Хаябуса 2 автоматическая межпланетная станция. Рассказываем о миссии Hayabusa2: космический аппарат доставил двух роботов на астероид Рюгу

В будущем на поверхность космического тела буду спущены новые аппараты

Космический аппарат «Хаябуса-2», созданный в Японии, осуществил сближение с астероидом Рюгу для высадки на его поверхность двух небольших спускаемых модулей. Данный проект освещался в СМИ менее ярко, чем полёт «Розетты» к комете Чурюмова-Герасименко, однако во многих отношениях он является не менее амбициозным.

Фото: Japan Aerospace Exploration Agency

Название аппарата переводится с японского языка как «Сапсан». Он является уже вторым в серии - первый зонд был запущен 9 мая 2003 года, а более двух лет спустя достиг астероида Итокава, а 13 июня 2010 года вернулся на Землю вместе со спускаемой капсулой, содержащей образцы вещества астероида. Несмотря на то, что тогда цель миссии была успешно достигнута, далеко не всё пошло по первоначальному плану - работа солнечных батарей была нарушена после мощной солнечной вспышки, из-за чего полёт занял больше времени, чем ожидалось, и ионные двигатели также работали не безупречно. Во время сближения вышли из строя два из трёх гироскопов на борту, а из-за программных сбоев обе произведённые посадки прошли не совсем удачно. Тем не менее, после того, как аппарат провёл на поверхности астероида почти три года, учёным удалось перезапустить его ионный двигатель и отправить космический аппарат к Земле. На астероиде Итокава осталась алюминиевая пластинка с именами 880 тысяч землян из почти 150 стран.

Правообладатель иллюстрации Jaxa et al. Image caption Первые изображения показали, что астероид Рюгу имеет форму юлы или волчка

Японский космический зонд "Хаябуса-2" достиг своей цели - астероида Рюгу, который напоминает по форме юлу. На путь ушло три с половиной года.

Задача зонда - изучение астероида и доставка на Землю образцов пород, из которых он состоит. Зонд пошлет на поверхность Рюгу небольшой спускаемый аппарат, который должен доставить на поверхность астероида ряд приборов.

Доктор Макото Есикава, руководитель проекта, рассказал о готовящейся программе работ японского зонда: "Прежде всего, мы очень внимательно изучим рельеф поверхности. Затем выберем место посадки. Именно там будут собраны пробы пород".

  • Астрономы исследуют космический объект в форме пельменя

Затем с борта зонда в сторону астероида будет выстрелен медный стержень, оснащенный зарядом взрывчатки. Когда зонд отойдет от него на безопасное расстояние, заряд будет подорван, и стержень устремится на большой скорости к поверхности астероида.

Правообладатель иллюстрации JAXA / Akihiro Ikeshita Image caption "Хаябуса-2" запустит в сторону поверхности астероида медный ударный штырь, который выбьет небольшой кратер

"Это ударное устройство создаст на поверхности небольшой кратер. Вероятно, весной будущего года мы посадим в него наш посадочный модуль, чтобы получить образцы пород, лежащих под поверхностью астероида", - рассказал Есикава.

По словам доктора Есикавы, профессора японского Института космических исследований, астероид Рюгу, как оказалось, имеет неожиданную форму.

Астероиды такой формы - около 900 метров в диаметре - обычно быстро вращаются вокруг собственной оси, совершая полный оборот за 3-4 часа. Но Рюгу имеет более продолжительный день - он длится семь с половиной часов.

"Многие участники нашего проекта считают, что в прошлом этот астероид вращался гораздо быстрее, но что-то произошло и это вращение замедлилось. Мы не знаем, что именно вызвало это замедление, и это очень интересный вопрос", - говорит профессор.

Зонд "Хаябуса-2" проведет на орбите вокруг астероида около полутора лет, обследуя это небесное тело, которое находится в 290 млн км от Земли.

Правообладатель иллюстрации DLR Image caption На борту зонда есть блок научных приборов MASCOT, разработанный немецкими учеными. Он будет высажен на поверхности астероида

За это время на поверхность астероида будет высажено несколько посадочных модулей, в том числе передвижные лаборатории и разработанный в Германии блок научных приборов.

