Квадратичная функция задана формулой. Построение графика квадратичной функции

Во многих задачах требуется вычислить максимальное или минимальное значение квадратичной функции. Максимум или минимум можно найти, если исходная функция записана в стандартном виде: или через координаты вершины параболы: f (x) = a (x − h) 2 + k {\displaystyle f(x)=a(x-h)^{2}+k} . Более того, максимум или минимум любой квадратичной функции можно вычислить с помощью математических операций.

Шаги

Квадратичная функция записана в стандартном виде

    Запишите функцию в стандартном виде. Квадратичная функция - это функция, уравнение которой включает переменную x 2 {\displaystyle x^{2}} . Уравнение может включать или не включать переменную x {\displaystyle x} . Если уравнение включает переменную с показателем степени больше 2, оно не описывает квадратичную функцию. Если нужно, приведите подобные члены и переставьте их, чтобы записать функцию в стандартном виде.

    • Например, дана функция f (x) = 3 x + 2 x − x 2 + 3 x 2 + 4 {\displaystyle f(x)=3x+2x-x^{2}+3x^{2}+4} . Сложите члены с переменной x 2 {\displaystyle x^{2}} и члены с переменной x {\displaystyle x} , чтобы записать уравнение в стандартном виде:
      • f (x) = 2 x 2 + 5 x + 4 {\displaystyle f(x)=2x^{2}+5x+4}
  1. График квадратичной функции представляет собой параболу. Ветви параболы направлены вверх или вниз. Если коэффициент a {\displaystyle a} при переменной x 2 {\displaystyle x^{2}} a {\displaystyle a}

    • f (x) = 2 x 2 + 4 x − 6 {\displaystyle f(x)=2x^{2}+4x-6} . Здесь a = 2 {\displaystyle a=2}
    • f (x) = − 3 x 2 + 2 x + 8 {\displaystyle f(x)=-3x^{2}+2x+8} . Здесь , поэтому парабола направлена вниз.
    • f (x) = x 2 + 6 {\displaystyle f(x)=x^{2}+6} . Здесь a = 1 {\displaystyle a=1} , поэтому парабола направлена вверх.
    • Если парабола направлена вверх, нужно искать ее минимум. Если парабола направлена вниз, ищите ее максимум.
  2. Вычислите -b/2a. Значение − b 2 a {\displaystyle -{\frac {b}{2a}}} – это координата x {\displaystyle x} вершины параболы. Если квадратичная функция записывается в стандартном виде a x 2 + b x + c {\displaystyle ax^{2}+bx+c} , воспользуйтесь коэффициентами при x {\displaystyle x} и x 2 {\displaystyle x^{2}} следующим образом:

    • В функции коэффициенты a = 1 {\displaystyle a=1} и b = 10 {\displaystyle b=10}
      • x = − 10 (2) (1) {\displaystyle x=-{\frac {10}{(2)(1)}}}
      • x = − 10 2 {\displaystyle x=-{\frac {10}{2}}}
    • В качестве второго примера рассмотрим функцию . Здесь a = − 3 {\displaystyle a=-3} и b = 6 {\displaystyle b=6} . Поэтому координату «x» вершины параболы вычислите так:
      • x = − b 2 a {\displaystyle x=-{\frac {b}{2a}}}
      • x = − 6 (2) (− 3) {\displaystyle x=-{\frac {6}{(2)(-3)}}}
      • x = − 6 − 6 {\displaystyle x=-{\frac {6}{-6}}}
      • x = − (− 1) {\displaystyle x=-(-1)}
      • x = 1 {\displaystyle x=1}
  3. Найдите соответствующее значение f(x). Подставьте найденное значение «x» в исходную функцию, чтобы найти соответствующее значение f(x). Так вы найдете минимум или максимум функции.

