Проекцией вектора на ось называется. Проекция силы на ось


В этой статье мы разберемся с проекцией вектора на ось и научимся находить числовую проекцию вектора. Сначала дадим определение проекции вектора на ось, введем обозначения, а также приведем графическую иллюстрацию. После этого озвучим определение числовой проекции вектора на ось, рассмотрим способы ее нахождения и покажем решения нескольких примеров, в которых требуется найти числовую проекцию вектора на ось.

Навигация по странице.

Проекция вектора на ось – определение, обозначение, иллюстрации, пример.

Начнем с общих сведений.

Под осью понимается прямая, для которой указано направление. Таким образом, проекция вектора на ось и проекция вектора на направленную прямую – это одно и то же.

Проекцию вектора на ось можно рассматривать в двух смыслах: геометрическом и алгебраическом. В геометрическом смысле проекция вектора на ось есть вектор, а в алгебраическом – число. Часто это разграничение явно не указывается, а понимается из контекста. Мы же не станем игнорировать это разграничение: будем использовать термин «», когда речь идет о проекции вектора в геометрическом смысле, и термин «», когда речь идет о проекции вектора в алгебраическом смысле (числовой проекции вектора на ось посвящен следующий пункт этой статьи).

Теперь переходим к определению проекции вектора на ось. Для этого не помешает повторить .

Пусть на плоскости или в трехмерном пространстве нам задана ось L и ненулевой вектор . Обозначим проекции точек А и В на прямую L соответственно как А 1 и В 1 и построим вектор . Забегая вперед скажем, что вектор - это проекция вектора на ось L .

Определение.

Проекция вектора на ось – это вектор, началом и концом которого являются соответственно проекции начала и конца заданного вектора.

Проекцию вектора на ось L обозначают как .

Чтобы построить проекцию вектора на ось L , нужно из точек А и В опустить перпендикуляры на направленную прямую L – основания этих перпендикуляров дадут начало и конец искомой проекции .

Приведем пример проекции вектора на ось.

Пусть на плоскости введена прямоугольная система координат Oxy и задана некоторая точка . Изобразим радиус-вектор точки М 1 и построим его проекции на координатные оси Ox и Oy . Очевидно, ими являются векторы с координатами и соответственно.

Часто можно слышать о проекции одного вектора на другой ненулевой вектор или о проекции вектора на направление вектора . В этом случае подразумевается проекция вектора на некоторую ось, направление которой совпадает с направлением вектора (вообще существует бесконечно много осей, направления которых совпадают с направлением вектора ). Проекция вектора на прямую, направление которой определяет вектор , обозначается как .

Отметим, что если угол между векторами и острый, то векторы и сонаправлены. Если угол между векторами и тупой, то векторы и противоположно направлены. Если же вектор нулевой или перпендикулярен вектору , то проекция вектора на прямую, направление которой задает вектор , есть нулевой вектор.

Числовая проекция вектора на ось – определение, обозначение, примеры нахождения.

Числовой характеристикой проекции вектора на ось является числовая проекция этого вектора на данную ось.

Определение.

Числовая проекция вектора на ось – это число, которое равно произведению длины данного вектора на косинус угла между этим вектором и вектором, определяющим направление оси.

Числовую проекцию вектора на ось L обозначают как (без стрелочки сверху), а числовую проекцию вектора на ось, определяемую вектором , - как .

В этих обозначениях определение числовой проекции вектора на прямую, направленную как вектор , примет вид , где - длина вектора , - угол между векторами и .

Итак, мы имеем первую формулу для вычисления числовой проекции вектора : . Эта формула применяется, когда известны длина вектора и угол между векторами и . Несомненно, эту формулу можно применять и тогда, когда известны координаты векторов и относительно заданной прямоугольной системы координат, однако в этом случае удобнее использовать другую формулу, которую мы получим ниже.

Пример.

Вычислите числовую проекцию вектора на прямую, направленную как вектор , если длина вектора равна 8 , а угол между векторами и равен .

Решение.

Из условия задачи имеем . Осталось лишь применить формулу, позволяющую определить требуемую числовую проекцию вектора:

Ответ:

Нам известно, что , где – скалярное произведение векторов и . Тогда формула , позволяющая найти числовую проекцию вектора на прямую, направленную как вектор , примет вид . То есть, мы можем сформулировать еще одно определение числовой проекции вектора на ось, которое эквивалентно определению, данному в начале этого пункта.

Определение.

Числовая проекция вектора на ось , направление которой совпадает с направлением вектора , - это отношение скалярного произведения векторов и к длине вектора .

Полученную формулу вида удобно применять для нахождения числовой проекции вектора на прямую, направление которой совпадает с направлением вектора , когда известны координаты векторов и . Покажем это при решении примеров.

Пример.

Известно, что вектор задает направление оси L . Найдите числовую проекцию вектора на ось L .

Решение.

Формула в координатной форме имеет вид , где и . Используем ее для нахождения требуемой числовой проекции вектора на ось L :

Ответ:

Пример.

Относительно прямоугольной системы координат Oxyz в трехмерном пространстве заданы два вектора и . Найдите числовую проекцию вектора на ось L , направление которой совпадает с направлением вектора .

Решение.