Астероид Рюгу принадлежит к типу С, который считается относительно примитивным. Это означает, что на его поверхности могут оказаться органические материалы и гидраты. Изучение химического состава астероида может дать ученым новое понимание ранних этапов эволюции Солнечной системы.

Поверхность астероида за миллиарды лет подверглась сильной эрозии под воздействием солнечного ветра и других космических факторов. Именно поэтому японские ученые считают важным получить свежие образцы его пород из выбитого медным стержнем кратера.

На борту зонда имеется лидар или лазерный дальномер, который используется для маневра зонда у астероида. Он освещает цель с помощью лазерного луча и измеряет точное расстояние до нее. Во вторник, 26 июня, ученым удалось воспользоваться лидаром для успешного определения расстояния до поверхности астероида.

В декабре 2019 года планируется старт зонда с полученными образцами пород с орбиты вокруг астероида к Земле.

Первый аппарат серии "Хаябаса" ("Сокол") был запущен в 2003 году. В 2005 году он достиг астероида Итокава. Несмотря на ряд технических сложностей, зонд вернулся на Землю в 2010 году с образцами пород астероида.

17:23 28/09/2018

0 👁 880

АстрономияКосмонавтикаПриключения «Хаябусы-2» 16:40 28 Сен. 2018 Сложность 3.1 Зонд «Хаябуса-2» прислал самый детальный снимок поверхности астероида Рюгу Снимок поверхности Рюгу, полученный камерой ONC-T «Хаябусы-2» с расстояния 64 метра. JAXA, University of Tokyo, Kochi University, Rikkyo University, Nagoya University, Chiba Institute of Technology, Meiji University, Aizu University, AIST

Межпланетная станция «Хаябуса-2» прислала на самую детальную на сегодняшний день фотографию поверхности Рюгу, сделанную во время высадки MINERVA-Ⅱ 1. Оказалось, что поверхностный слой Рюгу состоит из более крупных частиц, чем грунт астероида Итокава, изучавшийся миссией «Хаябуса», сообщается в пресс-релизе на сайте миссии.

Автоматическая межпланетная станция «Хаябуса-2» была запущена в космос 3 декабря 2014 года и предназначена для доставки образцов грунта с околоземного астероида 162173 Ryugu, который принадлежит к астероидам класса С. Аппарат успешно прибыл к астероиду 27 июня и вышел на стабильную 20-километровую вокруг него. По плану научная программа миссии продлится полтора года, во время которых аппарат будет исследовать Рюгу с орбиты, а также в ходе подлета к нему выстрелит по поверхности устройством SCI (Small Carry-on Impactor), состоящим из медного снаряда и заряда взрывчатки, тем самым исследователи получат возможность изучить состав верхнего слоя грунта астероида, а также спустят на его поверхность спускаемые модули MASCOT (Mobile Asteroid Surface Scout) и MINERVA-Ⅱ 2. После взятия пробы грунта с поверхности Рюгу станция отправится обратно к Земле и сбросит капсулу с веществом астероида в декабре 2020 года. Подробнее о миссии, ее задачах и инструментах можно прочитать в нашем материале «Собрать прошлое по крупицам».

21 сентября 2018 года станция «Хаябуса-2» снизилась до высоты в 55 метров от поверхности Рюгу и сбросила на нее два небольших спускаемых модуля MINERVA-II 1. Модули Rover-1A и 1B имеют диаметр 18 сантиметров каждый, высоту 7 сантиметра и вес около 1,1 килограмма. Они оснащены камерами, датчиками для измерения температуры грунта, оптическими датчиками, акселерометром и гироскопом и способны перемещаться по поверхности астероида за счет прыжкового механизма. 22 сентября на Землю пришло подтверждение успешной посадки модулей, которые сейчас находятся в работоспособном состоянии и присылают новые фотографии, сделанные в ходе передвижений по поверхности Рюгу.

Во время снижения, когда до Рюгу оставалось 64 метра, орбитальный аппарат смог получить при помощи своей бортовой камеры ONC-T (Optical Navigation Camera – Telescopic) самое детальное изображение поверхности астероида, неровной и усеянной валунами различных размеров. В дальнейшем другая камера ONC-W1 получила изображение более большой области с расстояния 70 метров от поверхности астероида. Предшественник «Хаябусы-2» - миссия «Хаябуса» (или MUSES-C), работавшая в 2003-2010 годах и исследовавшая околоземный астероид S-класса (25143) Итокава, получила самый четкий снимок его поверхности с расстояния 63 метра, на котором видно, что, в отличие от Рюгу, поверхностный слой Итокавы состоит из более мелких частиц, размером от нескольких миллиметров до нескольких сантиметров.