    • В первом примере f (x) = x 2 + 10 x − 1 {\displaystyle f(x)=x^{2}+10x-1} вы вычислили, что координата «х» вершины параболы равна x = − 5 {\displaystyle x=-5} . В исходной функции вместо x {\displaystyle x} подставьте − 5 {\displaystyle -5}
      • f (x) = x 2 + 10 x − 1 {\displaystyle f(x)=x^{2}+10x-1}
      • f (x) = (− 5) 2 + 10 (− 5) − 1 {\displaystyle f(x)=(-5)^{2}+10(-5)-1}
      • f (x) = 25 − 50 − 1 {\displaystyle f(x)=25-50-1}
      • f (x) = − 26 {\displaystyle f(x)=-26}
    • Во втором примере f (x) = − 3 x 2 + 6 x − 4 {\displaystyle f(x)=-3x^{2}+6x-4} вы нашли, что координата «х» вершины параболы равна x = 1 {\displaystyle x=1} . В исходной функции вместо x {\displaystyle x} подставьте 1 {\displaystyle 1} , чтобы найти ее максимальное значение:
      • f (x) = − 3 x 2 + 6 x − 4 {\displaystyle f(x)=-3x^{2}+6x-4}
      • f (x) = − 3 (1) 2 + 6 (1) − 4 {\displaystyle f(x)=-3(1)^{2}+6(1)-4}
      • f (x) = − 3 + 6 − 4 {\displaystyle f(x)=-3+6-4}
      • f (x) = − 1 {\displaystyle f(x)=-1}
  4. Запишите ответ. Перечитайте условие задачи. Если нужно найти координаты вершины параболы, в ответе запишите оба значения x {\displaystyle x} и y {\displaystyle y} (или f (x) {\displaystyle f(x)} ). Если необходимо вычислить максимум или минимум функции, в ответе запишите только значение y {\displaystyle y} (или f (x) {\displaystyle f(x)} ). Еще раз посмотрите на знак коэффициента a {\displaystyle a} , чтобы проверить, что вы вычислили: максимум или минимум.

    • В первом примере f (x) = x 2 + 10 x − 1 {\displaystyle f(x)=x^{2}+10x-1} значение a {\displaystyle a} положительное, поэтому вы вычислили минимум. Вершина параболы лежит в точке с координатами (− 5 , − 26) {\displaystyle (-5,-26)} , а минимальное значение функции равно − 26 {\displaystyle -26} .
    • Во втором примере f (x) = − 3 x 2 + 6 x − 4 {\displaystyle f(x)=-3x^{2}+6x-4} значение a {\displaystyle a} отрицательное, поэтому вы нашли максимум. Вершина параболы лежит в точке с координатами (1 , − 1) {\displaystyle (1,-1)} , а максимальное значение функции равно − 1 {\displaystyle -1} .
  5. Определите направление параболы. Для этого посмотрите на знак коэффициента a {\displaystyle a} . Если коэффициент a {\displaystyle a} положительный, парабола направлена вверх. Если коэффициент a {\displaystyle a} отрицательный, парабола направлена вниз. Например:

    • . Здесь a = 2 {\displaystyle a=2} , то есть коэффициент положительный, поэтому парабола направлена вверх.
    • . Здесь a = − 3 {\displaystyle a=-3} , то есть коэффициент отрицательный, поэтому парабола направлена вниз.
    • Если парабола направлена вверх, нужно вычислить минимальное значение функции. Если парабола направлена вниз, необходимо найти максимальное значение функции.
  6. Найдите минимальное или максимальное значение функции. Если функция записана через координаты вершины параболы, минимум или максимум равен значению коэффициента k {\displaystyle k} . В приведенных выше примерах:

    • f (x) = 2 (x + 1) 2 − 4 {\displaystyle f(x)=2(x+1)^{2}-4} . Здесь k = − 4 {\displaystyle k=-4} . Это минимальное значение функции, потому что парабола направлена вверх.
    • f (x) = − 3 (x − 2) 2 + 2 {\displaystyle f(x)=-3(x-2)^{2}+2} . Здесь k = 2 {\displaystyle k=2} . Это максимальное значение функции, потому что парабола направлена вниз.
  7. Найдите координаты вершины параболы. Если в задаче требуется найти вершину параболы, ее координаты равны (h , k) {\displaystyle (h,k)} . Обратите внимание, когда квадратичная функция записана через координаты вершины параболы, в скобки должна быть заключена операция вычитания (x − h) {\displaystyle (x-h)} , поэтому значение h {\displaystyle h} берется с противоположным знаком.

