Как он устроен? Строение глаза человека.

Глаза человека - это сложнейшая оптическая система, состоящая из множества функциональных элементов. Благодаря их слаженной работе мы воспринимаем 90 % поступающей информации, то есть именно от зрения по большей части зависит качество нашей жизни. Знание особенностей строения глаза поможет нам лучше понять его работу и важность здоровья каждого из элементов его структуры.

Как устроены глаза человека, многие помнят еще со школы. Основными частями являются роговица, радужная оболочка, зрачок, хрусталик, сетчатка, макула и зрительный нерв. К глазному яблоку подходят мышцы, обеспечивающие им согласованное движение, а человеку - качественное объемное зрение. Как же взаимодействуют между собой все эти элементы?

Устройство глаза человека: взгляд изнутри

Устройство глаза напоминает мощную линзу, которая собирает лучи света. Эту функцию выполняет роговица - передняя прозрачная оболочка глаза. Интересно, что ее диаметр увеличивается с рождения и до 4 лет, после чего не изменяется, хотя само яблоко продолжает расти. Поэтому у маленьких детей глаза кажутся больше, чем у взрослых. Пройдя сквозь нее, свет достигает радужной оболочки - светонепроницаемой диафрагмы глаза, в центре которой находится отверстие - зрачок. Благодаря его способности сужаться и расширяться наш глаз может быстро адаптироваться к свету разной интенсивности. Из зрачка лучи попадают на двояковыпуклую линзу - хрусталик. Его функция заключается в преломлении лучей и фокусировке изображения. Хрусталик играет важную роль в составе светопреломляющего аппарата, поскольку способен настраиваться на видение объектов, расположенных на разном расстоянии от человека. Такое устройство глаза позволяет нам хорошо видеть и вблизи, и вдали.

Многие из нас со школы помнят о таких частях человеческого глаза, как роговица, зрачок, радужка, хрусталик, сетчатка, макула и зрительный нерв. В чем же заключается их предназначение?

Перевернутый мир

Из зрачка лучи света, отраженные от предметов, проецируются на сетчатку глаза. Она представляет некое подобие экрана, на котором «передается» изображение окружающего мира. Интересно, что изначально оно является перевернутым. Так, земля и деревья передаются на верхнюю часть сетчатки глаза, солнце и облака - на нижнюю. То, на что в данный момент направлен наш взгляд, проецируется на центральную часть сетчатки (ямку фовеа). Она в свою очередь является центром макулы, или зоны желтого пятна. Именно этот участок глаза отвечает за ясное центральное зрение. Анатомические особенности фовеа определяют ее высокую разрешающую способность. У человека имеется по одной центральной ямке, у ястреба - по две в каждом глазу, а, например, у кошек она и вовсе представлена длинной зрительной полоской. Именно поэтому зрение некоторых птиц и животных более острое, чем у нас. Благодаря такому устройству наши глаза четко видят даже мелкие предметы и детали, а также различают цвета.

Палочки и колбочки

Отдельно стоит упомянуть о фоторецепторах сетчатки глаза - палочках и колбочках. Они помогают нам видеть. Колбочки отвечают за цветное зрение. В основном они сосредоточены в центре сетчатки. Их порог чувствительности выше, чем у палочек. С помощью колбочек мы видим цвета при условии достаточного освещения. Палочки также расположены в сетчатке, но их концентрация максимальна на ее периферии. Данные фоторецепторы активны при тусклом освещении. Именно благодаря им мы можем различать объекты в темноте, но не видим их цвета, поскольку колбочки остаются неактивными.

Чудо зрения

Чтобы мы видели мир «правильно», к работе глаза должен подключиться мозг. Поэтому информация, которая была собрана светочувствительными клетками сетчатки, передается зрительному нерву. Для этого она преобразуется в электрические импульсы. По нервным тканям они передаются от глаза в мозг человека. Именно здесь начинается анализаторская работа. Мозг обрабатывает поступившую информацию, и мы воспринимаем мир таким, какой он есть - солнце в небе сверху, а под ногами - земля. Чтобы проверить этот факт, можно надеть на глаза специальные очки, переворачивающие изображение. Через какое-то время мозг приспособится, и человек снова будет видеть картинку в привычном для себя ракурсе.