«Хаябуса-2» - не первый и не последний проект по исследованию грунта . В июле 2005 года исследование поверхности

Уже совсем скоро на орбиту астероида (162173) Рюгу выйдет автоматическая межпланетная станция (АМС) японского агентства аэрокосмических исследований (JAXA) «Хаябуса-2» (яп. はやぶさ2 — «Сапсан-2» ). Эта станция более трёх с половиной лет двигалась к своей заветной цели, и вот теперь она уже почти её достигла. Вскоре мы узнаем много нового об астероиде (162173) Рюгу, а пока стоит рассмотреть сам японский аппарат.

АМС «Хаябуса-2» в представлении художника.

Станция больше года будет исследовать (162173) Рюгу, попутно спустив на его поверхность сразу четыре небольших зонда. В декабре 2019 года, если всё пойдёт по плану, АМС полетит обратно к Земле с образцами грунта. А в декабре 2020 года эти образцы будут доставлены на Землю в специальной капсуле.

Цель АМС

Целью АМС является астероид (162173) Рюгу, или 1999 JU 3 . Астероид был открыт 10 мая 1999 года в рамках проекта LINEAR в обсерватории Сокорро. Своё название — Рюгу — небесное тело получило в сентябре 2015 года, причём как раз из-за запуска к нему зонда. Название это происходит из японской мифологии, в которой Рюгу-дзё — подводный дворец-резиденция дракона Рюдзина, властителя подводного мира и морской стихии. По легенде, дворец выстроен из белых и красных кораллов в самом глубоком месте океана и очень богато обставлен.

(162173) Рюгу — типичный околоземный астероид из группы Аполлонов. Принадлежит к тёмному спектральному классу C, подгруппа (по SMASS) - Cg. Астероиды этого класса характеризуются очень низким альбедо (0,03 — 0,10), спектр подкласса Cg имеет яркие особенности в коротковолновой части (<550 нм) и становится плоским или слегка красноватым в остальной. Астероиды класса С очень распространены: более 75% всех известных астероидов принадлежат именно к этому классу.

(162173) Рюгу. В ближайшее время будут получены более качественные изображения этого небесного тела. Credit: JAXA.

Размер (162173) Рюгу оценивается в 920 метров. Отнюдь не самый большой астероид из известных нам. Перигелий (самая близкая к Солнцу точка орбиты ) у него составляет 0,96 а.е., а афелий (самая дальняя от Солнца точка орбиты ) — 1,42 а.е. Пересекает орбиту Земли и Марса. Период вращения вокруг своей оси — 7,63 часа, причём его ось вращения перпендикулярна орбите (т.е. астероид вращается как бы «на боку»). Период обращения вокруг Солнца — 1,3 земных года.

Орбита астероида (162173) Рюгу (1999 JU 3).

Предыдущая японская миссия

«Хаябуса-2», как видно из названия, не является первой японской станцией, запущенной для исследования астероидов. Первой же японской станцией была АМС «Хаябуса», запущенная 9 мая 2003 года к астероиду (25143) Итокава. Этот астероид, в отличие от (162173) Рюгу, имеет меньшие размеры и принадлежит к классу S. Оба аппарата имеют схожую конструкцию.

«Хаябуса» на орбите (25143) Итокава в представлении художника. Более подробно о различиях между аппаратами будет сказано далее в статье.

Запуск первой японской станции — «Хаябуса» — был произведён с расположенного в префектуре Кагосима космодрома Космического центра Утиноура с помощью твердотопливной ракеты-носителя (РН) Mu-5. Сближение зонда с астероидом произошло в сентябре 2005 года, но грунт был доставлен на Землю только летом 2010 года.