По координатам векторов и можно вычислить скалярное произведение этих векторов: . Длина вектора по его координатам вычисляется по следующей формуле . Тогда формула для определения числовой проекции вектора на ось L в координатах имеет вид .

Применим ее:

Ответ:

Теперь давайте получим связь между числовой проекцией вектора на ось L , направление которой определяет вектор , и длиной проекции вектора на ось L . Для этого изобразим ось L , отложим векторы и из точки, лежащей на L , опустим перпендикуляр из конца вектора на прямую L и построим проекцию вектора на ось L . В зависимости от меры угла между векторами и возможны следующие пять вариантов:

В первом случае очевидно, что , следовательно, , тогда .

Во втором случае в отмеченном прямоугольном треугольнике из определения косинуса угла имеем , следовательно, .

В третьем случае очевидно, что , а , следовательно, и .

В четвертом случае из определения косинуса угла следует, что , откуда .

В последнем случае , следовательно, , тогда
.

Следующее определение числовой проекции вектора на ось объединяет в себе полученные результаты.

Определение.

Числовая проекция вектора на ось L , направленную как вектор , это

Пример.

Длина проекции вектора на ось L , направление которой задает вектор , равна . Чему равна числовая проекция вектора на ось L , если угол между векторами и равен радиан.

Будут и задачи для самостоятельного решения, к которым можно посмотреть ответы.

Понятие вектора

Прежде чем Вы узнаете всё о векторах и операциях над ними, настройтесь на решение несложной задачи. Есть вектор Вашей предприимчивости и вектор Ваших инновационных способностей. Вектор предприимчивости ведёт Вас к Цели 1, а вектор инновационных способностей - к Цели 2. Правила игры таковы, что Вы не можете двигаться сразу по направлениям двух этих векторов и достигнуть сразу двух целей. Векторы взаимодействуют, или, если говорить математическим языком, над векторами производится некоторая операция. Результатом этой операции становится вектор "Результат", который приводит Вас к Цели 3.

А теперь скажите: результатом какой операции над векторами "Предприимчивость" и "Инновационные способности" является вектор "Результат"? Если не можете сказать сразу, не унывайте. По мере изучения этого урока Вы сможете ответить на этот вопрос.

Как мы уже увидели выше, вектор обязательно идёт от некоторой точки A по прямой к некоторой точке B . Следовательно, каждый вектор имеет не только числовое значение - длину, но также физическое и геометрическое - направленность. Из этого выводится первое, самое простое определение вектора. Итак, вектор - это направленный отрезок, идущий от точки A к точке B . Обозначается он так: .


А чтобы приступить к различным операциям с векторами , нам нужно познакомиться с ещё одним определением вектора.

Вектор - это вид представления точки, до которой требуется добраться из некоторой начальной точки. Например, трёхмерный вектор, как правило, записывается в виде (х, y, z ) . Говоря совсем просто, эти числа означают, как далеко требуется пройти в трёх различных направлениях, чтобы добраться до точки.

Пусть дан вектор. При этом x = 3 (правая рука указывает направо), y = 1 (левая рука указывает вперёд), z = 5 (под точкой стоит лестница, ведущая вверх). По этим данным вы найдёте точку, проходя 3 метра в направлении, указываемом правой рукой, затем 1 метр в направлении, указываемом левой рукой, а далее Вас ждёт лестница и, поднимаясь на 5 метров, Вы, наконец, окажетесь в конечной точке.

Все остальные термины - это уточнения представленного выше объяснения, необходимые для различных операций над векторами, то есть, решения практических задач. Пройдёмся по этим более строгим определениям, останавливаясь на типичных задачах на векторы.

Физическими примерами векторных величин могут служить смещение материальной точки, двигающейся в пространстве, скорость и ускорение этой точки, а также действующая на неё сила.

Геометрический вектор представлен в двумерном и трёхмерном пространстве в виде направленного отрезка . Это отрезок, у которого различают начало и конец.

Если A - начало вектора, а B - его конец, то вектор обозначается символом или одной строчной буквой . На рисунке конец вектора указывается стрелкой (рис. 1)

Длиной (или модулем ) геометрического вектора называется длина порождающего его отрезка

Два вектора называются равными , если они могут быть совмещены (при совпадении направлений) путём параллельного переноса, т.е. если они параллельны, направлены в одну и ту же сторону и имеют равные длины.

В физике часто рассматриваются закреплённые векторы , заданные точкой приложения, длиной и направлением. Если точка приложения вектора не имеет значения, то его можно переносить, сохраняя длину и направление в любую точку пространства. В этом случае вектор называется свободным . Мы договоримся рассматривать только свободные векторы .

Линейные операции над геометрическими векторами

Умножение вектора на число

Произведением вектора на число называется вектор, получающийся из вектора растяжением (при ) или сжатием (при ) в раз, причём направление вектора сохраняется, если , и меняется на противоположное, если . (Рис. 2)

Из определения следует, что векторы и = всегда расположены на одной или на параллельных прямых. Такие векторы называются коллинеарными . (Можно говорить также, что эти векторы параллельны, однако в векторной алгебре принято говорить "коллинеарны".) Справедливо и обратное утверждение: если векторы и коллинеарны, то они связаны отношением

Следовательно, равенство (1) выражает условие коллинеарности двух векторов.