В результате описанных процессов наши глаза способны видеть окружающий мир во всей его полноте и яркости!

Человеческий глаз – это очень комплексная оптическая система, состоящая из многообразия элементов, каждый из которых отвечает за свои собственные задачи. В целом же глазной аппарат помогает воспринимать внешнюю картинку, обрабатывать её и передавать информацию в уже подготовленном виде в головной мозг. Без его функций органы тела человека не могли бы столь же полноценно взаимодействовать. Хотя орган зрения и устроен сложно, хотя бы в базовом виде понимать описание принципа его функционирования стоит каждому человеку.

Общий принцип функционирования

Разобравшись, что такое глаз, поняв его описание, рассмотрим принцип его работы. Глаз работает за счёт восприятия света, отражённого от окружающих предметов. Этот свет попадает на роговицу, особую линзу, позволяющую сфокусировать поступающие лучи. После роговицы лучи проходят через камеру глаза (которая заполнена бесцветной жидкостью), а потом попадают на радужку, которая в своём центре имеет зрачок. У зрачка имеется отверстие (глазная щель), через которое проходят только центральные лучи, то есть часть лучей, находящихся по краям светового потока, отсеивается.

Зрачок помогает приспосабливаться к различным уровням освещения. Он (точнее говоря, его глазная щель) отсеивает только те лучи, которые не влияет на качество изображения, но регулирует их поток. В итоге то, что осталось, идёт на хрусталик, который, как и роговица, является линзой, но только предназначенной для другого – для более точной, «чистовой» фокусировки света. Хрусталик и роговица – это оптические среды глаза.

Далее свет через особое стекловидное тело, входящее в оптический аппарат глаза, проходит на сетчатку, куда изображение проецируется как на киноэкран, но только в перевёрнутом виде. В центре сетчатки находится макула, та зона, которая отвечает на , в которую попадает объект, на который мы смотрим напрямую.

На финальных этапах получения изображения клетки сетчатки обрабатывают то, что на них находится, переводя всё в электромагнитные импульсы, которые далее отправляются в мозг. Схожим образом функционирует цифровой фотоаппарат.

Из всех элементов глаза в обработке сигнала не участвует только склера, особая непрозрачная оболочка, которая покрывает снаружи. Окружает она его почти что целиком, приблизительно на 80%, на в передней части она плавно переходит в роговицу. В народе её наружную часть принято называть белком, хотя это и не совсем корректно.

Количество различаемых цветов

Человеческий орган зрения воспринимает изображение в цвете, причём количество оттенков цветов, которые он может различать, является очень большим. То, сколько разных цветов различается глазом (точнее, сколько оттенков), может варьироваться от индивидуальных особенностей человека, а также уровня его натренированности и типа его профессиональной деятельности. «Работает» глаз с так называемым видимым излучением, которое представляет собой электромагнитные волны, имеющие длину волны от 380 до 740 нм, то есть со светом.

Если брать средние показатели, то человек суммарно может отличать около 150 тысяч цветовых тонов и оттенков.

Впрочем, тут имеется неоднозначность, которая заключается в относительной субъективности цветового восприятия. Потому некоторые учёные сходятся на другой цифре, сколько оттенков цветов обычно видит/различает человек – от семи до десяти миллионов. В любом случае, цифра внушительная. Все эти оттенки получаются за счёт варьирования семи основных цветов, находящихся в разных частях радужного спектра. Считается, что у профессиональных художников и дизайнеров количество воспринимаемых оттенков выше, а также иногда человек рождается с мутацией, позволяющей ему видеть в разы больше цветов и оттенков. Сколько разных цветов видят такие люди – открытый вопрос.

Глазные заболевания

Как и любая другая система человеческого организма, орган зрения подвержен различным заболеваниям и патологиям. Условно их можно разделить на инфекционные и неинфекционные. Частые виды заболеваний, что вызываются бактериями, вирусами или микроорганизмами – это конъюнктивиты, ячмени и блефариты.