    • f (x) = 2 (x + 1) 2 − 4 {\displaystyle f(x)=2(x+1)^{2}-4} . Здесь в скобки заключена операция сложения (x+1), которую можно переписать так: (x-(-1)). Таким образом, h = − 1 {\displaystyle h=-1} . Поэтому координаты вершины параболы этой функции равны (− 1 , − 4) {\displaystyle (-1,-4)} .
    • f (x) = − 3 (x − 2) 2 + 2 {\displaystyle f(x)=-3(x-2)^{2}+2} . Здесь в скобках находится выражение (x-2). Следовательно, h = 2 {\displaystyle h=2} . Координаты вершины равны (2,2).

Как вычислить минимум или максимум с помощью математических операций

  1. Сначала рассмотрим стандартный вид уравнения. Запишите квадратичную функцию в стандартном виде: f (x) = a x 2 + b x + c {\displaystyle f(x)=ax^{2}+bx+c} . Если нужно, приведите подобные члены и переставьте их, чтобы получить стандартное уравнение.

    • Например: .
  2. Найдите первую производную. Первая производная квадратичной функции, которая записана в стандартном виде, равна f ′ (x) = 2 a x + b {\displaystyle f^{\prime }(x)=2ax+b} .

    • f (x) = 2 x 2 − 4 x + 1 {\displaystyle f(x)=2x^{2}-4x+1} . Первая производная этой функции вычисляется следующим образом:
      • f ′ (x) = 4 x − 4 {\displaystyle f^{\prime }(x)=4x-4}
  3. Производную приравняйте к нулю. Напомним, что производная функции равна угловому коэффициенту функции в определенной точке. В минимуме или максимуме угловой коэффициент равен нулю. Поэтому, чтобы найти минимальное или максимальное значение функции, производную нужно приравнять к нулю. В нашем примере.

Что такое парабола знают, пожалуй, все. А вот как ее правильно, грамотно использовать при решении различных практических задач, разберемся ниже.

Сначала обозначим основные понятия, которые дает этому термину алгебра и геометрия. Рассмотрим все возможные виды этого графика.

Узнаем все основные характеристики этой функции. Поймем основы построения кривой (геометрия). Научимся находить вершину, другие основные величины графика данного типа.

Узнаем: как правильно строится искомая кривая по уравнению, на что надо обратить внимание. Посмотрим основное практическое применение этой уникальной величины в жизни человека.

Что такое парабола и как она выглядит

Алгебра: под этим термином понимается график квадратичной функции.

Геометрия: это кривая второго порядка, имеющая ряд определенных особенностей:

Каноническое уравнение параболы

На рисунке изображена прямоугольная система координат (XOY), экстремум, направление ветвей чертежа функции вдоль оси абсцисс.

Каноническое уравнение имеет вид:

y 2 = 2 * p * x,

где коэффициент p – фокальный параметр параболы (AF).

В алгебре оно запишется иначе:

y = a x 2 + b x + c (узнаваемый шаблон: y = x 2).

Свойства и график квадратичной функции

Функция обладает осью симметрии и центром (экстремум). Область определения – все значения оси абсцисс.

Область значений функции – (-∞, М) или (М, +∞) зависит от направления ветвей кривой. Параметр М тут означает величину функции в вершине линии.

Как определить, куда направлены ветви параболы

Чтобы найти направление кривой такого типа из выражения, нужно определить знак перед первым параметром алгебраического выражения. Если а ˃ 0, то они направлены вверх. Если наоборот – вниз.

Как найти вершину параболы по формуле

Нахождение экстремума является основным этапом при решении множества практических задач. Конечно, можно открыть специальные онлайн калькуляторы, но лучше это уметь делать самому.

Как же ее определить? Есть специальная формула. Когда b не равно 0, надо искать координаты этой точки.

Формулы нахождения вершины:

  • x 0 = -b / (2 * a);
  • y 0 = y (x 0).

Пример.