Сложение и вычитание векторов

При сложении векторов нужно знать, что суммой векторов и называется вектор , начало которого совпадает с началом вектора , а конец - с концом вектора , при условии, что начало вектора приложено к концу вектора . (Рис. 3)


Это определение может быть распределено на любое конечное число векторов. Пусть в пространстве даны n свободных векторов . При сложении нескольких векторов за их сумму принимают замыкающий вектор, начало которого совпадает с началом первого вектора, а конец - с концом последнего вектора. То есть, если к концу вектора приложить начало вектора , а к концу вектора - начало вектора и т.д. и, наконец, к концу вектора - начало вектора , то суммой этих векторов служит замыкающий вектор , начало которого совпадает с началом первого вектора , а конец - с концом последнего вектора . (Рис. 4)

Слагаемые называются составляющими вектора , а сформулированное правило - правилом многоугольника . Этот многоугольник может и не быть плоским.

При умножении вектора на число -1 получается противоположный вектор . Векторы и имеют одинаковые длины и противоположные направления. Их сумма даёт нулевой вектор , длина которого равна нулю. Направление нулевого вектора не определено.

В векторной алгебре нет необходимости рассматривать отдельно операцию вычитания: вычесть из вектора вектор означает прибавить к вектору противоположный вектор , т.е.

Пример 1. Упростить выражение:

.

,

то есть, векторы можно складывать и умножать на числа так же, как и многочлены (в частности, также задачи на упрощение выражений). Обычно необходимость упрощать линейно подобные выражения с векторами возникает перед вычислением произведений векторов.

Пример 2. Векторы и служат диагоналями параллелограмма ABCD (рис. 4а). Выразить через и векторы , , и , являющиеся сторонами этого параллелограмма.

Решение. Точка пересечения диагоналей параллелограмма делит каждую диагональ пополам. Длины требуемых в условии задачи векторов находим либо как половины сумм векторов, образующих с искомыми треугольник, либо как половины разностей (в зависимости от направления вектора, служащего диагональю), либо, как в последнем случае, половины суммы, взятой со знаком минус. Результат - требуемые в условии задачи векторы:

Есть все основания полагать, что теперь Вы правильно ответили на вопрос о векторах "Предприимчивость" и "Инновационные способности" в начале этого урока. Правильный ответ: над этими векторами производится операция сложения.

Решить задачи на векторы самостоятельно, а затем посмотреть решения

Как найти длину суммы векторов?

Эта задача занимает особое место в операциях с векторами, так как предполагает использование тригонометрических свойств. Допустим, Вам попалась задача вроде следующей:

Даны длины векторов и длина суммы этих векторов . Найти длину разности этих векторов .

Решения этой и других подобных задач и объяснения, как их решать - в уроке "Сложение векторов: длина суммы векторов и теорема косинусов ".

А проверить решение таких задач можно на Калькуляторе онлайн "Неизвестная сторона треугольника (сложение векторов и теорема косинусов)" .

А где произведения векторов?

Произведения вектора на вектор не являются линейными операциями и рассматриваются отдельно. И у нас есть уроки "Скалярное произведение векторов " и "Векторное и смешанное произведения векторов ".

Проекция вектора на ось

Проекция вектора на ось равна произведению длины проектируемого вектора на косинус угла между вектором и осью:

Как известно, проекцией точки A на прямую (плоскость) служит основание перпендикуляра , опущенного из этой точки на прямую (плоскость).


Пусть - произвольный вектор (Рис. 5), а и - проекции его начала (точки A ) и конца (точки B ) на ось l . (Для построения проекции точки A ) на прямую проводим через точку A плоскость, перпендикулярную прямой. Пересечение прямой и плоскости определит требуемую проекцию.

Составляющей вектора на оси l называется такой вектор , лежащий на этой оси, начало которого совпадает с проекцией начала, а конец - с проекцией конца вектора .

Проекцией вектора на ось l называется число

,

равное длине составляющего вектора на этой оси, взятое со знаком плюс, если направление составляюшей совпадает с направлением оси l , и со знаком минус, если эти направления противоположны.

Основные свойства проекций вектора на ось:

1. Проекции равных векторов на одну и ту же ось равны между собой.

2. При умножении вектора на число его проекция умножается на это же число.

3. Проекция суммы векторов на какую-либо ось равна сумме проекций на эту же ось слагаемых векторов.

4. Проекция вектора на ось равна произведению длины проектируемого вектора на косинус угла между вектором и осью:

.

Решение. Спроектируем векторы на ось l как определено в теоретической справке выше. Из рис.5а очевидно, что проекция суммы векторов равна сумме проекций векторов. Вычисляем эти проекции:

Находим окончательную проекцию суммы векторов:

Связь вектора с прямоугольной декартовой системой координат в пространстве

Знакомство с прямоугольной декартовой системой координат в пространстве состоялось в соответствующем уроке , желательно открыть его в новом окне.

В упорядоченной системе координатных осей 0xyz ось Ox называется осью абсцисс , ось 0y осью ординат , и ось 0z осью аппликат .


С произвольной точкой М пространства свяжем вектор

называемый радиус-вектором точки М и спроецируем его на каждую из координатных осей. Обозначим величины соответствующих проекций:

Числа x, y, z называются координатами точки М , соответственно абсциссой , ординатой и аппликатой , и записываются в виде упорядоченной точки чисел: M (x; y; z) (рис.6).

