Парадоксы специальной и общей теорий относительности. Главный парадокс теории относительности эйнштейна

На первый взгляд, патентное бюро было не самым перспективным
местом, где могла начаться величайшая со времен Ньютона револю-


ция в физике. Но были у этой службы и свои преимущества. Быстро
разделавшись с заявками на патенты, загромождавшими его стол,
Эйнштейн откидывался на стуле и погружался в детские воспомина-
ния. В молодости он прочел «Естественнонаучные книги для народа»
Аарона Бернштейна, «работу, которую я прочел, затаив дыхание»,
вспоминал Альберт. Бернштейн предлагал читателю представить, что
тот следует параллельно с электрическим током, когда тот передается
по проводам. В 16 лет Эйнштейн задал себе вопрос: на что был бы
похож луч света, если бы его можно было догнать? Он вспоминал:
«Такой принцип родился из парадокса, на который я натолкнулся в
16 лет: если я гонюсь за лучом света со скоростью с (скорость света
в вакууме), я должен наблюдать такой луч света как пространственно
колеблющееся электромагнитное поле в состоянии покоя. Однако,
кажется, такой вещи не может существовать - так говорит опыт, и
так говорят уравнения Максвелла». В детстве Эйнштейн считал, что
если двигаться параллельно лучу света со скоростью света, то свет
будет казаться замерзшим, подобно застывшей волне. Однако никто
не видел замерзшего света, так что тут явно что-то было не так.

В начале нового века существовали в физике два столпа, на кото-
рых покоилось все: ньютоновская теория механики и гравитации и
теория света Максвелла. В 1860-е годы шотландский физик Джеймс
Кларк Максвелл доказал, что свет состоит из пульсирующих элек-
трических и магнитных полей, постоянно переходящих друг в друга.
Эйнштейну же предстояло открыть, к его великому потрясению, что
эти два столпа противоречат друг другу, и одному из них предстояло
рухнуть.

В уравнениях Максвелла он обнаружил решение загадки, которая
преследовала его на протяжении 10 лет. Эйнштейн нашел в них то,
что упустил сам Максвелл: уравнения доказывали, что свет пере-
мещается с постоянной скоростью, при этом было совершенно не-
важно, с какой скоростью вы пытались догнать его. Скорость света
с была одинаковой во всех инерциальных системах отсчета (то есть
системах отсчета, двигающихся с постоянной скоростью). Стояли
ли вы на месте, ехали ли на поезде или примостились на мчащейся
комете, вы бы обязательно увидели луч света, нес)шщйся впереди вас
с постоянной скоростью. Неважно, насколько быстро вы двигались
бы сами, - обогнать свет вам не под силу.


Такое положение дел быстро привело к появлению множества па-
радоксов. Представьте на миг астронавта, пытающегося догнать луч
света. Астронавт стартует на космическом корабле, и вот он несется
голова в голову с лучом света. Наблюдатель на Земле, ставший свиде-
телем этой гипотетической погони, заявил бы, что астронавт и луч
света двигаются бок о бок. Однако астронавт сказал бы нечто иное, а
именно: луч света уносился от него вперед, как если бы космический
корабль находился в состоянии покоя.


Вопрос, вставший перед Эйнштейном, заключался в следующем:
как могут два человека настолько по-разному интерпретировать
одно и то же событие? По теории Ньютона, луч света всегда мож-
но догнать; в мире Максвелла это было невозможно. Эйнштейна
внезапно озарило, что уже в фундаментальных основах физики та-
ился фундаментальный же изъян. Эйнштейн вспоминал, что весной
1905 года «в моей голове разразился шторм». Он наконец нашел
решение: время движется с различными скоростями в зависимости от
скорости движения.
По сути, чем быстрее двигаться, тем медленнее
движется время. Время не абсолютно, как когда-то считал Ньютон.
По Ньютону, время однородно во всей Вселенной и длительность
одной секунды на Земле будет идентична одной секунде на Юпитере
или Марсе. Часы абсолютно синхронизированы со всей Вселенной.
Однако, по Эйнштейну, различные часы во Вселенной идут с различ-
ными скоростями.