Если заболевание неинфекционное, то обычно оно возникает из-за серьёзного переутомления глаз, из-за наследственной предрасположенности или просто из-за изменений, которые возникают в организме человека с возрастом. Реже проблема может заключаться в том, что возникла общая патология организма, например, развилась гипертония или сахарный диабет. В итоге может возникнуть глаукома, катаракта или синдром сухого глаза, человек в итоге хуже видит или различает объекты.

В медицинской практике все заболевания делятся на следующие категории:

  • болезни отдельных элементов глаза, например, хрусталика, конъюнктивы и так далее;
  • патологии зрительных нервов/путей;
  • патологии мышц, по причине которых нарушается содружественное движение яблок;
  • заболевания, связанные со слепотой и различными зрительными расстройствами, нарушением силы зрения;
  • глаукома.

Чтобы не возникало проблем и патологий, глаза необходимо оберегать, не держать подолгу направленными в одну точку, поддерживать оптимальное освещение при чтении или работе. Тогда сила зрения не будет падать.

Внешнее строение глаза

Глаз человека имеет не только лишь внутреннее строение, но также и внешнее, которое представлено веками. Это особые перегородки, которые защищают глаза от травматизма и негативных факторов окружающей среды. Они преимущественно состоят из мышечной ткани, которая снаружи покрывается тонкой и нежной кожей. В офтальмологии принято считать, что веки – это один из важнейших элементов, при возникновении проблем с которым могут возникнуть проблемы.

Хотя веко и является мягким, его прочность и постоянство формы обеспечивает хрящ, который по своей сути является коллагеновым образованием. Движение век осуществляется благодаря мышечному слою. Когда веки смыкаются, это несёт функциональную роль – глазное яблоко увлажняется, а небольшие инородные частицы, сколько бы их ни было на поверхности глаза, удаляются. Кроме того, благодаря смачиванию глазного яблока, веко получает возможность свободно скользить относительно его поверхности.

Важным компонентом век также является разветвлённая система кровоснабжения и множество нервных окончаний, которые помогают векам осуществлять свои функции.

Движение глаз

Глаза человека двигаются при помощи специальных мышц, обеспечивающих глазам нормальное постоянное функционирование. Зрительный аппарат двигается при помощи слаженной работы десятков мышц, основными из которых являются четыре прямых и два косых мышечных отростка. окружают с разных сторон и помогают поворачивать глазное яблоко вокруг различных осей. Каждая группа позволяет повернуть глаз человека в своём направлении.

Также мышцы помогают осуществлять поднятие и опускание век. Когда всё мышцы работают слаженно, это не только лишь позволяет управлять глазами по отдельности, но также и осуществить их слаженную работу и координацию их направления.

Строение человеческого глаза напоминает фотоаппарат. В роли объектива выступают роговица, хрусталик и зрачок, которые преломляют лучи света и фокусируют их на сетчатке глаза. Хрусталик может менять свою кривизну и работает как автофокус у фотоаппарата - моментально настраивает хорошее зрение на близь или даль. Сетчатка, словно фотопленка, запечатляет изображение и отправляет его в виде сигналов в головной мозг, где происходит его анализ.

1 -зрачок , 2 -роговица , 3 -радужка , 4 -хрусталик , 5 -цилиарное тело , 6 -сетчатка, 7 -сосудистая оболочка , 8 -зрительный нерв , 9 -сосуды глаза , 10 -мышцы глаза , 11 -склера , 12 -стекловидное тело .

Сложное строение глазного яблока делает его очень чувствительным к различным повреждениям, нарушениям обмена веществ и заболеваниям.

Офтальмологи портала "Все о зрении" простым языком описали строение глаза человека дарят вам уникальную возможность наглядно ознакомиться с его анатомией.