Причём доставлен этот грунт был с горем пополам: специалисты, курирующие миссию, столкнулись с огромным числом проблем в работе АМС. Во время полёта к небесному телу произошла сильная солнечная вспышка, которая нарушила работу солнечных батарей, также возникли проблемы с ионными двигателями. Это снизило до минимума манёвренность аппарата. Из-за этого космический корабль достиг астероида лишь в сентябре 2005 года, а не в июле. Но на этом проблемы с зондом отнюдь не закончились. Когда «Хаябуса» долетела (наконец-то) до астероида, то специалисты обнаружили новую проблему: на АМС сломалось несколько гироскопов. Через некоторое время станция начала сближаться с поверхностью, всего же она должна была осуществить на Итокаве три короткие посадки — одну пробную и две штатные. Но первая посадка из-за ряда сбоев прошла неудачно. Кроме того, аппарат должен был выпустить на поверхность крошечного робота «Минерва». Это маленькое устройство цилиндрической формы (диаметр — 12 см, длина — 10 см) было оснащено тремя камерами, солнечными батареями и передатчиком. Однако связь с «Минервой» установить не удалось. Аппарат, как считают специалисты, промахнулся мимо астероида, улетев в космос. Самая последняя посадка предполагала новую попытку забора грунта с поверхности. Но и тут всё пошло наперекосяк: в момент максимального сближения с поверхностью астероида произошел сбой компьютера, аппарат потерял ориентацию и повредил один из двигателей. А после специалисты и вовсе потерли с ним связь…

Через некоторое время связь удалось всё-таки восстановить. Но ионный двигатель перезапустить не удавалось аж до 2009 года, и всё это долгое время возврат станции с грунтом на Землю был под большим вопросом. Но в июне 2010 года станция всё же долетела до Земли, отстрелив капсулу с образцами грунта. Капсула приземлилась в районе полигона Вумера, что на юге Австралии, а сама «Хаябуса» сгорела в атмосфере Земли, завершив свою долгую и трудную миссию.

Возврат на Землю капсулы с грунтом. Полигон Вумера. Снимок был сделан с большой выдержкой. Сredit: NASA/Ed Schilling.

«Хаябуса» сгорела в атмосфере Земли... Credit: Ames Research/NASA.

При создании АМС «Хаябуса-2» японцы проанализировали все сбои и аварии на предыдущей миссии. И пока, к счастью, у новой станции проблем нет.

«Хаябуса-2»

Проектированием и изготовлением станции занималась японская компания NEC Toshiba Space Systems.

Запуск станции «Хаябуса-2» произошёл 3 декабря 2014 с космодрома космического центра Танэгасима, расположенного в префектуре Кагосима. Для запуска использовали РН H-IIA.

Масса аппарата на старте — 609 кг. Размеры — 1×1,6×1,25 м. Источник энергии — солнечные батареи. На расстоянии 1 а.е. солнечные батареи обеспечат до 2,4 кВт мощности, а в афелии астероида (1,4 а.е.) — 1,4 кВт.

На «Хаябуса-2» установили четыре модифицированных ионных двигателя μ10, каждый из которых обеспечивает тягу до 10 мН. На предыдущей АМС «Хаябуса» тоже были установлены двигатели μ10, однако они обладали меньшей тягой (8,5 мН каждый). Рабочее тело — ксенон. Двигатель может работать в четыре шага переключения с мощностью 250 Вт/500 Вт/750 Вт/ 1000 Вт (1 кВт) на каждом шаге соответственно. На «Хаябуса-2» также установили и улучшенную систему подачи рабочего тела в двигатели.

Ионные двигатели используются как маршевые. Маневровые же двигатели работают на гидразине.

Вместо параболической зеркальной антенны, установленной на «Хаябуса», была установлена плоская антенна (работает на частоте 32 ГГц) с высоким коэффициентом усиления. Очень похожая антенна была установлена на АМС «Акацуки». Связь между Землёй и аппаратом будет поддерживаться в Ка-диапазоне. Однако Японии не хватает собственных станций для принятия/передачи сигналов в этом диапазоне, поэтому для связи японцы преимущественно используют сеть дальней космической связи NASA (DSN) и европейскую сеть космической связи ESTRACK.

АМС «Хаябуса-2» во время сборки. Credit: JAXA/NEC.

АМС «Хаябуса-2» во время сближения с астероидом в представлении художника.