Имеется функция у = 4 * x 2 + 16 * x – 25. Найдём вершины этой функции.

Для такой линии:

  • х = -16 / (2 * 4) = -2;
  • y = 4 * 4 - 16 * 2 - 25 = 16 - 32 - 25 = -41.

Получаем координаты вершины (-2, -41).

Смещение параболы

Классический случай, когда в квадратичной функции y = a x 2 + b x + c, второй и третий параметры равны 0, а = 1 – вершина находится в точке (0; 0).

Движение по осям абсцисс или ординат обусловлено изменением параметров b и c соответственно. Сдвиг линии на плоскости будет осуществляться ровно на то количество единиц, чему равно значение параметра.

Пример.

Имеем: b = 2, c = 3.

Это означает, что классический вид кривой сдвинется на 2 единичных отрезка по оси абсцисс и на 3 — по оси ординат.

Как строить параболу по квадратному уравнению

Школьникам важно усвоить, как правильно начертить параболу по заданным параметрам.

Анализируя выражения и уравнения, можно увидеть следующее:

  1. Точка пересечения искомой линии с вектором ординат будет иметь значение, равное величине с.
  2. Все точки графика (по оси абсцисс) будут симметричны относительно основного экстремума функции.

Кроме того, места пересечения с ОХ можно найти, зная дискриминант (D) такой функции:

D = (b 2 — 4 * a * c).

Для этого нужно приравнять выражение к нулю.

Наличие корней параболы зависит от результата:

  • D ˃ 0, то х 1, 2 = (-b ± D 0,5) / (2 * a);
  • D = 0, то х 1, 2 = -b / (2 * a);
  • D ˂ 0, то нет точек пересечения с вектором ОХ.

Получаем алгоритм построения параболы:

  • определить направление ветвей;
  • найти координаты вершины;
  • найти пересечение с осью ординат;
  • найти пересечение с осью абсцисс.

Пример 1.

Дана функция у = х 2 — 5 * х + 4. Необходимо построить параболу. Действуем по алгоритму:

  1. а = 1, следовательно, ветви направлены вверх;
  2. координаты экстремума: х = — (-5) / 2 = 5/2; y = (5/2) 2 - 5 * (5/2) + 4 = -15/4;
  3. с осью ординат пересекается в значении у = 4;
  4. найдем дискриминант: D = 25 - 16 = 9;
  5. ищем корни:
  • Х 1 = (5 + 3) / 2 = 4; (4, 0);
  • Х 2 = (5 - 3) / 2 = 1; (1, 0).

Пример 2.

Для функции у = 3 * х 2 — 2 * х — 1 нужно построить параболу. Действуем по приведенному алгоритму:

  1. а = 3, следовательно, ветви направлены вверх;
  2. координаты экстремума: х = — (-2) / 2 * 3 = 1/3; y = 3 * (1/3) 2 - 2 * (1/3) - 1 = -4/3;
  3. с осью у будет пересекаться в значении у = -1;
  4. найдем дискриминант: D = 4 + 12 = 16. Значит корни:
  • Х 1 = (2 + 4) / 6 = 1; (1;0);
  • Х 2 = (2 - 4) / 6 = -1/3; (-1/3; 0).

По полученным точкам можно построить параболу.

Директриса, эксцентриситет, фокус параболы

Исходя из канонического уравнения, фокус F имеет координаты (p/2, 0).

Прямая АВ – директриса (своего рода хорда параболы определенной длины). Ее уравнение: х = -р/2.

Эксцентриситет (константа) = 1.

Заключение

Мы рассмотрели тему, которую изучают школьники в средней школе. Теперь вы знаете, глядя на квадратичную функцию параболы, как найти её вершину, в какую сторону будут направлены ветви, есть ли смещение по осям, и, имея алгоритм построения, сможете начертить её график.

Функция вида , где называется квадратичной функцией .

График квадратичной функции – парабола .