Человеческий глаз – это уникальный и сложный парный орган чувств, благодаря которому мы получаем до 90% информации об окружающем нас мире. Глаз каждого человека обладает индивидуальными, только ему присущими характеристиками. Но общие черты строения важны для понимания того, какой же глаз изнутри и как он работает. В ходе эволюции глаз достиг сложного строения и в нём тесно взаимосвязаны структуры разного тканевого происхождения. Кровеносные сосуды и нервы, пигментные клетки и элементы соединительной ткани – все они обеспечивают основную функцию глаза – зрение.

Строение основных структур глаза

Глаз имеет форму сферы или шара, поэтому к нему стала применяться аллегория яблока. Глазное яблоко – очень нежная структура, поэтому располагается в костном углублении черепа – глазнице, где частично оно укрыто от возможного повреждения. Спереди глазное яблоко защищают верхнее и нижнее веки. Свободные движения глазного яблока обеспечиваются глазодвигательными наружными мышцами, точная и слаженная работа которых позволяет нам видеть окружающий мир двумя глазами, т.е. бинокулярно.

Постоянное увлажнение всей поверхности глазного яблока обеспечивается слезными железами, которые обеспечивают адекватную продукцию слезы, образующей тонкую защитную слёзную плёнку, а отток слезы происходит через специальные слезоотводящие пути.

Самая наружная оболочка глаза – конъюнктива. Она тонкая и прозрачная и выстилает также и внутреннюю поверхность век, обеспечивая легкое скольжение при движении глазного яблока и моргании век.
Наружная «белая» оболочка глаза – склера, является самой толстой из трёх глазных оболочек, защищает внутренние структуры и поддерживает тонус глазного яблока.

Склеральная оболочка в центре передней поверхности глазного яблока приобретает прозрачность и имеет вид выпуклого часового стекла. Эта прозрачная часть склеры называется роговицей, которая очень чувствительная благодаря наличию в ней множества нервных окончаний. Прозрачность роговицы позволяет свету проникать внутрь глаза, а её сферичность обеспечивает преломление световых лучей. Переходная зона между склерой и роговицей называется лимбом. В этой зоне находятся стволовые клетки, обеспечивающие постоянную регенерацию клеток наружных слоев роговицы.

Следующая оболочка - сосудистая. Она выстилает склеру изнутри. По её названию понятно, что она обеспечивает кровоснабжение и питание внутриглазных структур, а также поддерживает тонус глазного яблока. Сосудистая оболочка состоит из собственно хориоидеи, находящейся в тесном контакте со склерой и сетчаткой, и таких структур как цилиарное тело и радужка, которые располагаются в переднем отделе глазного яблока. Они содержат в себе много кровеносных сосудов и нервов.

Цилиарное тело – это часть сосудистой оболочки и сложный нервно-эндокринно-мышечный орган, играющий важную роль в продукции внутриглазной жидкости и в процессе аккомодации.


Цвет радужки определяет цвет глаза человека. В зависимости от количества пигмента в её наружном слое она имеет цвет от бледно-голубого или зелёноватого до тёмно-коричневого. В центре радужки находится отверстие – зрачок, через который свет попадает внутрь глаза. Важно отметить, что кровоснабжение и иннервация хориоидеи и радужки с цилиарным телом раличные, что отражается на клинике заболеваний такой в общем-то единой структуры, как сосудистая оболочка глаза.

Пространство между роговицей и радужкой является передней камерой глаза, а угол, образованный периферией роговицы и радужки, называется углом передней камеры. Через этот угол происходит отток внутриглазной жидкости сквозь специальную сложную дренажную систему в глазные вены. За радужкой находится хрусталик, который располагается перед стекловидным телом. Он имеет форму двояковыпуклой линзы и хорошо фиксирован множеством тонких связок к отросткам цилиарного тела.

Пространство между задней поверхностью радужки, цилиарным телом и передней поверхностью хрусталика и стекловидного тела называется задней камерой глаза. Передняя и задняя камеры заполнены бесцветной внутриглазной жидкостью или водянистой влагой, которая постоянно циркулирует в глазу и омывает роговицу, хрусталик, при этом питая их, так как собственных сосудов у этих структур глаза нет.