На «Хаябуса-2» улучшили и систему ориентации. Были установлены новые, более надёжные гироскопы. Причём теперь их стало сразу четыре, а не три, как было на «Хаябуса».

На АМС установлен ударный цельнометаллический заряд Small Carry-on Impactor (SCI) , состоящий из медного снаряда и заряда взрывчатки (пластифицированный октоген) для формирования ударного ядра. Вся масса SCI — 18 кг, из которых 4,7 кг приходится на взрывчатку. Масса медной пластины, из которой и будет формироваться ударное ядро, составляет 2,5 кг. Заряд должен будет образовать искусственный кратер, обнажив более глубокий материал. Этот материал станция будет исследовать в дальнейшем. В целях безопасности сама «Хаябуса-2» в этот момент будет находиться в тени астероида, а взрыв будет осуществлён на его освещённой стороне (т.е. с противоположной стороны от АМС). Поэтому станция не сможет наблюдать взрыв. Но как быть? Для наблюдения взрыва станция выпустит специальное устройство — DCAM 3 , на нём и будет находиться камера. DCAM 3 будет передавать изображение на саму АМС «Хаябуса-2», а она уже будет передавать данные на Землю. DCAM 3 начнёт производить съёмку (162173) Рюгу с момента отделения от АМС.

Отделяемый от АМС аппарат DCAM 3 создан на основе зонда IKAROS. А последний, кстати, был испытан в космосе всего лишь за несколько лет до запуска «Хаябуса-2».

Модель IKAROS на 61-м Международном конгрессе астронавтики. Прага. Credit: ISAS/JAXA/Pavel Hrdlička.

На «Хаябуса-2» установили немало камер: три оптические навигационные камеры (ONC-T, ONC-W1, ONC-W2), CAM-C на пробоотборнике и термоинфракрасную камеру (TIR). Последняя является тепловизором, т. е. может определять температуру поверхности (162173) Рюгу. Ещё есть лидар и спектрометр.

Оптические навигационные камеры (англ. Optical Navigation Cameras, ONC ) используются для дистанционного зондирования, а также при подлёте станции к (162173) Рюгу. Камера ONC-T обладает углом обзора 6,35°×6,35° и системой фильтров. ONC-W1 и ONC-W2 являются уже широкоугольными камерами (65,24°х65,24°), работают в диапазоне от 485 до 655 нм.

Ближний ИК-спектрометр (англ. Near-Infrared Spectrometer, NIRS3 ) предназначен для анализа состава вещества астероида.

Тепловизор TIR (англ. Thermal-Infrared Imager ) будет использоваться для определения температуры поверхности (162173) Рюгу в диапазоне от -49 до 150°С (224-423К). Определение температуры производят с помощью двухмерной микроболометрической решётки. Пространственное разрешение TIR составляет 20 м на расстоянии 20 километров и 5 см на расстоянии 50 метров.

Устройство лидар измеряет расстояние от космического корабля до поверхности астероида. Принцип работы заключается в следующем: направленный луч от источника излучения отражается от цели (поверхности астероида), возвращается к источнику и улавливается высокочувствительным приёмником; время отклика прямо пропорционально расстоянию до поверхности. А если знать время отклика и скорость движения света, то легко можно определить и расстояние от поверхности астероида до зонда.

Система сбора образцов грунта аналогична установленной на «Хаябуса», но является, что неудивительно, более совершенной. Сбор будет происходить с помощью специального пробоотборника, представляющего собой специальную трубку. Когда АМС коснётся ею поверхности астероида, то автоматика выстрелит внутри трубки специальным конусообразным танталовым снарядом. Снаряд, имеющий массу в пять грамм, врежется в поверхность астероида со скоростью 300 м/с и поднимет часть реголита. Последний, двигаясь в условиях микрогравитации, самостоятельно попадёт в специальный сборник. Но даже если этот механизм не сработает, то возможность сбора образцов всё равно остаётся: инженерами дополнительно был установлен ещё один специальный механизм, который сможет подцепить и поднять реголит.

На пробоотборнике также установили специальную камеру CAM-C . Она будет фиксировать процесс сбора реголита станцией.