Вектор единичной длины, направление которого совпадает с направлением оси, называют единичным вектором (или ортом ) оси. Обозначим через

Соответственно орты координатных осей Ox , Oy , Oz

Теорема. Всякий вектор может быть разложен по ортам координатных осей:


(2)

Равенство (2) называется разложением вектора по координатным осям. Коэффициентами этого разложения являются проекции вектора на координатные оси. Таким образом, коэффициентами разложения (2) вектора по координатным осям являются координаты вектора.

После выбора в пространстве определённой системы координат вектор и тройка его координат однозначно определяют друг друга, поэтому вектор может быть записан в форме

Представления вектора в виде (2) и (3) тождественны.

Условие коллинеарности векторов в координатах

Как мы уже отмечали, векторы называются коллинеарными, если они связаны отношением

Пусть даны векторы . Эти векторы коллинеарны, если координаты векторов связаны отношением

,

то есть, координаты векторов пропорциональны.

Пример 6. Даны векторы . Коллинеарны ли эти векторы?

Решение. Выясним соотношение координат данных векторов:

.

Координаты векторов пропорциональны, следовательно, векторы коллинеарны, или, что то же самое, параллельны.

Длина вектора и направляющие косинусы

Вследствие взаимной перпендикулярности координатных осей длина вектора

равна длине диагонали прямоугольного параллелепипеда, построенного на векторах

и выражается равенством

(4)

Вектор полностью определяется заданием двух точек (начала и конца), поэтому координаты вектора можно выразить через координаты этих точек.

Пусть в заданной системе координат начало вектора находится в точке

а конец – в точке


Из равенства

Следует, что

или в координатной форме

Следовательно, координаты вектора равны разностям одноимённых координат конца и начала вектора . Формула (4) в этом случае примет вид

Направление вектора определяют направляющие косинусы . Это косинусы углов, которые вектор образует с осями Ox , Oy и Oz . Обозначим эти углы соответственно α , β и γ . Тогда косинусы этих углов можно найти по формулам

Направляющие косинусы вектора являются также координатами орта этого вектора и, таким образом, орт вектора

.

Учитывая, что длина орта вектора равна одной единице, то есть

,

получаем следующее равенство для направляющих косинусов:

Пример 7. Найти длину вектора x = (3; 0; 4).

Решение. Длина вектора равна

Пример 8. Даны точки:

Выяснить, равнобедренный ли треугольник, построенный на этих точках.

Решение. По формуле длины вектора (6) найдём длины сторон и установим, есть ли среди них две равные:

Две равные стороны нашлись, следовательно необходимость искать длину третьей стороны отпадает, а заданный треугольник является равнобедренным.

Пример 9. Найти длину вектора и его направляющие косинусы, если .

Решение. Координаты вектора даны:

.

Длина вектора равна квадратному корню из суммы квадратов координат вектора:

.

Находим направляющие косинусы:

Решить задачу на векторы самостоятельно, а затем посмотреть решение

Операции над векторами, заданными в координатной форме

Пусть даны два вектора и , заданные своими проекциями:

Укажем действия над этими векторами.

Введение…………………………………………………………………………3

1. Значение вектора и скаляра………………………………………….4

2. Определение проекции, оси и координатой точки………………...5

3. Проекция вектора на ось……………………………………………...6

4. Основная формула векторной алгебры……………………………..8

5. Вычисление модуля вектора по его проекциям…………………...9

Заключение……………………………………………………………………...11

Литература……………………………………………………………………...12

Введение:

Физика неразрывно связана с математикой. Математика дает физике средства и приемы общего и точного выражения зависимости между физическими величинами, которые открываются в результате эксперимента или теоретических исследований.Ведь основной метод исследований в физике – экспериментальный. Это значит – вычисления ученый выявляет с помощью измерений. Обозначает связь между различными физическими величинами. Затем, все переводится на язык математики. Формируется математическая модель. Физика - есть наука, изучающая простейшие и вместе с тем наиболее общие закономерности. Задача физики состоит в том, чтобы создать в нашем сознании такую картину физического мира, которая наиболее полно отражает свойства его и обеспечивает такие соотношения между элементами модели, какие существуют между элементами.

Итак, физика создает модель окружающего нас мира и изучает ее свойства. Но любая модель является ограниченной. При создании моделей того или иного явления принимаются во внимание только существенные для данного круга явлений свойства и связи. В этом и заключается искусство ученого - из всего многообразия выбрать главное.

Физические модели являются математическими, но не математика является их основой. Количественные соотношения между физическими величинами выясняются в результате измерений, наблюдений и экспериментальных исследований и лишь выражаются на языке математики. Однако другого языка для построения физических теорий не существует.

1. Значение вектора и скаляра.

В физике и математике вектор - это величина, которая характеризуется своим численным значением и направлением. В физике встречается немало важных величин, являющихся векторами, например сила, положение, скорость, ускорение, вращающий момент, импульс, напряженность электрического и магнитного полей. Их можно противопоставить другим величинам, таким, как масса, объем, давление, температура и плотность, которые можно описать обычным числом, и называются они "скалярами" .