Самой внутренней, самой тонкой и самой важной для акта зрения оболочкой является сетчатка. Она представляет собой высокодифференцированную многослойную нервную ткань, которая выстилает сосудистую оболочку в её заднем отделе. От сетчатки берут начало волокна зрительного нерва. Он несёт всю полученную глазом информацию в виде нервных импульсов через сложный зрительный путь в наш мозг, где она преобразуется, анализируется и воспринимается уже как объективная реальность. Именно на сетчатку в конечном счёте попадает или не попадает изображение и в зависимости от этого, мы видим предметы чётко или не очень. Самой чувствительной и тонкой частью сетчатки является центральная область – макула. Именно макула обеспечивает наше центральное зрение.

Полость глазного яблока заполняет прозрачное, несколько желеобразное вещество – стекловидное тело. Оно поддерживает плотность глазного яблока и прилегает в внутренней оболочке - сетчатке, фиксируя её.

Оптическая система глаза

По своей сущности и предназначению, человеческий глаз – это сложная оптическая система. В этой системе можно выделить несколько наиболее важных структур. Это роговица, хрусталик и сетчатка. В основном, именно от состояния этих пропускающих, преломляющих и воспринимающих свет структур, степени их прозрачности зависит качество нашего зрения.
  • Роговица сильнее всех других структур преломляет световые лучи, далее проходяие через зрачок, который выполняет функцию диафрагмы. Образно говоря, как в хорошем фотоаппарате диафрагма регулирует поступление световых лучей и в зависимости от фокусного расстояния позволяет получать качественное изображение, так и зрачок функционирует в нашем глазу.
  • Хрусталик также преломляет и пропускает световые лучи далее на световоспринимающую структуру – сетчатку, своеобразную фотоплёнку.
  • Жидкость глазных камер и стекловидное тело также обладают преломляющими свет свойствами, но не такими значительными. Тем не менее, состояние стекловидного тела, степень прозрачности водянистой влаги глазных камер, наличие в них крови или других плавающих помутнений тоже может влиять на качество нашего зрения.
  • В норме световые лучи, пройдя через все прозрачные оптические среды, преломляются так, что попадая на сетчатку формируют уменьшенное, перевернутое, но реальное изображение.
Окончательный анализ и восприятие полученной глазом информации, происходит уже в нашем головном мозгу, в коре его затылочных долей.

Таким образом, глаз устроен очень сложно и удивительно. Нарушение в состоянии или кровоснабжении, любого структурного элемента глаза может отрицательно сказаться на качестве зрения.

Человеческий глаз часто приводят в качестве примера удивительной природной инженерии - но судя по тому, что это один из 40 вариантов устройств, которые появлялись в процессе эволюции у разных организмов, нам стоит поумерить свой антропоцентризм и признать, что по строению человеческий глаз не является чем-то совершенным.

Рассказ про глаз учше всего начать с фотона. Квант электромагнитного излучения неспешно влетает строго в глаз ничего не подозревающего прохожего, который жмурится от неожиданного блика с чьих-то часов.

Первая деталь оптической системы глаза - это роговица. Она меняет направление движения света. Это возможно благодаря такому свойству света, как преломление, ответственного в том числе за радугу. Скорость света постоянна в вакууме - 300 000 000 м/с. Но при переходе из одной среды в другую (в данном случае из воздуха в глаз) свет меняет свою скорость и направление движения. У воздуха коэффициент преломления равен 1,000293, у роговицы - 1,376. Это значит, что луч света в роговице замедляет свое движение в 1,376 раз и отклоняется ближе к центру глаза.

Любимый способ раскалывать партизан - светить им яркой лампой в лицо. Это больно по двум причинам. Яркий свет - это мощное электромагнитное излучение: триллионы фотонов атакуют сетчатку, и ее нервные окончания вынуждены передавать бешеное количество сигналов в мозг. От перенапряжения нервы, как провода, перегорают. При этом мышцы радужки вынуждены сжиматься так сильно, как только могут, отчаянно пытаясь закрыть зрачок и защитить сетчатку.