Рассмотрим случаи:

I СЛУЧАЙ, КЛАССИЧЕСКАЯ ПАРАБОЛА

То есть , ,

Для построения заполняем таблицу, подставляя значения x в формулу:


Отмечаем точки (0;0); (1;1); (-1;1) и т.д. на координатной плоскости (чем с меньшим шагом мы берем значения х (в данном случае шаг 1), и чем больше берем значений х, тем плавнее будет кривая), получаем параболу:


Нетрудно заметить, что если мы возьмем случай , , , то есть , то мы получим параболу, симметричную относительно оси (ох). Убедиться в этом несложно, заполнив аналогичную таблицу:


II СЛУЧАЙ, «a» ОТЛИЧНО ОТ ЕДИНИЦЫ

Что же будет, если мы будем брать , , ? Как изменится поведение параболы? При title="Rendered by QuickLaTeX.com" height="20" width="55" style="vertical-align: -5px;"> парабола изменит форму, она “похудеет” по сравнению с параболой (не верите – заполните соответствующую таблицу – и убедитесь сами):


На первой картинке (см. выше) хорошо видно, что точки из таблицы для параболы (1;1), (-1;1) трансформировались в точки (1;4), (1;-4), то есть при тех же значениях ордината каждой точки умножилась на 4. Это произойдет со всеми ключевыми точками исходной таблицы. Аналогично рассуждаем в случаях картинок 2 и 3.

А при парабола «станет шире» параболы :


Давайте подытожим:

1) Знак коэффициента отвечает за направление ветвей. При title="Rendered by QuickLaTeX.com" height="14" width="47" style="vertical-align: 0px;"> ветви направлены вверх, при - вниз.

2) Абсолютная величина коэффициента (модуля) отвечает за “расширение”, “сжатие” параболы. Чем больше , тем у’же парабола, чем меньше |a|, тем шире парабола.

III СЛУЧАЙ, ПОЯВЛЯЕТСЯ «С»

Теперь давайте введем в игру (то есть рассматриваем случай, когда ), будем рассматривать параболы вида . Нетрудно догадаться (вы всегда можете обратиться к таблице), что будет происходить смещение параболы вдоль оси вверх или вниз в зависимости от знака :



IV СЛУЧАЙ, ПОЯВЛЯЕТСЯ «b»

Когда же парабола “оторвется” от оси и будет, наконец, “гулять” по всей координатной плоскости? Когда перестанет быть равным .

Здесь для построения параболы нам понадобится формула для вычисления вершины: , .

Так вот в этой точке (как в точке (0;0) новой системы координат) мы будем строить параболу , что уже нам по силам. Если имеем дело со случаем , то от вершины откладываем один единичный отрезок вправо, один вверх, – полученная точка – наша (аналогично шаг влево, шаг вверх – наша точка); если имеем дело с , например, то от вершины откладываем один единичный отрезок вправо, два – вверх и т.д.

Например, вершина параболы :

Теперь главное уяснить, что в этой вершине мы будем строить параболу по шаблону параболы , ведь в нашем случае.

При построении параболы после нахождения координат вершины очень удобно учитывать следующие моменты:

1) парабола обязательно пройдет через точку . Действительно, подставив в формулу x=0, получим, что . То есть ордината точки пересечения параболы с осью (оу), это . В нашем примере (выше), парабола пересекает ось ординат в точке , так как .

2) осью симметрии параболы является прямая , поэтому все точки параболы будут симметричны относительно нее. В нашем примере, мы сразу берем точку (0; -2) и строим ей симметричную относительно оси симметрии параболы, получим точку (4; -2), через которую будет проходить парабола.

3) Приравнивая к , мы узнаем точки пересечения параболы с осью (ох). Для этого решаем уравнение . В зависимости от дискриминанта, будем получать одну (, ), две ( title="Rendered by QuickLaTeX.com" height="14" width="54" style="vertical-align: 0px;">, ) или нИсколько () точек пересечения с осью (ох) . В предыдущем примере у нас корень из дискриминанта – не целое число, при построении нам особо нет смысла находить корни, но мы видим четко, что две точки пересечения с осью (ох) у нас будут (так как title="Rendered by QuickLaTeX.com" height="14" width="54" style="vertical-align: 0px;">), хотя, в общем, это видно и без дискриминанта.