Они записываются либо буквами обычного шрифта, либо цифрами (а, б, t, G, 5, −7….). Скалярные величины могут быть положительными и отрицательными. В то же время некоторые объекты изучения могут обладать такими свойствами, для полного описания которых знание только числовой меры оказывается недостаточным, необходимо ещё охарактеризовать эти свойства направлением в пространстве. Такие свойства характеризуются векторными величинами (векторами). Векторы, в отличие от скаляров, обозначаются буквами жирного шрифта: a, b, g, F, С ….
Нередко вектор обозначают буквой обычного (нежирного) шрифта, но со стрелкой над ней:


Кроме того, часто вектор обозначают парой букв (обычно заглавных), причём первая буква обозначает начало вектора, а вторая - его конец.

Модуль вектора, то есть длину направленного прямолинейного отрезка, обозначают теми же буквами, как и сам вектор, но в обычном (не жирном) написании и без стрелки над ними, либо точно также как и вектор (то есть жирным шрифтом или обычным, но со стрелкой), но тогда обозначение вектора заключается в вертикальные черточки.
Вектор – сложный объект, который одновременно характеризуется и величиной и направлением.

Не бывает также положительных и отрицательных векторов. А вот равными между собой векторы быть могут. Это когда, например, aиb имеют одинаковые модули и направлены в одну сторону. В этом случае справедлива запись a = b. Надо также иметь в виду, что перед символом вектора может стоять знак минус, например, - с, однако, этот знак символически указывает на то, что вектор -с имеет такой же модуль, как и вектор с, но направлен в противоположную сторону.

Вектор -с называют противоположным (или обратным) вектору с.
В физике же каждый вектор наполнен конкретным содержанием и при сравнении однотипных векторов (например, сил) могут иметь существенное значение и точки их приложения.

2.Определение проекции, оси и координатой точки.

Ось – это прямая, которой придается какое–то направление.
Ось обозначается какой-либо буквой: X , Y , Z , s , t … Обычно на оси выбирается (произвольно) точка, которая называется началом отсчета и, как правило, обозначается буквой О. От этой точки отсчитываются расстояния до других интересующих нас точек.

Проекцией точки на ось называется основание перпендикуляра, опущенного из этой точки на данную ось. То есть, проекцией точки на ось является точка.

Координатой точки на данной оси называется число, абсолютная величина которого равна длине отрезка оси (в выбранном масштабе), заключённого между началом оси и проекцией точки на эту ось. Это число берется со знаком плюс, если проекция точки располагается в направлении оси от ее начала и со знаком минус, если в противоположном направлении.

3.Проекция вектора на ось.

Проекцией вектора на ось называется вектор, который получается в результате перемножения скалярной проекции вектора на эту ось и единичного вектора этой оси. Например, если а x – скалярная проекция вектора а на ось X, то а x ·i - его векторная проекция на эту ось.

Обозначим векторную проекцию также, как и сам вектор, но с индексом той оси на которую вектор проектируется. Так, векторную проекцию вектора а на ось Х обозначим а x (жирная буква, обозначающая вектор и нижний индекс названия оси) или

(нежирная буква, обозначающая вектор, но со стрелкой наверху (!) и нижний индекс названия оси).

Скалярной проекцией вектора на ось называется число , абсолютная величина которого равна длине отрезка оси (в выбранном масштабе), заключённого между проекциями точки начала и точки конца вектора. Обычно вместо выражения скалярная проекция говорят просто – проекция . Проекция обозначается той же буквой, что и проектируемый вектор (в обычном, нежирном написании), с нижним (как правило) индексом названия оси, на которую этот вектор проектируется. Например, если на ось Х проектируется вектора, то его проекция обозначается а x . При проектировании этого же вектора на другую ось, если ось Y , его проекция будет обозначаться а y .

Чтобы вычислить проекцию вектора на ось (например, ось X) надо из координаты точки его конца вычесть координату точки начала, то есть

а x = х к − x н.

Проекция вектора на ось - это число. Причем, проекция может быть положительной, если величина х к больше величины х н,

отрицательной, если величина х к меньше величины х н

и равной нулю, если х к равно х н.

Проекцию вектора на ось можно также найти, зная модуль вектора и угол, который он составляет с этой осью.

Из рисунка видно, что а x = а Cos α

То есть, проекция вектора на ось равна произведению модуля вектора на косинус угла между направлением оси и направлением вектора . Если угол острый, то
Cos α > 0 и а x > 0, а, если тупой, то косинус тупого угла отрицателен, и проекция вектора на ось тоже будет отрицательна.

Углы, отсчитываемые от оси против хода часовой стрелки, принято считать положительными, а по ходу - отрицательными. Однако, поскольку косинус – функция четная, то есть, Cos α = Cos (− α), то при вычислении проекций углы можно отсчитывать как по ходу часовой стрелки, так и против.

Чтобы найти проекцию вектора на ось надо модуль этого вектора умножить на косинус угла между направлением оси и направлением вектора.

4. Основная формула векторной алгебры.

Спроектируемвектор а на оси Х и Y прямоугольной системы координат. Найдем векторные проекции вектора а на эти оси:

а x = а x ·i, а y = а y ·j.

Но в соответствии справилом сложения векторов

а = а x + а y .

а = а x ·i + а y ·j.

Таким образом, мы выразили вектор через его проекции и орты прямоугольной системы координат (или через его векторные проекции).