И подлетает к зрачку. С ним все просто - это отверстие в радужной оболочке. За счет круговых и радиальных мышц радужная оболочка может соответственно сужать и расширять зрачок, регулируя количество света, проникающего в глаз, как диафрагма в фотоаппарате. Диаметр зрачка человека может меняться от 1 до 8 мм в зависимости от освещенности.

Пролетев сквозь зрачок, фотон попадает на хрусталик - вторую линзу, ответственную за его траекторию. Хрусталик преломляет свет слабее, чем роговица, зато он подвижен. Хрусталик висит на цилинарных мышцах, которые меняют его кривизну, тем самым позволяя нам фокусироваться на предметах на разном расстоянии от нас.

Именно с фокусом связаны нарушения зрения. Самые распространенные - близорукость и дальнозоркость. Изображение в обоих случаях фокусируется не на сетчатке, как должно, а перед ней (близорукость), или за ней (дальнозоркость). Виноват в этом глаз, который меняет форму с круглой на овальную, и тогда сетчатка удаляется от хрусталика или приближется к нему.

После хрусталика фотон пролетает сквозь стекловидное тело (прозрачный студень - 2/3 объема всего глаза, на 99% - вода) прямиком на сетчатку. Здесь регистрируются фотоны, и сообщения о прибытии отправляются по нервам в мозг.

Сетчатка устлана клетками-фоторецепторами: когда света нет, они вырабатывают специальные вещества - нейротрансмиттеры, но как только в них попадает фотон, клетки-фоторецепторы перестают их вырабатывать - и это сигнал для мозга. Есть два типа этих клеток: палочки, которые более чувствительны к свету, и колбочки, которые лучше различают движение. Палочек у нас около ста миллионов и еще 6-7 миллионов колбочек, итого больше ста миллионов светочувствительных элементов - это больше 100 мегапикселей, что никакому «хасселю» не снилось.

Слепое пятно - точка прорыва, где совсем нет светочувствительных клеток. Оно довольно большое - 1-2 мм в диаметре. К счастью, у нас бинокулярное зрение и есть мозг, который совмещает две картинки c пятнами в одну нормальную.

На моменте передачи сигнала в человеческом глазу возникает проблема с логикой. Подводный, не особо нуждающийся в зрении житель осьминог в этом смысле гораздо последовательней. У осьминогов фотон сначала врезается в слой колбочек и палочек на сетчатке, сразу за которым ждет слой нейронов и передает сигнал в мозг. У человека свет сперва продирается сквозь слои нейронов - и только потом ударяется в фоторецепторы. Из-за этого в глазу есть первое пятно - слепое.

Второе пятно - желтое, это центральная область сетчатки прямо напротив зрачка, чуть выше зрительного нерва. Этим местом глаз видит лучше всего: концентрация светочувствительных клеток здесь сильно увеличена, поэтому наше зрение по центру визуального поля значительно острее периферийного.

Изображение на сетчатке перевернуто. Мозг умеет правильно интерпретировать картинку, и восстанавливает из перевернутого оригинальное изображение. Дети первые пару дней видят все вверх ногами, пока их мозг устанавливает свой фотошоп. Если надеть очки, переворачивающие изображение (это впервые проделали еще в 1896 году), то через пару дней наш мозг научится интерпретировать и такую перевернутую картинку правильно.

Человеческий орган зрения почти не отличается по своему строению от глаза других млекопитающих, а это значит, что в процессе эволюции строение глаза человека не претерпело значительных изменений. И сегодня глаз по праву можно назвать одним из самых сложных и высокоточных устройств, созданных природой для человеческого организма. Подробнее с тем, как устроен человеческий зрительный аппарат, из чего состоит глаз и как он работает, вы познакомитесь в этом обзоре.

Общие сведения об устройстве и работе органа зрения

Анатомия глаза включает его внешнее (визуально видимое снаружи) и внутреннее (расположенное внутри черепа) строение. Внешняя часть глаза, доступная для наблюдения, включает в себя такие органы:

  • Глазница;
  • Веко;
  • Слезные железы;
  • Конъюнктива;
  • Роговица;
  • Склера;
  • Радужная оболочка;
  • Зрачок.