Специальные и общие теории относительности говорят о том, что у каждого наблюдателя свое время. То есть, грубо говоря, один человек движется и по своим часам определяет одно время, другой человек как-то движется и по своим часам определяет другое время. Безусловно, если эти люди движутся относительно друг друга с небольшими скоростями и ускорениями, они измеряют практически одно и то же время. По нашим часам, которые мы используем, мы это отличие измерить неспособны. Я не исключаю, что если часами, которые измеряют время с точностью до одной секунды за время жизни Вселенной, будут оснащены два человека, то, походив как-то по-разному, они, возможно, увидят какую-то разницу в каком-то n знаке. Однако эти различия слабые.

Специальные и общие теории относительности предсказывают, что эти различия будут существенными, если два товарища друг относительно друга движутся с большими скоростями, ускорениями или вблизи черной дыры. Например, один из них далеко от черной дыры, а другой близко к черной дыре или какому-нибудь сильно гравитирующему телу. Или один покоится, а другой движется с какой-то скоростью относительно него или с большим ускорением. Тогда различия будут существенные. Насколько большие, я не говорю, и это измеряется на эксперименте с высокоточными атомными часами. Люди летают на самолете, потом привозят, сравнивают, что показали часы на земле, что показали часы на самолете и не только. Таких экспериментов множество, все они согласуются с форменными предсказаниями общей и специальной теории относительности. В частности, если один наблюдатель покоится, а другой относительно него движется с постоянной скоростью, то пересчет хода часов от одного к другому задается преобразованиями Лоренца, как пример.

В специальной теории относительности на основе этого есть так называемый парадокс близнецов, который описан во многих книгах. Заключается он в следующем. Вот представьте себе, что у вас есть два близнеца: Ваня и Вася. Скажем, Ваня остался на Земле, а Вася полетел на альфу Центавру и вернулся. Теперь говорится, что относительно Вани Вася двигался с постоянной скоростью. У него время двигалось медленнее. Он вернулся, соответственно, он должен быть моложе. С другой стороны, парадокс формулируется так: теперь, наоборот, относительно Васи (движение с постоянной скоростью относительно) Ваня движется с постоянной скоростью, несмотря на то что он находился на Земле, то есть, когда Вася вернется на Землю, по идее, у Вани часы должны показывать меньше времени. Кто же из них младше? Какое-то логическое противоречие. Совершенная чушь эта специальная теория относительности, получается.

Факт номер раз: сразу нужно понять, что преобразованиями Лоренца можно пользоваться, если переходить из одной инерциальной системы отсчета в другую инерциальную систему отсчета. И эта логика, что у одного время движется медленнее за счет того, что он движется с постоянной скоростью, только на основе преобразования Лоренца. А у нас в данном случае один из наблюдателей почти инерциальный - тот, который находится на Земле. Почти инерциальный, то есть эти ускорения, с которыми Земля движется вокруг Солнца, Солнце движется вокруг центра Галактики и так далее, - это все маленькие ускорения, для данной задачи заведомо можно этим пренебречь. А второй должен слетать на альфу Центавру. Он должен разогнаться, затормозиться, потом опять разогнаться, затормозиться - это все неинерциальные движения. Поэтому такой наивный пересчет сразу не работает.

Как же правильно объяснить этот парадокс близнецов? Он на самом деле достаточно просто объясняется. Для того чтобы сравнивать время жизни двух товарищей, они должны встречаться. Они должны сначала встретиться в первый раз, оказаться в одной точке пространства в одно и то же время, сравнить часы: 0 часов 0 минут 1 января 2001 года. Потом разлететься. Один из них будет двигаться одним образом, у него как-то часы будут тикать. Другой будет двигаться другим образом, и у него как-то своим образом будут тикать часы. Потом они снова встретятся, вернутся в одну и ту же точку в пространстве, но уже в другое время по отношению к первоначальному. В одно и то же время окажутся в одной и той же точке по отношению к каким-нибудь дополнительным часам. Важно следующее: теперь они могут сравнить часы. У одного натикало столько-то, у другого натикало столько-то. Как это объясняется?