Посадочные зонды

«Хаябуса-2» спустит на поверхность астероида сразу несколько миниатюрных зондов, некоторые из них помещены в специальные контейнеры: MINERVA-II-1 (содержит ROVER-1A и ROVER-1B), MINERVA-II-2 (содержит ROVER-2) и MASCOT. АМС оставит их на высоте в 60 метров над астероидом. После контейнеры начнут медленно опускаться на поверхность (если их скорость будет меньше первой космической для (162173) Рюгу). Ускорение свободного падения на таком маленьком небесном теле очень мало, поэтому устройствам ничего не грозит.

ROVER-1A и ROVER-1B , разработанные JAXA и Университетом Айзу, имеют цилиндрическую форму с диаметром 18 см и высотой 7 см. Масса каждого устройства — 1,1 кг. Имеют две камеры (широкоугольную и стереокамеру) и термометр. Но ещё интереснее то, как они будут двигаться по поверхности астероида. Внутри них находятся небольшие электромоторы, на оси которых установлен эксцентрик. Вращение мотора с эксцентриком приводит к изменению центра тяжести, и под действием инерции происходит движение: устройства подпрыгивают над поверхностью, благодаря чему они смогут по ней спокойно передвигаться в условиях микрогравитации.
Контейнер MINERVA-II-2 разместит ROVER-2 . Это устройство было разработано несколькими университетами во главе с Университетом Тохоку. Является восьмиугольной призмой, способной, как ROVER-1A и ROVER-1B, передвигаться по поверхности. Диаметр описанной вокруг основания окружности — 15 см, высота — 16 см. Масса — 1 килограмм. Имеет две камеры, термометр и акселерометр, также имеет светодиоды, работающие в видимом и ультрафиолетовом диапазонах. Они предназначены для подсветки летающей над астероидом пыли.

Источник питания всех этих аппаратов — солнечные батареи.

MASCOT (англ. Mobile Asteroid Surface Scout ) — крупнейший посадочный зонд из всех. Имеет более крупные размеры: 29,5×27,5×19,5 см. Масса — 9,6 кг. MASCOT оборудован инфракрасным спектрометром, магнитометром, радиометром и камерой. Способен передвигаться по поверхности астероида точно так же, как и другие зонды. Был разработан Германским центром авиации и космонавтики (DLR) совместно с Национальным центром космических исследований Франции (CNES). На аппарате установлена литий-ионная батарея, её заряда должно хватить на 16 часов непрерывной работы.

Связь всех этих устройств с Землёй, как и случае с DCAM 3, будет осуществляться через АМС.

Заключение

Благодаря АМС «Хаябуса-2» люди смогут узнать немало нового хоть и о маленьком, но необычном и интересном мире. Новые знания помогут нам узнать много нового и о Солнечной системе, к примеру, об её эволюции. В JAXA уже заявили, что хотят попытаться найти на (162173) Рюгу органические молекулы. Учёные, найдя/не найдя их, смогут больше понять о роли астероидов в происхождении жизни на Земле.

Японцы, проанализировав все недочёты предыдущей миссии, создали новый, более надёжный аппарат. Станции предстоит ещё выполнить немало работы, но проблем с ней пока нет. Будем надеяться, что их и не будет.

Зонд формирует ударный кратер на поверхности астероида. Иллюстрация художника

3 декабря 2014 года космический зонд «Хаябуса-2» был успешно с космодрома Танэгасима. Цель зонда - астероид 1999 JU3. Его открыли 10 мая 1999 года в рамках проекта LINEAR сотрудники обсерватории Сокорро. Ничего особенного в этом астероиде нет, за исключением того, что именно к нему было решено отправить зонд «Хаябуса-2» для высадки и забора проб вещества объекта. Аппарат является разработкой Японского агентства аэрокосмических исследований (JAXA).

Первый аппарат «Хаябуса» посетил астероид Итокава в 2005 году. Новый объект для изучения в два раза больше, чем Итокава, его диаметр составляет 0,92 км. Он вполне обычный, принадлежит к группе Аполлона. Орбита астероида вытянута, благодаря чему, вращаясь вокруг Солнца, он пересекает орбиты Земли и Марса. Так вот, «Хаябуса-2» на прошлой неделе наконец достиг конечной цели своего путешествия.