Снаружи на лице глаз выглядит как щель, но на самом деле глазное яблоко имеет форму шара, слегка вытянутого ото лба к затылку (по сагиттальному направлению) и имеющего массу около 7 г. Удлинение переднезаднего размера глаза больше нормы приводит к близорукости, а укорочение – к дальнозоркости.

Веки, слезные железы и ресницы

Эти органы не относятся к структуре глаза, но без них невозможна нормальная зрительная функция, поэтому их тоже стоит рассмотреть. Работа век заключается в увлажнении глаз, удалении из них соринок и защите их от повреждений.

Регулярное увлажнение поверхности глазного яблока происходит при моргании. В среднем человек моргает 15 раз в минуту, при чтении или работе с компьютером – реже. Слезные железы, расположенные в верхних наружных уголках век, работают непрерывно, выделяя одноименную жидкость в конъюнктивальный мешок. Излишки слез удаляются из глаз через носовую полость, попадая в нее через особые канальцы. При патологии, которая дакриоциститом называется, уголок глаза не может сообщаться с носом из-за закупорки слезного канала.

Внутренняя сторона века и передняя видимая поверхность глазного яблока покрыта тончайшей прозрачной оболочкой – конъюнктивой. В ней тоже имеются добавочные мелкие слезные железы.

Именно ее воспаление или повреждение вызывает у нас чувство песка в глазу.

Веко держит полукруглую форму благодаря внутренней плотной хрящевой прослойке и круговым мышцам – смыкателям глазной щели. Края век украшены 1-2 рядами ресниц – они защищают глаза от пыли и пота. Здесь же открываются выводные протоки мелких сальных желез, воспаление которых называют ячменем.

Глазодвигательные мышцы

Эти мышцы работают активнее всех других мышц человеческого тела и служат для придания направления взгляду. От несогласованности в работе мышц правого и левого глаза возникает косоглазие. Специальные мышцы приводят в движение веки – поднимают и опускают их. Глазодвигательные мышцы крепятся своими сухожилиями к поверхности склеры.

Оптическая система глаза


Попробуем представить то, что внутри глазного яблока. Оптическая структура глаза состоит из светопреломляющего, аккомодационного и рецепторного аппаратов . Ниже приведено краткое описание всего пути, проходимого световым лучом, попадающим в глаз. Устройство глазного яблока в разрезе и прохождение через него световых лучей представит вам предложенный далее рисунок с обозначениями.

Роговица

Первая глазная «линза», на которую попадает и преломляется отраженный от предмета луч – это роговица. Это то, чем покрыт с передней стороны весь оптический механизм глаза.

Именно она обеспечивает обширное поле зрения и четкость изображения на сетчатке.

Повреждения роговицы ведут к туннельному зрению – человек видит окружающий мир как будто через трубу. Сквозь роговицу глаз «дышит» – она пропускает кислород извне.

Свойства роговицы:

  • Отсутствие кровеносных сосудов;
  • Полная прозрачность;
  • Высокая чувствительность к внешнему воздействию.

Сферическая поверхность роговицы предварительно собирает все лучи в одну точку, чтобы затем спроецировать ее на сетчатку . По подобию этого естественного оптического механизма созданы различные микроскопы и фотоаппараты.

Радужная оболочка со зрачком

Часть прошедших через роговицу лучей отсеивается радужкой. Последняя отграничена от роговицы небольшой полостью, наполненной прозрачной камерной жидкостью – передней камерой.

Радужка представляет собой подвижную светонепроницаемую диафрагму, регулирующую проходящий поток света. Круглая цветная радужка расположена сразу за роговицей.

Цвет ее варьирует от светло-голубого до темно-коричневого и зависит от расы человека и от наследственности.

Иногда встречаются люди, у которых левый и правый глаз имеют разный цвет. Красный цвет радужки бывает у альбиносов.

Р адужная оболочка снабжена кровеносными сосудами и оснащена особыми мышцами – кольцевыми и радиальными. Первые (сфинктеры), сжимаясь, автоматически сужают просвет зрачка, а вторые (дилататоры), сокращаясь, при необходимости расширяют его.