Векторные проекции а x и а y называютсясоставляющими или компонентами вектора а. Операция, которую мы выполнили, называется разложением вектора по осямпрямоугольной системы координат.

Если вектор задан в пространстве, то

а = а x ·i + а y ·j + а z ·k.

Эта формула называется основной формулой векторной алгебры. Конечно, ее можно записать и так.

Ось – это направление. Значит, проекция на ось или на направленную прямую считается одним и тем же. Проекция бывает алгебраическая и геометрическая. В геометрическом понимают проекцию вектора на ось как вектор, а алгебраическом – число. То есть применяются понятия проекция вектора на ось и числовая проекция вектора на ось.

Если имеем ось L и ненулевой вектор A B → , то можем построить вектор A 1 B 1 ⇀ , обозначив проекции его точек A 1 и B 1 .

A 1 B → 1 будет являться проекцией вектора A B → на L .

Определение 1

Проекцией вектора на ось называют вектор, начало и конец которого являются проекции начала и конца заданного вектора. n p L A B → → принято обозначать проекцию A B → на L . Для построения проекции на L опускают перпендикуляры на L .

Пример 1

Пример проекции вектора на ось.

На координатной плоскости О х у задается точка M 1 (x 1 , y 1) . Необходимо построить проекции на О х и О у для изображения радиус-вектора точки M 1 . Получим координаты векторов (x 1 , 0) и (0 , y 1) .

Если идет речь о проекции a → на ненулевой b → или проекции a → на направление b → , то имеется в виду проекция a → на ось, с которой совпадает направление b → . Проекция a → на прямую, определяемая b → , имеет обозначение n p b → a → → . Известно, что когда угол между a → и b → , можно считать n p b → a → → и b → сонаправленными. В случае, когда угол тупой, n p b → a → → и b → противоположно направлены. В ситуации перпендикулярности a → и b → , причем a → - нулевой, проекция a → по направлению b → является нулевым вектором.

Числовая характеристика проекции вектора на ось – числовая проекция вектора на заданную ось.

Определение 2

Числовой проекцией вектора на ось называют число, которое равно произведению длины данного вектора на косинус угла между данным вектором и вектором, который определяет направление оси.

Числовая проекция A B → на L имеет обозначение n p L A B → , а a → на b → - n p b → a → .

Исходя из формулы, получим n p b → a → = a → · cos a → , b → ^ , откуда a → является длиной вектора a → , a ⇀ , b → ^ - угол между векторами a → и b → .

Получим формулу вычисления числовой проекции: n p b → a → = a → · cos a → , b → ^ . Она применима при известных длинах a → и b → и угле между ними. Формула применима при известных координатах a → и b → , но имеется ее упрощенный вид.

Пример 2

Узнать числовую проекцию a → на прямую по направлению b → при длине a → равной 8 и углом между ними в 60 градусов. По условию имеем a ⇀ = 8 , a ⇀ , b → ^ = 60 ° . Значит, подставляем числовые значения в формулу n p b ⇀ a → = a → · cos a → , b → ^ = 8 · cos 60 ° = 8 · 1 2 = 4 .

Ответ: 4.

При известном cos (a → , b → ^) = a ⇀ , b → a → · b → , имеем a → , b → как скалярное произведение a → и b → . Следуя из формулы n p b → a → = a → · cos a ⇀ , b → ^ , мы можем найти числовую проекцию a → направленную по вектору b → и получим n p b → a → = a → , b → b → . Формула эквивалента определению, указанному в начале пункта.

Определение 3

Числовой проекцией вектора a → на ось, совпадающей по направлению с b → , называют отношение скалярного произведения векторов a → и b → к длине b → . Формула n p b → a → = a → , b → b → применима для нахождения числовой проекции a → на прямую, совпадающую по направлению с b → , при известных a → и b → координатах.

Пример 3

Задан b → = (- 3 , 4) . Найти числовую проекцию a → = (1 , 7) на L .

Решение

На координатной плоскости n p b → a → = a → , b → b → имеет вид n p b → a → = a → , b → b → = a x · b x + a y · b y b x 2 + b y 2 , при a → = (a x , a y) и b → = b x , b y . Чтобы найти числовую проекцию вектора a → на ось L , нужно: n p L a → = n p b → a → = a → , b → b → = a x · b x + a y · b y b x 2 + b y 2 = 1 · (- 3) + 7 · 4 (- 3) 2 + 4 2 = 5 .

Ответ: 5.

Пример 4

Найти проекцию a → на L , совпадающей с направлением b → , где имеются a → = - 2 , 3 , 1 и b → = (3 , - 2 , 6) . Задано трехмерное пространство.

Решение

По заданным a → = a x , a y , a z и b → = b x , b y , b z вычислим скалярное произведение: a ⇀ , b → = a x · b x + a y · b y + a z · b z . Длину b → найдем по формуле b → = b x 2 + b y 2 + b z 2 . Отсюда следует, что формула определения числовой проекции a → будет: n p b → a ⇀ = a → , b → b → = a x · b x + a y · b y + a z · b z b x 2 + b y 2 + b z 2 .

Подставляем числовые значения: n p L a → = n p b → a → = (- 2) · 3 + 3 · (- 2) + 1 · 6 3 2 + (- 2) 2 + 6 2 = - 6 49 = - 6 7 .

Ответ: - 6 7 .

Просмотрим связь между a → на L и длиной проекции a → на L . Начертим ось L , добавив a → и b → из точки на L , после чего проведем перпендикулярную прямую с конца a → на L и проведем проекцию на L . Существуют 5 вариаций изображения:

Первый случай при a → = n p b → a → → означает a → = n p b → a → → , отсюда следует n p b → a → = a → · cos (a , → b → ^) = a → · cos 0 ° = a → = n p b → a → → .

Второй случай подразумевает применение n p b → a → ⇀ = a → · cos a → , b → , значит, n p b → a → = a → · cos (a → , b →) ^ = n p b → a → → .

Третий случай объясняет, что при n p b → a → → = 0 → получаем n p b ⇀ a → = a → · cos (a → , b → ^) = a → · cos 90 ° = 0 , тогда n p b → a → → = 0 и n p b → a → = 0 = n p b → a → → .

Четвертый случай показывает n p b → a → → = a → · cos (180 ° - a → , b → ^) = - a → · cos (a → , b → ^) , следует n p b → a → = a → · cos (a → , b → ^) = - n p b → a → → .

Пятый случай показывает a → = n p b → a → → , что означает a → = n p b → a → → , отсюда имеем n p b → a → = a → · cos a → , b → ^ = a → · cos 180 ° = - a → = - n p b → a → .

Определение 4

Числовой проекцией вектора a → на ось L , которая направлена как и b → , имеет значение:

  • длины проекции вектора a → на L при условии, если угол между a → и b → меньше 90 градусов или равен 0: n p b → a → = n p b → a → → с условием 0 ≤ (a → , b →) ^ < 90 ° ;
  • ноля при условии перпендикулярности a → и b → : n p b → a → = 0 , когда (a → , b → ^) = 90 ° ;
  • длины проекции a → на L , умноженной на -1, когда имеется тупой или развернутый угол векторов a → и b → : n p b → a → = - n p b → a → → с условием 90 ° < a → , b → ^ ≤ 180 ° .

Пример 5

Дана длина проекции a → на L , равная 2 . Найти числовую проекцию a → при условии, что угол равен 5 π 6 радиан.

Решение

Из условия видно, что данный угол является тупым: π 2 < 5 π 6 < π . Тогда можем найти числовую проекцию a → на L: n p L a → = - n p L a → → = - 2 .

Ответ: - 2 .

Пример 6

Дана плоскость О х y z с длиной вектора a → равной 6 3 , b → (- 2 , 1 , 2) с углом в 30 градусов. Найти координаты проекции a → на ось L .

Решение

Для начала вычисляем числовую проекцию вектора a → : n p L a → = n p b → a → = a → · cos (a → , b →) ^ = 6 3 · cos 30 ° = 6 3 · 3 2 = 9 .

По условию угол острый, тогда числовая проекция a → = длине проекции вектора a → : n p L a → = n p L a → → = 9 . Данный случай показывает, что векторы n p L a → → и b → сонаправлены, значит имеется число t , при котором верно равенство: n p L a → → = t · b → . Отсюда видим, что n p L a → → = t · b → , значит можем найти значение параметра t: t = n p L a → → b → = 9 (- 2) 2 + 1 2 + 2 2 = 9 9 = 3 .

Тогда n p L a → → = 3 · b → с координатами проекции вектора a → на ось L равны b → = (- 2 , 1 , 2) , где необходимо умножить значения на 3. Имеем n p L a → → = (- 6 , 3 , 6) . Ответ: (- 6 , 3 , 6) .

Необходимо повторить ранее изученную информацию об условии коллинеарности векторов.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

ОСНОВНЫЕ ПОНЯТИЯ ВЕКТОРНОЙ АЛГЕБРЫ

Скалярные и векторные величины

Из курса элементарной физики известно, что некоторые физические величины, такие как температура, объем, масса тела, плотность и т.д., определяются только числовым значением. Такие величины называются скалярными величинами, или скалярами .

Для определения же некоторых других величин, таких как сила, скорость, ускорение и тому подобных, кроме числовых значений необходимо задать еще и их направление в пространстве. Величины, которые кроме абсолютной величины характеризуются еще и направлением, называются векторными.

Определение Вектором называется направленный отрезок, который определяется двумя точками: первая точка определяет начало вектора, а вторая - его конец. Поэтому еще говорят, что вектор - это упорядоченная пара точек.

На рисунке вектор изображается отрезком прямой, на котором стрелкой отмеченное направление от начала вектора к его концу. Например, рис. 2.1.

Если начало вектора совпадает с точкой , а конец с точкой, то вектор обозначается
. Кроме этого, часто векторы обозначают одной маленькой буквой со стрелкой над ней. В книжках иногда стрелку опускают, тогда для обозначения вектора употребляют жирный шрифт.

К векторам относится нулевой вектор , у которого начало и конец совпадают. Он обозначается или просто.

Расстояние между началом и концом вектора называется его длиной, или модулем . Модуль вектора обозначается двумя вертикальными черточками слева:
, или без стрелочек
или.

Векторы, параллельные до одной прямой, называются коллинеарными .

Векторы, лежащие в одной плоскости или параллельные одной и той же плоскости, называются компланарными.