Последующие полтора года зонд будет изучать астероид как со стороны, с орбиты, так и на поверхности - для этого будет использоваться спускаемый модуль (причем не один, а несколько). Модуль должен будет не только забрать пробы вещества астероида, но и доставить его обратно на станцию. А та, в свою очередь, через пять лет «отвезет» ценный груз на Землю, для изучения в лабораториях. Пробы будут находиться в герметичной капсуле.

Зонд «Хаябуса-2» отправляется в космос при помощи ракеты-носителя

Зачем вообще изучать астероиды?

Дело в том, что многие из них являются ровесниками самой Солнечной системы, причем если планеты и планетоиды эволюционируют, изменяются, то астероиды в большинстве случаев остаются такими же, какими они были на заре существования. Таким образом, если понять, из чего состоит астероид, можно получить представление о том, из чего формировалась Солнечная система, ее планеты и спутники планет. Возможно, все это поможет в конечном итоге выяснить, как появилась жизнь, хотя это и более сложный вопрос.

Кроме того, ученые надеются получить ответ на вопрос о том, каким образом тип звезды и особенности ее «работы» влияют на процесс формирования планет. У астрономов уже есть достаточно много данных о составе астероидов, которые были получены путем наблюдений, составления разного рода моделей и комбинированием полученных данных в единое целое - научные данные.

Кстати, миссия «Хаябусы-2» вовсе не уникальна в плане доставки вещества астероида на Землю. Предшественник, первый зонд «Хаябуса» успешно собрал и отправил пробы грунта астероида Итокава на Землю. Это была сложнейшая миссия, сопровождавшаяся техническими проблемами, но все же вышедшая в конечном итоге на финишную прямую. В процессе работы у самой станции выходили из строя двигатели, отдельные элементы конструкции, пострадал зонд, грунт астероида был собран с трудом. Но в целом, все прошло хорошо. На основе полученных данных инженеры и ученые получили возможность создать более совершенный зонд, который теперь изучает астероид.

Что касается 1999 JU3 , то причин, по которым зонд был отправлен именно к этому астероиду, две. Первая - вытянутая орбита, о которой уже говорилось выше. Вторая - возраст объекта. Астероиды такого типа очень старые, старше, чем любые другие. Он относится к С-классу, представители которого выделяются среди «родственников» повышенным содержанием углерода и гидратированных пород. Возможно, именно этот астероид поможет ответить на вопрос о том, что представляла собой протосолнечная система - то, что дало начало Солнцу и планетам. Благодаря орбите астероида зонд без особого труда может к нему долететь, а потом вернуться на Землю.

На нашу планету время от времени попадают образцы пород, из которых состоят астероиды класса С. Речь идет об углистых хондритах, которые ученые изучают много десятилетий. Но метеориты, относящиеся к углистым хондритам, пролетают через толщу земной атмосферы. А значит, сильно нагреваются, что приводит к изменению состава. Астероид же, как и говорилось выше, не меняется с течением времени, это застывший образец вещества, из которого сформировалась наша система.

Подробности путешествия «Хаябусы-2»

Для того, чтобы встретиться с астероидом, зонду пришлось пролететь более 3,2 млрд километров. При этом на конечном этапе объект, к которому стремился зонд, находился от Земли на расстоянии в 280 млн км. И нет, это не опечатка, действительно речь о миллионах километров, а не миллиардах.

Траектория путешествия получилась такой необычной для того, чтобы у аппарата была возможность совершить гравитационный маневр, набрать скорость уже при помощи двигателей и догнать астероид. 1999 JU3 мчится в космосе с огромной скоростью, и для того, чтобы выйти на его орбиту, зонду нужно догнать объект и скоординировать свою скорость со скоростью астероида. Это сложно, но астрономы Земли без труда выполняют необходимые для путешествия расчеты. Двигатели у зонда ионные, их выключили лишь в прошлом месяце, после того, как «Хаябуса-2» подобрался к астероиду на расстояние в несколько тысяч километров.

Далее потребовалось обследовать окрестности астероида на предмет наличия более мелких «соседей», которые могли бы повредить зонд в случае столкновения. Речь идет об области гравитационного влияния самого астероида, диаметр этой сферы составляет примерно 100 км. К счастью, ничего подобного найдено не было, так что теперь зонд может работать без особых проблем.