Зрачок находится в центре радужки и представляет собой круглое отверстие диаметром 2 – 8 мм. Его сужение и расширение происходит непроизвольно и никак не контролируется человеком. Сужаясь на солнце, зрачок защищает сетчатку глаза от ожога. Кроме как от яркого света, зрачок сужается от раздражения тройничного нерва и от некоторых медикаментов. Расширение зрачков может произойти от сильных негативных эмоций (ужас, боль, гнев).

Хрусталик

Дальше световой поток попадает на двояковыпуклую эластичную линзу – хрусталик. Он является аккомодационным механизмом, расположен позади зрачка и отграничивает собой передний отдел глазного яблока, включающий роговицу, радужную оболочку и переднюю камеру глаза. Сзади к нему плотно примыкает стекловидное тело.

В прозрачном белковом веществе хрусталика отсутствуют кровеносные сосуды и иннервация. Вещество органа заключено в плотную капсулу. Капсула хрусталика радиально прикреплена к цилиарному телу глаза с помощью так называемого ресничного пояска. Натяжение или ослабление этого пояска меняет кривизну хрусталика, что позволяет четко видеть как приближенные, так и отдаленные предметы. Это свойство называется аккомодацией.

Толщина хрусталика меняется от 3 до 6 мм, диаметр зависит от возраста, у взрослого человека достигая 1 см. Для детей новорожденного и грудного возраста характерна практически шарообразная форма хрусталика за счет его малого диаметра, но по мере взросления ребенка диаметр линзы постепенно увеличивается. У пожилых людей аккомодационные функции глаз ухудшаются.

Патологическое помутнение хрусталика называется катарактой.

Стекловидное тело

Стекловидным телом заполнена полость между хрусталиком и сетчаткой. Его состав представлен прозрачным студенистым веществом, свободно пропускающим свет. С возрастом, а также при высокой и средней близорукости, в стекловидном теле появляются мелкие помутнения, воспринимаемые человеком как «летающие мушки». В стекловидном теле отсутствуют кровеносные сосуды и нервы.

Сетчатая оболочка и зрительный нерв

Пройдя через роговицу, зрачок и хрусталик, лучи света фокусируются на сетчатке. Сетчатка – это внутренняя оболочка глаза, отличающаяся сложностью своего строения и состоящая в основном из нервных клеток. Она представляет собой разросшуюся вперед часть головного мозга.

Светочувствительные элементы сетчатки имеют вид колбочек и палочек. Первые являются органом дневного зрения, а вторые – сумеречного.

Палочки способны воспринимать очень слабые световые сигналы.

Дефицит в организме витамина А, который входит в состав зрительного вещества палочек, приводит к куриной слепоте – человек плохо видит в сумерках.


От клеток сетчатки берет свое начало зрительный нерв, представляющий собой соединенные вместе нервные волокна, исходящие из сетчатой оболочки. Место вхождения зрительного нерва в сетчатую оболочку называется слепым пятном, так как оно не содержит фоторецепторов. Зона с наибольшим количеством светочувствительных клеток расположена над слепым пятном, примерно напротив зрачка, и получила название «Желтое пятно».

Человеческие органы зрения устроены так, что на своем пути к полушариям головного мозга часть волокон зрительных нервов левого и правого глаза перекрещиваются. Поэтому в каждом из двух полушарий мозга есть нервные волокна как правого, так и левого глаза. Точка перекрещивания зрительных нервов называется хиазмой. Изображенная далее картинка указывает на место расположения хиазмы – основание головного мозга.

Построение пути светового потока таково, что рассматриваемый человеком предмет отображается на сетчатке в перевернутом виде.

После этого изображение с помощью зрительного нерва передается в мозг, «переворачивающий» его в нормальное положение. Сетчатая оболочка и зрительный нерв – это рецепторный аппарат глаза.

Глаз – одно из совершенных и сложных созданий природы. Малейшее нарушение хотя бы в одной из его систем ведет к расстройствам зрения.

Видео, которые будут Вам интересны: