины - группа цитокинов, синтезируемая в основном лейкоцитами (по этой причине было выбрано окончание «-лейкин»).

Проинсулин - это предшественник инсулина, синтезирующийся В-клетками островкового аппарата поджелудочной железы.

Хроматогр афия (от греч. chroma, chromatos - цвет, краска), физико-химический метод разделения и анализа смесей, основанный на распределении их компонентов между двумя фазами - неподвижной и подвижной (элюент), протекающей через неподвижную.

Инкапсуляция

Гибридный белок (англ. fusionprotein , также химерный, составной белок) - белок, полученный объединением двух или более генов, изначально кодировавших отдельные белки.

Горм оны (от греч. hormao - привожу в движение, побуждаю), инкреты, биологически активные вещества, вырабатываемые эндокринными железами, или железами внутренней секреции, и выделяемые ими непосредственно в кровь.

Сахарный диабет -группа эндокринных заболеваний, развивающихся вследствие абсолютной или относительной недостаточности гормона инсулина.

Инкапсуляция - механизм языка программирования, ограничивающий доступ к составляющим объект компонентам (методам и свойствам), делает их приватными, то есть доступными только внутри объекта.

Соматостатин - гормон дельта-клеток островков Лангерганса поджелудочной железы, а также один из гормонов гипоталамуса.

Радиоиммунный анализ - метод количественного определения биологически активных веществ, (гормонов, ферментов, лекарственных препаратов и др.) в биологических жидкостях, основанный на конкурентном связывании искомых стабильных и аналогичных им меченных радионуклидом веществ со специфическими связывающими системами.

СОКРАЩЕНИЯ И ОБОЗНАЧЕНИЯ

% - процентное содержание

ОФ - обращеннофазовой

ВЭЖХ - высокоэффективной жидкостной хроматографией

ИО - ионообменной

кДНК - комплементарная дезоксирибонуклеиновая кислота

MP -монопиковые

MC - монокомпонентные

ФИТЦ - фенилизотиоцианатом

ВВЕДЕНИЕ

Основная функция инсулина - обеспечивать проницаемость клеточных мембран для молекул глюкозы. В упрощенном виде можно сказать, что не только углеводы, но и любые питательные вещества, в конечном счете, расщепляются до глюкозы, которая и используется для синтеза других содержащих углерод молекул, и является единственным видом топлива для клеточных энергостанций - митохондрий. Без инсулина проницаемость клеточной мембраны для глюкозы падает в 20 раз, и клетки умирают от голода, а растворенный в крови избыток сахара отравляет организм.

Нарушение секреции инсулина вследствие деструкции бета-клеток - абсолютная недостаточность инсулина - является ключевым звеном патогенеза сахарного диабета 1-го типа. Нарушение действия инсулина на ткани - относительная инсулиновая недостаточность - имеет важное место в развитии сахарного диабета 2-го типа.

Использование аффиннойхромотографии значительно снизило содержание в препарате загрязняющих белков с более высокой м.м., чем у инсулина. К таким белкам относятся проинсулин и частично расщепленные проинсулины, которые способны индуцировать выработку антиинсулиновых антител.

Использование человеческого инсулина с самого начала терапии сводит к минимуму возникновение аллергических реакций. Человеческий инсулин быстрее абсорбируется и независимо от формы препарата имеет более короткую длительность действия, чем животные инсулины. Человеческие инсулины менее иммуногены, чем свиные, особенно смешанные бычьи и свиные инсулины.

Целью данной курсовой работы является изучить технологию получения инсулина. Для достижения были поставлены следующие задачи:

1.получение инсулина в биотехнологии

2. способы получения инсулина

З. очистка инсулина

1. История открытия

История открытия инсулина связана с именем русского врача И.М. Соболева (вторая половина 19 века), доказавшего, что уровень сахара в крови человека регулируется специальным гормоном поджелудочной железы.

В 1922 году инсулин, выделенный из поджелудочной железы животного, был впервые введен десятилетнему мальчику, больному диабетом результат превзошел все ожидания, и уже через год американская фирма «Eli Lilly» выпустила первый препарат животного инсулина.

После получения первой промышленной партии инсулина в последующие несколько лет пройден огромный путь его выделения и очистки. В результате гормон стал доступен для больных сахарным диабетом 1 типа.

В 1935 году датский исследователь Хагедорн оптимизировал действие инсулина в организме, предложив пролонгированный препарат.

Первые кристаллы инсулина были получены в 1952 году, а в в1954 году английский биохимик Г. Сенджер расшифровал структуру инсулина. Развитие методов очистки гормона от других гормональных веществ и продуктов деградации инсулина позволили получить гомогенный инсулин, называемый однокомпонентным.

В начале 70-х гг. советскими учеными А. Юдаевым и С. Швачкиным был предложен химический синтез инсулина, однако осуществление данного синтеза в промышленном масштабе было дорогостоящим и нерентабельным.

В дальнейшем шло прогрессирующее улучшение степени очистки инсулинов, что уменьшало проблемы, обусловленные инсулиновой аллергией, нарушениями работы почек, расстройством зрения и иммунной резистентностью к инсулину. Был необходим наиболее эффективный гормон для заместительной терапии при сахарном диабете - гомологичный инсулин, то есть инсулин человека.

В 80-годах достижения молекулярной биологии позволили синтезировать с помощью E.coli обе цепи человеческого инсулина, которые были, затем соединены в молекулу биологически активного гормона, а в Институте биоорганической химии РАН получен рекомбинантный инсулин с использованием генно-инженерных штаммов E.coli.