Нулевой вектор считается коллинеарным к любому вектору. Длина его равна 0.

Определение Два вектора
и
называются равными (рис. 2.2), если они:
1)коллинеарны ; 2) сонаправлены 3) равны по длине.

Это записывают так:
(2.1)

Из определения равенства векторов вытекает, что при параллельном переносе вектора получается вектор, равный начальному, потому начало вектора можно разместить в любую точку пространства. Такие векторы (в теоретической механике, геометрии), начало которых можно размещать в любой точке пространства, называют свободными . И именно такие векторы мы будем рассматривать.

Определение Система векторов
называется линейно зависимой, если существуют такие постоянные
, среди которых есть хотя бы одна отличная от нуля, и для которых выполняется равенство.

Определение Базисом в пространстве называются произвольные три некомпланарных вектора, которые взяты в определенной последовательности .

Определение Если
- базис и вектор, то числа
называются координатами векторав данном базисе.

Координаты вектора будем писать в фигурных скобках после обозначения вектора. Так, например,
означает, что векторв некотором выбранном базисе имеет разложение:
.

Из свойств умножения вектора на число и сложения векторов вытекает утверждение относительно линейных действий над векторами, которые заданы координатами.

Для того, чтобы найти координаты вектора, если известны координаты его начала и конца, необходимо из соответствующей координаты его конца отнять координату начала.

Линейные операции над векторами

Линейными операциями над векторами называются операции сложения (вычитания) векторов и умножения вектора на число. Рассмотрим их.

Определение Произведением вектора на число
называется вектор, совпадающий по направлению с вектором, если
, имеющий противоположное направление, если
отрицательное. Длина этого вектора равна произведению длины векторана модуль числа
.

Пример . Построить вектор
, если
и
(рис. 2.3).

При умножении вектора на число его координаты умножаются на это число .

Действительно, если , то

Произведением вектора на
называется вектор
;
- противоположено направленный.

Отметим, что вектор, длина которого равна 1, называется единичным (или ортом ).

Пользуясь операцией умножения вектора на число, любой вектор можно выразить через единичный вектор того же направления. Действительно, поделив вектор на его длину(т.е. умноживна), получим единичный вектор того же направления, что и вектор. Его будем обозначать
. Отсюда следует, что
.

Определение Суммой двух векторов иназывается вектор, который выходит из их общего начала и является диагональю параллелограмма, стороны которого векторыи(рис. 2.4).

.

По определению равных векторов
поэтому
-правило треугольника . Правило треугольника можно распространить на любое количество векторов и таким образом получить правило многоугольника:
- это вектор, который соединяет начало первого векторас концом последнего вектора(рис. 2.5).

Итак, для того чтобы построить вектор суммы, надо к концу первого вектора пристроить начало второго, к концу второго пристроить начало третьего и так далее. Тогда вектором суммы и будет вектор, который соединяет начало первого из векторов с концом последнего .

При сложении векторов складываются и их соответствующие координаты

Действительно, если и
,

Если векторы
ине компланарны, то их сумма является диагональю
параллелепипеда, построенного на этих векторах (рис. 2.6)


,

где

Свойства:

- коммутативность;

- ассоциативность;

- дистрибутивность по отношению к умножению на число

.

Т.е. векторную сумму можно преобразовывать по тем же правилам, что и алгебраическую.

Определение Разностью двух векторов иназывают такой вектор, который при сложении с векторомдает вектор. Т.е.
если
. Геометрическипредставляет собой вторую диагональ параллелограмма, построенного на векторахис общим началом и направленную из конца векторав конец вектора(рис. 2.7).

Проекция вектора на ось. Свойства проекций

Вспомним понятие числовой оси. Числовой осью называют прямую, на которой определено:

    направление (→);

    начало отсчета (точка О);

    отрезок, который принимают за единицу масштаба.

Пусть имеется вектор
и ось. Из точекиопустим перпендикуляры на ось. Получим точкии- проекции точеки(рис. 2.8 а).

Определение Проекцией вектора
на осьназывается длина отрезка
этой оси, который расположен между основаниями проекций начала и конца вектора
на ось. Она берется со знаком плюс, если направление отрезка
совпадает с направлением оси проекций, и со знаком минус, если эти направления противоположны. Обозначение:
.

Определение Углом между вектором
и осьюназывается угол, на который необходимо кратчайшим образом повернуть ось, чтобы она совпадала с направлением вектора
.

Найдем
:

На рис.2.8 а представлена:
.

На рис. 2.8 б) : .

Проекция вектора на ось равна произведению длины этого вектора на косинус угла между вектором и осью проекций:
.

Свойства проекций :


Если
, то векторы называются ортогональными

Пример . Заданы векторы
,
.Тогда

.

Пример. Если начало вектора
находится в точке
, а конец в точке
, то вектор
имеет координаты:

Определение Углом между двумя векторами иназывается наименьший угол
(рис. 2.13) между этими векторами, сведенными в общее начало.

Угол между векторами исимволически записывают таким образом:.

Из определения следует, что угол между векторами может изменяться в пределах
.

Если
, то векторы называются ортогональными.

.

Определение. Косинусы углов вектора с осями координат называются направляющими косинусами вектора. Если вектор
образует с осями координат углы

.