Итак, давайте выработаем

Алгоритм для построения параболы, если она задана в виде

1) определяем направление ветвей (а>0 – вверх, a<0 – вниз)

2) находим координаты вершины параболы по формуле , .

3) находим точку пересечения параболы с осью (оу) по свободному члену , строим точку, симметричную данной относительно оси симметрии параболы (надо заметить, бывает, что эту точку невыгодно отмечать, например, потому, что значение велико… пропускаем этот пункт…)

4) В найденной точке – вершине параболы (как в точке (0;0) новой системы координат) строим параболу . Если title="Rendered by QuickLaTeX.com" height="20" width="55" style="vertical-align: -5px;">, то парабола становится у’же по сравнению с , если , то парабола расширяется по сравнению с

5) Находим точки пересечения параболы с осью (оу) (если они еще сами “не всплыли”), решая уравнение

Пример 1


Пример 2


Замечание 1. Если же парабола изначально нам задана в виде , где – некоторые числа (например, ), то построить ее будет еще легче, потому что нам уже заданы координаты вершины . Почему?

Возьмем квадратный трехчлен и выделим в нем полный квадрат: Посмотрите, вот мы и получили, что , . Мы с вами ранее называли вершину параболы , то есть теперь , .

Например, . Отмечаем на плоскости вершину параболы , понимаем, что ветви направлены вниз, парабола расширена (относительно ). То есть выполняем пункты 1; 3; 4; 5 из алгоритма построения параболы (см. выше).

Замечание 2. Если парабола задана в виде, подобном этому (то есть представлен в виде произведения двух линейных множителей), то нам сразу видны точки пересечения параболы с осью (ох). В данном случае – (0;0) и (4;0). В остальном же действуем согласно алгоритму, раскрыв скобки.

У р о к 15.
Влияние коэффициентов а, b и с на расположение
графика квадратичной функции

Цели: продолжить формирование умения строить график квадратичной функции и перечислять ее свойства; выявить влияние коэффициентов а , b и с на расположение графика квадратичной функции.

Ход урока

I. Организационный момент.

II. Устная работа.

Определите, график какой функции изображен на рисунке:

у = х 2 – 2х – 1;

у = –2х 2 – 8х ;

у = х 2 – 4х – 1;

у = 2х 2 + 8х + 7;

у = 2х 2 – 1.

б)

у = х 2 – 2х ;

у = –х 2 + 4х + 1;

у = –х 2 – 4х + 1;

у = –х 2 + 4х – 1;

у = –х 2 + 2х – 1.

III. Формирование умений и навыков.

Упражнения:

1. № 127 (а).

Р е ш е н и е

Прямая у = 6х + b касается параболы у = х 2 + 8, то есть имеет с ней только одну общую точку в том случае, когда уравнение 6х + b = х 2 + 8 будет иметь единственное решение.

Это уравнение является квадратным, найдем его дискриминант:

х 2 – 6х + 8 + b = 0;

D 1 = 9 – (8 – b ) = 1 + b;

D 1 = 0, если 1 + b = 0, то есть b = –1.

О т в е т: b = –1.

3. Выявить влияние коэффициентов а , b и с на расположение графика функции у = ах 2 + + с .

Учащиеся обладают достаточными знаниями, чтобы выполнить это задание самостоятельно. Следует предложить им все полученные выводы занести в тетрадь, при этом выделив «основную» роль каждого из коэффициентов.

1) Коэффициент а влияет на направление ветвей параболы: при а > 0 – ветви направлены вверх, при а < 0 – вниз.

2) Коэффициент b влияет на расположение вершины параболы. При b = 0 вершина лежит на оси оу .

3) Коэффициент с показывает точку пересечения параболы с осью ОУ .

После этого можно привести пример, показывающий, что можно сказать о коэффициентах а , b и с по графику функции.

Значение с можно назвать точно: поскольку график пересекает ось ОУ в точке (0; 1), то с = 1.

Коэффициент а можно сравнить с нулем: так как ветви параболы направлены вниз, то а < 0.

Знак коэффициента b можно узнать из формулы, определяющей абсциссу вершины параболы: т = , так как а < 0 и т = 1, то b > 0.

4. Определите, график какой функции изображен на рисунке, опираясь на значение коэффициентов а , b и с .

у = –х 2 + 2х ;

у = х 2 + 2х + 2;

у = 2х 2 – 3х – 2;

у = х 2 – 2.

Р е ш е н и е

а , b и с :

а > 0, так как ветви параболы направлены вверх;

b ОУ ;

с = –2, так как парабола пересекает ось ординат в точке (0; –2).

у = 2х 2 – 3х – 2.

у = х 2 – 2х ;

у = –2х 2 + х + 3;

у = –3х 2 – х – 1;

у = –2,7х 2 – 2х .

Р е ш е н и е

По изображенному графику делаем следующие выводы о коэффициентах а , b и с :

а < 0, так как ветви параболы направлены вниз;

b ≠ 0, так как вершина параболы не лежит на оси ОУ ;

с = 0, так как парабола пересекает ось ОУ в точке (0; 0).

Всем этим условиям удовлетворяет только функция у = –2,7х 2 – 2х .

5. По графику функции у = ах 2 + + с а , b и с :

а) б)

Р е ш е н и е

а) Ветви параболы направлены вверх, поэтому а > 0.

Парабола пересекает ось ординат в нижней полуплоскости, поэтому с < 0. Чтобы узнать знак коэффициента b воспользуемся формулой для нахождения абсциссы вершины параболы: т = . По графику видно, что т < 0, и мы определим, что а > 0. Поэтому b > 0.

б) Аналогично определяем знаки коэффициентов а , b и с :

а < 0, с > 0, b < 0.

Сильным в учебе учащимся можно дать дополнительно выполнить № 247.

Р е ш е н и е

у = х 2 + рх + q.

а) По теореме Виета, известно, что если х 1 и х 2 – корни уравнения х 2 +
+ рх + q = 0 (то есть нули данной функции), то х 1 · х 2 = q и х 1 + х 2 = –р . Получаем, что q = 3 · 4 = 12 и р = –(3 + 4) = –7.

б) Точка пересечения параболы с осью ОУ даст значение параметра q , то есть q = 6. Если график функции пересекает ось ОХ в точке (2; 0), то число 2 является корнем уравнения х 2 + рх + q = 0. Подставляя значение х = 2 в это уравнение, получим, что р = –5.

в) Своего наименьшего значения данная квадратичная функция достигает в вершине параболы, поэтому , откуда р = –12. По условию значение функции у = х 2 – 12х + q в точке x = 6 равно 24. Подставляя x = 6 и у = 24 в данную функцию, находим, что q = 60.

IV. Проверочная работа.

В а р и а н т 1

1. Постройте график функции у = 2х 2 + 4х – 6 и найдите, используя график:

а) нули функции;

б) промежутки, в которых у > 0 и y < 0;

г) наименьшее значение функции;

д) область значения функции.

2. Не строя график функции у = –х 2 + 4х , найдите:

а) нули функции;

в) область значения функции.

3. По графику функции у = ах 2 + + с определите знаки коэффициентов а , b и с :

В а р и а н т 2

1. Постройте график функции у = –х 2 + 2х + 3 и найдите, используя график:

а) нули функции;

б) промежутки, в которых у > 0 и y < 0;

в) промежутки возрастания и убывания функции;

г) наибольшее значение функции;

д) область значения функции.

2. Не строя график функции у = 2х 2 + 8х , найдите:

а) нули функции;

б) промежутки возрастания и убывания функции;

в) область значения функции.

3. По графику функции у = ах 2 + + с определите знаки коэффициентов а , b и с :

V. Итоги урока.

В о п р о с ы у ч а щ и м с я:

– Опишите алгоритм построения квадратичной функции.

– Перечислите свойства функции у = ах 2 + + с при а > 0 и при а < 0.

– Как влияют коэффициенты а , b и с на расположение графика квадратичной функции?

Домашнее задание: № 127 (б), № 128, № 248.

Д о п о л н и т е л ь н о: № 130.