Сейчас «Хаябуса-2» вышел на 20-км орбиту, и с этого расстояния продолжает изучать астероид. Зонд работает отлично, технических неполадок нет. В этой экспедиции бы не было смысла без связи. Она есть - аппарат получает сигналы с Земли и отправляет информацию обратно. Задержка составляет примерно 15 минут.

Возможности зонда

Инженеры и ученые, которые проектировали «Хабяусу-2», оснастили его целым рядом научных инструментов, при помощи которых происходит изучение астероида:
  • ONC (Optical Navigation Camera) - оптическая система, которая включает камеру с длиннофокусным объективом и две камеры с короткофокусными объективами. Благодаря своей универсальности ONC позволяет делать навигационные снимки, фотографировать поверхности астероида, ориентировать аппарат и направлять его по точной траектории;
  • TIR (Thermal Infrared Camera) - тепловая камера, которая предназначена для определения температуры объекта в разных местах. Также с ее помощью можно изучать так называемую тепловую инерцию астероида. Тепловая карта поможет понять структуру объекта и узнать характеристики поверхности;
  • Спускаемые модули - один MASCOT (Mobile Asteroid Surface Scout) и три MINERVA-II. Модули будут отправляться на астероид в моменты, когда зонд подберется к объекту на минимальное расстояние. Зонды предназначены для анализа характеристик поверхности - минеральный, гранулометрический состав, химические свойства и т.п.;
  • Пенетратор SCI (Small Carry-on Impactor), который выстрелит в астероид медным снарядом массой в 2,5 кг. Выстрел позволит вбить снаряд в поверхность со скоростью 2 км/с. За местом входа снаряда зонд будет наблюдать при помощи камер. Далее посредством еще одного инструмента будут взять пробы грунта, которые поместят в герметичную капсулу. Зонд, как и говорилось выше, должен доставить эту капсулу на Землю;
  • NIRS3 (Near-infrared spectrometer) - спектрометр, который будет искать на астероиде водяной лед и поможет определить химический состав поверхности.


Стоит отметить, что уже в этом году «Хаябуса-2» сблизится с астероидом до расстояния всего в 1 километр. В начале октября этого года на астероид будут высажены спускаемый модуль MASCOT и один из трех более мелких модулей MINERVA-II.

К сожалению, в конце этого года от зонда не будет поступать никаких вестей - он будет находиться в зоне, откуда радиопередачи блокируются Солнцем (оно будет находиться между зондом и Землей). Соответственно, без управления с Земли зонд не сможет выполнять активных действий - лишь наблюдать за происходящим. Связь с зондом будет снова установлена не ранее января 2019 года. Соответственно, тогда же продолжатся и работы.

Что уже удалось выяснить?

В принципе, практически все определенные при помощи зонда характеристики астероида, а также его «поведение» совпадают с расчетными. Так, диаметр его - 900 метров, что астрономы определили с Земли. Период обращения вокруг своей оси составляет 7,5 часов. На поверхности есть крупные кратеры, с максимальным диаметром воронки в 200 метров. Есть валуны, нечто вроде гор и даже одинокая скала, расположенная прямо на одном из полюсов астероида. «Горы» и скала имеют альбедо выше, чем у окружающего материала, так что вполне может быть, что сложены они из породы, отличающейся по составу от материала поверхности.

Вполне может быть, что ранее астероид являлся частью гораздо более крупного объекта - тоже астероида. Его направление вращения противоположно направлению вращения планет Солнечной системы и Солнца. Правда, Уран и Венера тоже вращаются в обратную сторону. Астероид 1999 JU3 относится к группе околоземных. Период обращения тела вокруг Солнца равен 474 суткам, а средняя орбитальная скорость - 27 километрам в секунду.

Капсула с веществом будет доставлена к Земле в декабре 2020 года. Нескоро, но ждать не так и много. К слову, изучение астероида - не единственная важная задача, которую ставили перед собой создатели «Хаябусы-2». Еще одна цель - постепенное развитие технологий и методов возвращаемых космических миссий, по большей части - межпланетных. Кроме того, ученые постепенно изучают и потенциал разработки астероидов. Для того, чтобы понят, насколько космическое горное дело может быть перспективным, необходимо знать, что несут в себе астероиды. Поскольку минеральный состав астероида неравномерен, так что вполне может оказаться, что у него есть и полезные для человека ресурсы.