2 . Получение инсулина в биотехнологии

Инсулин, пептидный гормон островков Лангерганса поджелудочной железы, представляет основное средство лечения при сахарном диабете. Эта болезнь вызвана дефицитом инсулина и проявляется повышением уровня глюкозы в крови. До недавнего времени инсулин получали из поджелудочной железы быка и свиньи. Препарат отличался от человеческого инсулина 1-3 аминокислотными заменами, так что возникала угроза аллергических реакций, особенно у детей. Широкомасштабное терапевтическое применение инсулина сдерживалось его высокой стоимостью и ограниченностью ресурсов. Путем химической модификации инсулин из животных удалось сделать неотличимым от человеческого, но это означало дополнительное удорожание продукта.

Компания Eli Lilly с 1982 г. производит генно-инженерный инсулин на основе раздельного синтеза Е. colie А - и В-цепей. Стоимость продукта значительно снизилась, получаемый инсулин идентичен человеческому. С 1980 г. в печати имеются сообщения о клонировании гена проинсулина - предшественника гормона, переходящего в зрелую форму при ограниченном протеолизе.

К лечению диабета приложена также технология инкапсулирования: клетки поджелудочной железы в капсуле, введенные однократно в организм больного, продуцируют инсулин в течение года.

Компания Integrated Genetics приступила к выпуску фолли-кулостимулирующего и лютенизирующего гормонов. Эти пептиды составлены из двух субъединиц. На повестке дня вопрос о промышленном синтезе олигопептидных гормонов нервной системы -энкефалинов, построенных из 5 аминокислотных остатков, и эндорфинов, аналогов морфина. При рациональном применении эти пептиды снимают болевые ощущения, создают хорошее настроение, повышают работоспособность, концентрируют внимание, улучшают память, приводят в порядок режим сна и бодрствования. Примером успешного применения методов генетической инженерии может служить синтез р-эндорфина по технологии гибридных белков, описанной выше для другого пептидного гормона, соматостатина.

3 . Способы получения инсулина человека

Исторически первым способом получения инсулина для терапевтических целей является выделение аналогов этого гормона из природных источников (островков поджелудочной железы крупного рогатого скота и свиней). В 20-х годах прошлого века было установлено, что бычий и свиной инсулины (которые являются наиболее близкими к инсулину человека по своему строению и аминокислотной последовательности) проявляют в организме человека активность, сравнимую с инсулином человека. После этого долгое время для лечения пациентов, страдающих сахарным диабетом I типа, применяли инсулины быка или свиньи. Однако через некоторое время было показано, что в ряде случаев в организме человека начинают накапливаться антитела к бычьему и свиному инсулинам, тем самым сводя на нет их действие.

С другой стороны, одним из преимуществ этого метода получения инсулина является доступность исходного сырья (бычий и свиной инсулин можно легко получать в больших количествах), что и сыграло решающую роль при разработке первого способа получения инсулина человека. Этот метод получил название полусинтетического.

При этом способе получения инсулина человека в качестве исходного сырья использовали свиной инсулин. От очищенного свиного инсулина отщепляли С-концевой октапептид В-цепи, после чего синтезировали С-концевой октапептид человеческого инсулина. Затем его химически присоединяли, снимали защитные группы и очищали полученный инсулин. При тестировании данного метода получения инсулина было показана полная идентичность полученного гормона инсулину человека. Основной недостаток данного способа заключается в высокой стоимости получающегося инсулина (даже сейчас химический синтез октапептида - дорогое удовольствие, тем более в промышленном масштабе).

В настоящее время инсулин человека, в основном, получают двумя способами:модификацией свиного инсулина синтетико-ферментативным методом и генно-инженерным способом.

В первом случае метод основан на том, что свиной инсулин отличается от инсулина человека одной заменой на С-конце В-цепи Ala30Thr . Замену аланина на треонин осуществляют путем катализируемого ферментом отщепления аланина и присоединение вместо него защищенного по карбоксильной группе остатка треонина, присутствующего в реакционной смеси в большом избытке. После отщепления защитной О-трет-бутильной группы получают инсулин человека. (рисунок 1)

Рисунок 1 - Схема способы получения инсулина человека

Инсулин оказался первым белком, полученным для коммерческих целей с использованием технологии рекомбинантной ДНК. Существует два основных подхода для получения генно-инженерного инсулина человека. В первом случае осуществляют раздельное (разные штаммы-продуценты) получение обеих цепей с последующим фолдингом молекулы (образование дисульфидных мостиков) и разделением мизоформ. Во втором - получение в виде предшественника (проинсулина) с последующим ферментативным расщеплением трипсином и карбоксипептидазой. В до активной формы гормона. Наиболее предпочтительным в настоящее время является получение инсулина в виде предшественника, обеспечивающее правильность замыкания дисульфидных мостиков (в случае раздельного получения цепей проводят последовательные циклы денатурации, разделения мизоформ и ренатурации.

При обоих подходах возможно как индивидуальное получение исходных компонентов (А- и В-цепи или проинсулин), так и в составе гибридных белков. Помимо А- и В-цепи или проинсулина, в составе гибридных белков могут присутствовать:

1) белок носитель - обеспечивающий транспортировку гибридного белка в периплазматическое пространство клетки или культуральную среду;

2) аффинный компонент - существенно облегчающий выделение гибридного белка.

При этом оба эти компонента могут одновременно присутствовать в составе гибридного белка. Кроме этого, при создании гибридных белков может использоваться принцип мультимерности, (то есть, в гибридном белке присутствует несколько копий целевого полипептида), позволяющий существенно повысить выход целевого продукта.

4 . Экспрессия проинсулина в клетках Е.coli

В работе использовали штамм JM 109 N1864 со встроенной в плазмиду нуклеотидной последовательностью, экспрессирующей гибридный белок, который состоит из линейного проинсулина и присоединенного к его N-концу через остаток метионина фрагмента белка А Staphylococcusaureus. Культивирование насыщенной биомассы клеток рекомбинантного штамма обеспечивает начало производства гибридного белка, выделение и последовательная трансформация которого intube приводят к инсулину. Другая группа исследователей получала в бактериальной системе экспрессии слитой рекомбинантный белок, состоящий из проинсулина человека и присоединенного к нему через остаток метионина полигистидинового "хвоста". Его выделяли, используя хелатную хроматографию на колонках с Ni-агарозой из телец включения и расщепляли бромцианом. Авторы определили, что выделенный белок является S-сульфурированным. Картирование и масс-спектрометрический анализ полученного проинсулина, очищенного ионнообменной хроматографией на анионите и ОФ (обращеннофазовой) ВЭЖХ (высокоэффективной жидкостной хроматографией), показали наличие дисульфидных мостиков, соответствующих дисульфидным мостикам нативного проинсулина человека. Также сообщается о разработке нового, усовершенствованного способа получения инсулина человека методами генной инженерии в прокариотических клетках. Авторами установлено, что полученный инсулин по своему строению и биологической активности идентичен гормону, выделенному из поджелудочной железы.

В последнее время пристальное внимание уделяется упрощению процедуры получения рекомбинантного инсулина методами генной инженерии. Так получили слитой белок, состоящий из лидерного пептида интерлейкина присоединенного к N-концу проинсулина, через остаток лизина. Белок эффективно экспрессировался и локализовался в тельцах включения. После выделения белок расщеплялся трипсином с получением инсулина и С-пептида. Другая группа исследователей действовала аналогичным способом. Слитой белок, состоящий из проинсулина и двух синтетических доменов белка А стафилококков, связывающих IgG, локализовался в тельцах включения, но обладал более высоким уровнем экспрессии. Белок выделялся аффинной хроматографией с использованием IgG и обрабатывался трипсином и карбоксипептидазой В. Полученные инсулин и С-пептид очищались ОФ ВЭЖХ. При создании слитых конструкций весьма существенным является соотношение масс белка носителя и целевого полипептида. Так описано конструирование слитых конструкций, где в качестве полипептида - носителя использовали белок, связывающий сывороточный альбумин человека. К нему присоединяли один, три и семь С-пептидов. С-пептиды соединялись по принципу "голова-хвост" с помощью аминокислотных спейсеров, несущих сайт рестрикции Sfi I и два остатка аргинина в начале и в конце спейсера для последующего расщепления белка трипсином. ВЭЖХ продуктов расщепления показала, что отщепление С-пептида проходит количественно, а это позволяет использовать способ мультимерных синтетических генов для получения целевых полипептидов в промышленном масштабе.

Получение мутанта проинсулина, который содержал замену Arg32Tyr . При совместном расщеплении этого белка трипсином и карбоксипептидазой В образовывался нативный инсулин и С-пептид содержащий остаток тирозина. Последний, после мечения 125I, активно используется в радиоиммунном анализе.

5 . Очистка инсулина

Инсулин, предназначенный для изготовления лекарственных препаратов, должен быть высокой чистоты. Поэтому необходим высокоэффективный контроль за чистотой получаемых продуктов на каждой стадии производства. Ранее с помощью ОФ и ИО (ионообменной) ВЭЖХ были охарактеризованы проинсулин-S-сульфонат, проинсулин, отдельные А- и В-цепи и их S-сульфонаты . Также особое внимание уделяется флуоресцентным производным инсулина . В работе авторы исследовали применимость и информативность хроматографических методов при анализе продуктов всех стадий производства инсулина человека и составили регламент хроматографических операций позволяющий эффективно разделять и охарактеризовывать полученные продукты. Авторы разделяли производные инсулина используя бифункциональные сорбенты (гидрофобная и ионообменная ОФ ВЭЖХ) и показали возможность управления селективностью разделения путем варьирования вклада каждого из взаимодействий, благодаря чему достигается большая эффективность при разделении близких аналогов белка. Кроме того, разрабатываются подходы для автоматизации и ускорения процессов определения чистоты и количества инсулина. Сообщается об исследованиях возможности применения ОФ жидкостной хроматографии с электрохимическим детектированием для определения инсулина и разработана методика определения инсулина, выделенного из островка Лангерганса методом иммуноаффинной хроматографии со спектрометрическим детектированием. В работе исследовали возможность применения быстрого микроопределения инсулина с использованием капиллярного электрофореза с лазерно-флуоресцентным детектированием. Анализ выполняется путем добавления к пробе известного количества инсулина, меченного фенилизотиоцианатом (ФИТЦ) и фрагмента Fab моноклональных антител на инсулин. Меченый и обычный инсулины конкурентно вступают в реакцию образования комплекса с Fab. Меченый ФИТЦ инсулин и его комплекс с Fab разделяют за 30 секунд.

В последнее время большое количество работ посвящено усовершенствованию способов получения инсулина, а также созданию лекарственных форм на его основе. Например, в США запатентованы гепатоспецифические аналоги инсулина, структурно отличающиеся от природного гормона за счет введения в положения 13 - 15 и 19 А-цепи и в положение 16 В-цепи иных аминокислотных остатков. Полученные аналоги используются в составе различных парентеральных (внутривенных, внутримышечных, подкожных), интраназальных лекарственных форм или имплантации в виде специальных капсул при лечении сахарного диабета. Особо актуальным является создание лекарственных форм вводящихся без инъекций. Сообщается о создании макромолекулярной системы перорального применения, представляющей собой инсулин иммобилизованный в объеме полимерного гидрогеля, модифицированного ингибиторами протеолитических ферментов. Эффективность такого препарата составляет 70-80 % от эффективности подкожно введенного нативного инсулина. В другой работе лекарственный препарат получают одноэтапной инкубацией инсулина с эритроцитами, взятыми в соотношении 1-4:100, в присутствии связывающего агента. Авторы сообщают о получении лекарственного препарата с активностью 1000 ед./г., полном сохранении активности при пероральном введении и хранении в течение нескольких лет в лиофилизированном виде.

Кроме создания новых лекарственных препаратов и лекарственных форм на основе инсулина, разрабатываются новые подходы к решению проблемы сахарного диабета. Так, трансфицировали кДНК белка переносчика глюкозы GLUT2 предварительно стабильно трансфицированные полноразмерной кДНК инсулина клетки НЕР G2 ins . В полученных клонах НЕР G2 Insgl глюкоза стимулирует близкую к нормальной секрецию инсулина и потенцирует секреторный ответ на другие стимуляторы секреции. При иммуноэлектронной микроскопии в клетках обнаружены содержащие инсулин гранулы, морфологически сходные с гранулами в b-клетках островков Лангерганса. В настоящий момент серьезно обсуждается возможность применения для лечения сахарного диабета 1 типа "искусственной b-клетки", полученной методами генной инженерии .

Наряду с решением практических проблем изучаются и механизмы действия инсулина, а также структурно-функциональные отношения в молекуле. Одним из способов исследования является создание различных производных инсулина и изучение их физико-химических и иммунологических свойств. Как уже говорилось выше, ряд методов производства инсулина основан на получении данного гормона в виде предшественника (проинсулина) с последующим ферментативным расщеплением до инсулина и С-пептида. В настоящее время для С-пептида показано наличие биологической активности, что позволяет использовать его в терапевтических целях наряду с инсулином. В следующих статьях этой серии будут рассмотрены физико-химические и биологические свойства С-пептида, а также методы его получения.

Значителен вклад биотехнологии и в промышленное производство непептидных гормонов, в первую очередь стероидов. Методы микробиологической трансформации позволили резко сократить число этапов химического синтеза кортизона, гормона надпочечников, применяемого для лечения ревматоидного артрита. При производстве стероидных гормонов широко используют иммобилизованные микробные клетки, например Arthrobacterglobiformis , для синтеза преднизолона из гидрокортизона. Имеются разработки по получению гормона щитовидной железы тироксина из микроводорослей.

По степени очистки

· традиционные - экстрагируются кислым этанолом, а в процессе очистки фильтруются, высаливаются и многократно кристаллизуются (метод не позволяет очистить препарат от примесей других гормонов, содержащихся в поджелудочной железе)

· монопиковые (MP) - после традиционной очистки фильтруются на геле (при проведении гельхроматографии образуют всего один «пик»: содержание вышеперечисленных примесей не более 1·10 ?3

· Монокомпонентные (MC) - подвергаются ещё более глубокой очистке с помощью молекулярного сита и метода ионообменной хроматографии на DEAE -целлюлозе, что позволяет добиться 99 % степени их чистоты (1·10 ?6) (рисунок 2)

Рисунок 2- Схема очистки инсулина

инсулин сахарный диабет биотехнология

6 . Способ применения и дозы

Определяются и регулируются строго под медицинским наблюдением в соответствии с состоянием пациента. Все препараты хумулина могут вводиться подкожно или внутривенно; хумулин Р в ампулах вводится внутривенно. Подкожное введение, предпочтительное пациентам, следует делать в верхнюю часть руки, бедра, ягодицы или в брюшную область. Места укола нужно менять, чтобы одна и та же часть тела использовалась не чаще одного раза в месяц. При этом не должны затрагиваться капилляры. Место укола не требует массажа. Патрончики с хумулином используются только для инъекции в Пенах Бектон Дикинсона. При этом необходимо тщательно придерживаться указаний производителя, отмеченных на Пенах при их заправке и применении. Пациенты должны всегда иметь под рукой запасной шприц и ампулу с хумулином на случай, если Пен - устройство для инъекции или патрончик будут утеряны. Профили действия хумулина. Хумулин Р: начало действия через 10 минут, максимум действия - между 1 и 3 часами, длительность действия - от 5 до 7 часов. Хумулин Н: начало действия - через 30 минут, максимум действия - между 2 и 8 часами, длительность действия - от 18 до 20 часов. Хумулин М1: начало действия - через 30 минут, максимум действия - между 2 и 9 часами, длительность действия - от 16 до 18 часов. Хумулин М2: начало действия - через 30 минут, максимум действия между 1,5 и 9 часами, длительность действия - от 14 до 16 часов. Хумулин М3: начало действия - через 30 минут, максимум действия - между 1 и 8,5 часами, длительность действия - от 14 до 15 часов. Хумулин М4: начало действия - через 30 минут, максимум действия - между 1 и 8 часами, длительность действия - от 14 до 15 часов. Хумулин Л: начало действия - через 2 часа, максимум действия - между 4 и 16 часами, длительность действия - около 24 часов. Хумулин У: начало действия - через 3 часа, максимум действия - между 3 и 18 часами, длительность действия - от 24 до 28 часов. Терапия одним препаратом. Хумулин Р можно вводить без других видов инсулина, используя многоразовые ежедневные инъекции. Хумулин Н, Л и У также можно вводить самостоятельно 1-2 раза в день. Комбинированная терапия. Для усиления первоначального эффекта некоторым пациентам дополнительно к хумулину Р назначают хумулины Н, Л и У. Одновременное применение инсулинов животной группы, выпущенных различными фирмами не рекомендуется. Хумулин М не требует комбинационной терапии, его вводят два раза в день (2/3 ежедневной потребности утром, остальное - вечером). Для любого введения доза не должна превышать 50 единиц. Пациент обязан информировать врача о беременности. В этот период необходим строгий контроль за состоянием здоровья инсулинозависимой пациентки. Потребность в препарате обычно уменьшается в первом триместре и увеличивается во втором и третьем. Пациенткам с диабетом в период лактации требуется коррекция дозы инсулина (и диеты) .

ЗАКЛЮЧЕНИЕ

Сахарный диабет - хроническое заболевание, обусловленное абсолютной или относительной недостаточностью инсулина. Оно характеризующееся глубоким нарушением обмена углеводов с гипергликемией и гликозурией, а также другими нарушениями обмена веществ в результате воздействия ряда генетических и внешних факторов.

Инсулин до настоящего времени служит радикальным, а в большинстве случаев единственным средством для поддержания жизни и трудоспособности больных сахарным диабетом. До получения и внедрения инсулина в клинику в 1922-1923 гг. больных сахарным диабетом I типа ждал летальный исход в течение одного-двух лет с начала заболевания, несмотря на применение самых изнурительных диет. Больные сахарным диабетом I типа нуждаются в пожизненной заместительной терапии препаратами инсулина. Прекращение в силу тех или иных причин регулярного введения инсулина ведет к быстрому развитию осложнений и скорой гибели больного.

В настоящее время сахарный диабет по распространенности находится на 3-м месте после сердечно-сосудистых и онкологических заболеваний. По данным Всемирной организации здравоохранения, распространенность сахарного диабета среди взрослого населения в большинстве регионов мира составляет 2-5 % и имеется тенденция увеличения количества больных почти в два раза каждые 15 лет. Несмотря на очевидный прогресс в области здравоохранения, численность инсулинозависимых больных увеличивается с каждым годом и на текущий момент только в России составляет около 2 миллионов человек.

Создание препаратов отечественного генно-инженерного инсулина человека открывает новые возможности решения многих проблем для спасения жизни миллионов людей, страдающих сахарным диабетом.

Сахарный диабет занимает третье место в мире после сердечнососудистых и онкологических недугов. По различным источникам, в мире насчитывается от 120 до 180 млн. больных диабетом, что составляет 2-3 процентов от всего населения планеты. По прогнозам ученых, каждые 15 лет ожидается двукратное увеличение числа больных.

По моему мнению, инсулин является одним из наиболее изученных гормонов. С момента открытия того факта, что инсулин, вырабатываемый поджелудочной железой, отвечает за снижение уровня сахара в крови, до настоящего времени прошло уже более 80 лет. Тем не менее, и по сей день этот гормон вызывает огромный интерес.

СПИСОК ЛИТЕРАТУРЫ

1. Рэ, Л. Оптимизация биотехнологического производства субстанций рекомбинантных интерферонов человека; пер. с франц.- М.:Мир,2002.-С. 140-143.

2. Шевелуха, В. С. Сельскохозяйственная биотехнология/В. С. Шевелуха, Е. А. Калашникова, 4-е изд.- М.:Изд-во Высшая школа,2003.-437 с.

3. Смит,О. Государственный реестр лекарственных средств; пер. с англ.- М.:Мир, 2003.-С. 37-39.

4. Грищенко, В. И. . Молекулярная биотехнология интерферонов - 2008.-Т. 11,вып. 7.-Харьков. 238.

5. Садченко, Л. С. Современные достижения биотехнологии в медицинской промышленности. -2008.-М. 31,вып. 5.-Л. 213.

6.Современная биотехнология [Электронный ресурс]: сайт по биотехнологии. - Режим доступа: http://www.bionews.ru/news/Bio.htm

7. Маринива А.К. Производство белковых веществ. Биотехнология - 2007.-Т. 51,вып. 5.-СПб. 17.

8.http://ru.wikipedia.org/wiki/

9.http://www.medichelp.ru/

10.http://mikrobio.ho.ua/

Размещено на Allbest.ru

...

Подобные документы

    Обеспечение проницаемости клеточных мембран для молекул глюкозы инсулином - гормоном пептидной природы. Реакции на препараты инсулина: иммунологическая инсулинорезистентность, аллергия, липодистрофия. Получение инсулина, разновидность его препаратов.

    реферат , добавлен 05.02.2010

    История создания и механизм действия инсулина, который является белково-пептидным гормоном, вырабатываемым клетками островков Лангерганса поджелудочной железы. Методы получения. Недостатки животного инсулина. Преимущества биотехнологического инсулина.

    презентация , добавлен 15.03.2016

    Этиология и патогенез, классификация сахарного диабета, инсулинотерапия. Фармакокинетика препаратов инсулина, его взаимодействие с другими лекарственными средствами. Трансбуккальный и сублингвальный, ингаляционный пути доставки в организм человека.

    дипломная работа , добавлен 16.10.2014

    Повышение качества жизни больных сахарным диабетом. Расчет состава пищевого рациона. Назначение инсулина, расчет его дозы, распределение инсулина в течении суток. Процессы биосинтеза и секреции инсулина. Применение синусоидального модулированного тока.

    презентация , добавлен 20.10.2014

    Изучение строения и действия инсулина. Секреция и синтез глюкогона. Исследование симптомов и диагностика сахарного диабета. Характеристика заболевания эндокринной системы. Применение лекарственных препаратов и химических веществ при лечении болезни.

    презентация , добавлен 12.10.2015

    Понятие и функции гормонов. Микробиологические трансформации стероидов, имеющих промышленное применение. Сырье для синтеза стероидных гормонов. Генно-инженерный метод получения соматостатина. Создание инсулина на основе технологии рекомбинантных ДНК.

    презентация , добавлен 22.12.2016

    Особенности лечения сахарного диабета I типа. Использование диетотерапии, физической нагрузки, инсулинотерапии. Критерии компенсации сахарного диабета. Рекомендации по режиму физических нагрузок. Хроническая передозировка инсулина (синдром Сомоджи).

    презентация , добавлен 23.09.2016

    Этиология и клинические проявления сахарного диабета. Виды инсулина, правила хранения. Понятие и схемы инсулинотерапии. Изучение осложнений, возникающих после инъекции инсулина. Роль медицинской сестры в вопросах обучения пациентов с сахарным диабетом.

    курсовая работа , добавлен 01.06.2016

    Нарушение внутренней секреции поджелудочной железы. Особенности симптомов сахарного диабета, случаи повышенного содержания инсулина в крови. Методы распознавания различных видов гипогликемии. Гипотезы причин повреждения работы поджелудочной железы.

    реферат , добавлен 28.04.2010

    Оценка эффективности лечения диабета. Клинико-диагностическое значение глюкозы в спинномозговой жидкости. Главные особенности глюкозотолерантного теста. Кривая после однократной нагрузки глюкозой. Кривая секреции инсулина для диабета второй степени.

Инсулин – это основное лекарство для лечения больных сахарным диабетом 1 типа. Иногда он также используется для стабилизации состояния пациента и улучшения его самочувствия при втором типе заболевания. Это вещество по своей природе является гормоном, который способен в малых дозах влиять на обмен углеводов.

В норме поджелудочная железа вырабатывает достаточное количество инсулина, который помогает поддерживать физиологический уровень сахара в крови. Но при серьезных эндокринных нарушениях единственным шансом помочь больному часто становятся именно инъекции инсулина. Принимать его перорально (в виде таблеток), к сожалению, нельзя, поскольку он полностью разрушается в пищеварительном тракте и утрачивает биологическую ценность.

Варианты получения инсулина для использования в медицинской практике

Многие диабетики наверняка хоть раз задавались вопросом, из чего делают инсулин, который применяется в медицинских целях? В настоящее время чаще всего это лекарство получают с помощью методов генной инженерии и биотехнологии, но иногда его извлекают из сырья животного происхождения.

Препараты, получаемые из сырья животного происхождения

Получение этого гормона из поджелудочной железы свиней и крупного рогатого скота – старая технология, которая сегодня используется довольно редко. Это связано с невысоким качеством получаемого лекарства, его склонностью вызывать аллергические реакции и недостаточной степенью очистки. Дело в том, что, поскольку гормон – это белковое вещество, оно состоит из определенного набора аминокислот.

Инсулин, вырабатываемый в организме свиньи, отличается по аминокислотному составу от инсулина человека на 1 аминокислоту, а инсулин быка – на 3.

В начале и середине 20 столетия, когда аналогичных препаратов не существовало, даже такой инсулин стал прорывом в медицине и позволил вывести лечение диабетиков на новый уровень. Гормоны, полученные таким методом, снижали сахар крови, правда, при этом они часто вызывали побочные эффекты и аллергию. Отличия в составе аминокислот и примеси в лекарстве сказывались на состоянии пациентов, особенно это проявлялось у более уязвимых категорий больных (детей и пожилых людей). Еще одна причина плохой переносимости такого инсулина – наличие его неактивного предшественника в лекарстве (проинсулина), избавиться от которого в данной вариации лекарства было невозможно.

В наше время существуют усовершенствованные свиные инсулины, которые лишены этих недостатков. Их получают из поджелудочной железы свиньи, но после этого поддают дополнительной обработке и очистке. Они являются многокомпонентными и содержат в своем составе вспомогательные вещества.


Модифицированный свиной инсулин практически ничем не отличается от человеческого гормона, поэтому его до сих пор используют на практике

Такие лекарства переносятся пациентами гораздо лучше и практически не вызывают побочных реакций, они не угнетают иммунитет и эффективно снижают сахар в крови. Бычий инсулин на сегодняшний день в медицине не используется, так как из-за своей чужеродной структуры он отрицательно влияет на иммунную и другие системы организма человека.

Генноинженерный инсулин

Человеческий инсулин, который применяется для диабетиков, в промышленном масштабе получают двумя способами:

  • с помощью ферментативной обработки свиного инсулина;
  • с использованием генномодифицированных штаммов кишечной палочки или дрожжей.

При физико-химическом изменении молекулы свиного инсулина под действием специальных ферментов становятся идентичными инсулину человека. Аминокислотный состав полученного препарата ничем не отличается от состава натурального гормона, который вырабатывается в организме людей. В процессе производства лекарство проходит высокую очистку, поэтому не вызывает аллергических реакций и других нежелательных проявлений.

Но чаще всего инсулин получают с помощью модифицированных (генетически измененных) микроорганизмов. Бактерии или дрожжи с помощью биотехнологических методов изменены таким образом, что могут сами производить инсулин.

Помимо самого получения инсулина, важную роль играет его очистка. Чтобы препарат не вызывал никаких аллергических и воспалительных реакций, на каждой стадии необходимо следить за чистотой штаммов микроорганизмов и всех растворов, а также используемых ингредиентов.

Существует 2 методики подобного получения инсулина. Первая из них основана на использовании двух разных штаммов (видов) какого-то одного микроорганизма. Каждый из них синтезирует только одну цепь молекулы ДНК гормона (всего их две, и они спирально закручены между собой). Затем эти цепи соединяются, и в полученном растворе уже можно отделить активные формы инсулина от тех, которые не несут никакого биологического значения.

Второй способ получения лекарства с помощью кишечной палочки или дрожжей основан на том, что микроб сначала производит неактивный инсулин (то есть его предшественник – проинсулин). Потом с помощью ферментативной обработки эту форму активируют и используют в медицине.


Персонал, который имеет доступ в определенные производственные помещения, всегда должен быть одет в стерильный защитный костюм, благодаря чему контакт препарата с биологическими жидкостями человека исключается

Все эти процессы обычно автоматизированы, воздух и все соприкасающиеся поверхности с ампулами и флаконами стерильны, а линии с оборудованием герметично закрыты.

Методы биотехнологии дают возможность ученым думать об альтернативных решениях проблемы сахарного диабета. Например, на сегодняшний день проводятся доклинические исследования производства искусственных бета-клеток поджелудочной железы, которые могут быть получены с помощью методов генной инженерии. Возможно, в будущем их будут использовать для улучшения функционирования этого органа у больного человека.


Производство современных препаратов инсулина – сложный технологический процесс, который предусматривает автоматизацию и минимальное вмешательство человека

Дополнительные компоненты

Производство инсулина без вспомогательных веществ в современном мире практически невозможно представить, ведь они позволяют улучшить его химические свойства, продлить время действия и достичь высокой степени чистоты.

По своим свойствам все дополнительные ингредиенты можно разделить на такие классы:

  • пролонгаторы (вещества, которые используются для обеспечения более длительного действия лекарства);
  • дезинфицирующие компоненты;
  • стабилизаторы, благодаря которым в растворе лекарства поддерживается оптимальная кислотность.

Пролонгирующие добавки

Существуют инсулины продленного действия, биологическая активность которых продолжается в течение 8 – 42 часов (в зависимости от группы препарата). Такой эффект достигается, благодаря добавлению в инъекционный раствор специальных веществ – пролонгаторов. Чаще всего с этой целью применяется одно из таких соединений:

  • белки;
  • хлористые соли цинка.

Белки, которые продлевают действие лекарства, проходят детальную очистку и являются низкоаллергенными (например, протамин). Соли цинка также не оказывают отрицательного влияния ни на активность инсулина, ни на самочувствие человека.

Антимикробные составляющие

Дезинфекторы в составе инсулина необходимы для того, чтобы при хранении и использовании в нем не размножалась микробная флора. Эти вещества являются консервантами и обеспечивают сохранность биологической активности лекарства. К тому же, если пациент вводит гормон из одного флакона только самому себе, то лекарства ему может хватить на несколько дней. За счет качественных антибактериальных компонентов у него не будет потребности выбрасывать неиспользованный препарат из-за теоретической возможности размножения в растворе микробов.

В качестве дезинфицирующих составляющих при производстве инсулина могут использоваться такие вещества:

  • метакрезол;
  • фенол;
  • парабены.


Если в растворе содержатся ионы цинка, они также выступают дополнительным консервантом из-за своих антимикробных свойств

Для производства каждого вида инсулина подходят определенные дезинфицирующие компоненты. Их взаимодействие с гормоном обязательно исследуют на этапе доклинических испытаний, поскольку консервант не должен нарушать биологическую активность инсулина или как-то по-другому отрицательно влиять на его свойства.

Использование консервантов в большинстве случаев позволяет вводить гормон под кожу без ее предварительной обработки спиртом или другими антисептиками (производитель обычно упоминает об этом в инструкции). Это упрощает введение лекарства и сокращает количество подготовительных манипуляций перед самой инъекцией. Но данная рекомендация работает только в случае введения раствора с помощью индивидуального инсулинового шприца с тонкой иглой.

Стабилизаторы

Стабилизаторы необходимы для того, чтобы pH раствора поддерживался на заданном уровне. От уровня кислотности зависит сохранность лекарства, его активность и стабильность химических свойств. При производстве инъекционного гормона для больных диабетом с этой целью обычно используют фосфаты.

Для инсулинов с цинком стабилизаторы растворов нужны не всегда, поскольку ионы металла помогают поддерживать необходимый баланс. Если же они все-таки применяются, то вместо фосфатов используют другие химические соединения, так как комбинация этих веществ приводит к выпадению осадка и непригодности лекарства. Важное свойство, предъявляемое ко всем стабилизаторам – безопасность и отсутствие возможности вступать в любые реакции с инсулином.

Подбором инъекционных лекарств при диабете для каждого конкретного пациента должен заниматься компетентный эндокринолог. Задача инсулина – не только удерживать нормальный уровень сахара в крови, но и не вредить другим органам и системам. Препарат должен быть нейтральным в химическом плане, низкоаллергенным и желательно доступным по цене. Довольно удобно также, если подобранный инсулин можно будет смешивать с другими его версиями по длительности действия.

Последнее обновление: Апрель 18, 2018

Современное биотехнологическое производство инсулина представляет собой сложный процесс, основанный на генетическом изменении микроорганизмов. Этот метод сравнительно новый и внедрен в производство в восьмидесятые годы прошлого столетия. С его помощью получают препарат, полностью соответствующий тому, что вырабатывается в организме человека. Отсюда и название «человеческий инсулин».

Следует отметить, что этот термин «человеческий инсулин» иногда вызывает несколько неверные реакции и предположения, что лекарственный препарат получают из организма человека. Именно по этой причине так часто задается вопрос: « Как производят инсулин?» - и откуда появилось такое определение.

Действительно, до недавнего времени технология производства инсулина была совершенно другой. Его извлекали из организма свиней или крупного рогатого скота и называли соответственно, например, свиным или бычьим. Однако, эта технология производства устарела и имеет ряд серьезных недостатков, среди которых первое место занимает невозможность получения чистого вещества без примесей проинсулина, вызывающего у человека различные аллергические реакции и выработку антител.

К тому же в связи с постоянным ростом количества заболевших сахарным диабетом, животного сырья для производства инсулина не хватает, что и стало еще одним толчком для поиска современных новых методик его получения искусственным путем.

На сегодняшний день человеческий или рекомбинированный препарат получают из штаммов дрожжей или кишечной палочки. Эти вещества выбраны не случайно: во время своего роста в питательной среде они вырабатывают огромное количество необходимого гормона. Это значит, что процесс носит не только технологический характер, но и биологический, ведь нужное вещество производится живыми организмами, а затем преобразовывается, а не синтезируется химическим путем.

Следует отметить, что наука проделала сложный и трудный путь, прежде чем был найден и внедрен в производство биотехнологический способ получения лекарства для диабетиков. Впервые точный состав инсулина, вырабатываемого человеком, был установлен в шестидесятые годы прошлого столетия. Выяснилось, что его молекулы имеют иной состав аминокислоты, отличный от аминокислоты животного происхождения. Позже были предприняты попытки замены одной аминокислоты на другую, к слову, вполне успешные, но очень дорогостоящие. Этот метод был признан нерентабельным и бесперспективным не только в нашей стране, но и за рубежом.

И только через два десятилетия упорного труда удалось получить абсолютно чистый препарат, полностью соответствующий тому, что вырабатывается в организме здорового человека, не вызывающий отторжения и аллергических реакций.

Производство человеческого инсулина основано на методе генной инженерии, в ходе которого в молекулу ДНК дрожжей встраивается ген, определяющий выработку гормона, полностью схожего с тем, что вырабатывается человеком. Этот метод широко используется во всех развитых странах мира и позволяет получать препараты для лечения диабета превосходного качества и в нужном количестве.

Собственное производство инсулина в России планируется в ближайшее время. Уже ведется строительство цеха на Урале. Однако в настоящее время препараты для лечения больных сахарным диабетом закупаются за границей, на что тратятся огромные суммы из бюджета страны.

Следует отметить, что технология его производства уже опробована в России опытным путем и при этом получены прекрасные результаты. Наши, отечественные препараты оказались более эффективными и чистыми. Осталось только наладить производственный процесс.

Отзывы и комментарии

Оставить отзыв или комментарий

Не менее полезные материалы по теме:

Форма выпуска

Инсулин - это лекарственный препарат, обладающий способностью понижать уровень глюкозы, при его отклонении от нормы, и регулировать процесс усвоения углеводов организмом. Он незаменим при лечении диабета, а при правильно подобранной дозе и своевременно начатой терапии позволяет заболевшим людям вести полноценную жизнь....

Катриджы

Инсулин в картриджах предназначен для введения с помощью, так называемых, шприцев-ручек, получивших свое название благодаря внешнему сходству с автоматической перьевой ручкой. Шприц ручка позволяет дозировать количество вводимого препарата, что в значительной мере упрощает жизнь больных сахарным диабетом. При этом не нужно...

В ампулах

Инсулин это гормон поджелудочной железы. Для производства лекарственных препаратов на его основе используют органы животных, а также биотехнологии, позволяющие получать вещества, аналогичные гормонам человека. Характерной особенностью инсулина является его неустойчивость к воздействию ферментов, содержащихся в пищеварительном тракте. Это значит, что инсулиновые...

Таблетки вместо инсулина

Инсулин это гормон. Он вырабатывается в здоровой поджелудочной железе. Диабет возникает в том случае, если поджелудочная железа больна, или просто не справляется со своими функциями. На сегодняшний день лечение диабета основано на введении в организм больного гормона, полученного искусственным...

Кто изобрел инсулин?

Открытие инсулина произошло в 1922 году. Именно тогда тяжело больному сахарным диабетом мальчику был введен препарат, полученный из поджелудочной железы быка. В результате удалось не только спасти жизнь, но и остановить прогрессирующий недуг. В самой истории инсулина не обошлось без чудес,...

Формула и структура инсулина

Строение инсулина интересовало ученых с момента его открытия. Многочисленные опыты в этом направлении были начаты еще его первооткрывателями Фредериком Бантингом и Чарльзом Бестом. При этом ученые пытались установить точную химическую формулу выделенного гормона, что позволило бы синтезировать его химическим путем. Забегая...