Представьте эти две точки в пространстве и времени, где они встречались в начальный момент и в конечный момент, в момент отлета на альфа Центавру, в момент прилета с альфа Центавры. Один из них двигался инерциально, будем считать для идеала, то есть он двигался по прямой. Второй из них двигался неинерциально, поэтому он в этом пространстве и времени двигался по какой-то кривой - ускорялся, замедлялся и так далее. Так вот одна из этих кривых обладает свойством экстремальности. Ясно, что среди всех возможных кривых в пространстве и времени прямая является экстремальной, то есть она имеет экстремальную длину. Наивно, кажется, что она должна иметь наименьшую длину, потому что на плоскости среди всех кривых наименьшую длину между двумя точками имеет прямая. В пространстве и времени Минковского у него так устроена метрика, так устроен способ измерения длин, прямая имеет наидлиннейшую длину, как это ни странно звучит. Прямая имеет самую большую длину. Поэтому тот, который двигался инерциально, оставался на Земле, измерит больший промежуток времени, чем тот, который летал на альфа Центавру и вернулся, поэтому он будет старше.

Обычно такие парадоксы придумываются для того, чтобы опровергнуть ту или иную теорию. Придумываются самими же учеными, которые занимаются этой областью науки.

Исходно, когда появляется новая теория, ясное дело, что ее вообще никто не воспринимает, особенно если она противоречит каким-то устоявшимся на тот момент данным. И люди просто сопротивляются, это безусловно, придумывают всякие контраргументы и так далее. Это все проходит тяжелейший процесс. Человек борется за то, чтобы его признали. Это всегда связано с долгими промежутками времени и большой нервотрепкой. Возникают вот такие парадоксы.

Кроме парадокса близнецов есть, например, такой парадокс со стержнем и сараем, так называемое Лоренцево сокращение длин, что если вы стоите и смотрите на стержень, который мимо вас летит с очень высокой скоростью, то он выглядит короче, чем он на самом деле есть в той системе отсчета, в которой он покоится. С этим связан вот такой парадокс. Представьте себе ангар или сквозной сарай, у него две дырки, он какой-то длины, неважно какой. Представьте себе, что на него летит этот стержень, собирается пролететь сквозь него. Сарай в своей системе покоя имеет одну длину, скажем 6 метров. Стержень в своей системе покоя имеет длину 10 метров. Представьте себе, что у них скорость сближения такая, что в системе отсчета сарая стержень сократился до 6 метров. Можно посчитать, какая это скорость, но сейчас неважно, она достаточно близка к скорости света. Стержень сократился до 6 метров. Это значит, что в системе отсчета сарая стрежень в какой-то момент целиком поместится в сарай.

Человек, который стоит в сарае, - вот мимо него летит стержень - в какой-то момент увидит этот стержень, целиком лежащий в сарае. С другой стороны, движение с постоянной скоростью относительное. Соответственно, можно рассматривать, как будто бы стержень покоится, а на него летит сарай. Значит, в системе отсчета стержня сарай сократился, причем сократился он в то же число раз, что и стрежень в системе отсчета сарая. Значит, в системе отсчета стержня сарай сократился до 3,6 метра. Теперь в системе отсчета стержня стержень никак не может поместиться в сарай. В одной системе отсчета он помещается, в другой системе отсчета он не помещается. Чушь какая-то.

Ясное дело, что такая теория не может быть верной, - кажется на первый взгляд. Однако объяснение простое. Когда вы видите стержень и говорите: «Он данной длины», это значит, что к вам поступает сигнал от этого и от этого конца стержня одновременно. То есть, когда я говорю, что стержень поместился в сарай, двигаясь с какой-то скоростью, это значит, что событие совпадения этого конца стержня с этим концом сарая одновременно с событием совпадения этого конца стержня с этим концом сарая. Эти два события одновременны в системе отсчета сарая. Но вы же слышали, наверное, что в теории относительности одновременность относительна. Так вот оказывается, что в системе отсчета стержня эти два события неодновременны. Просто сначала совпадает правый конец стержня с правым концом сарая, потом совпадает левый конец стержня с левым концом сарая через какой-то промежуток времени. Этот промежуток времени как раз равен тому времени, за которое эти 10 метров минус 3,6 метра с этой данной скоростью пролетят конец стержня.

Чаще всего теорию относительности опровергают по той причине, что для нее очень легко придумываются подобные парадоксы. Этих парадоксов существует масса. Есть такая книжка Тейлора и Уилера «Физика пространства-времени», она написана достаточно доступным языком для школьников, где подавляющее большинство этих парадоксов разбираются и объясняются с использованием достаточно простых аргументов и формул, как объясняется тот или иной парадокс в рамках теории относительности.

Можно придумать какой-нибудь способ объяснения каждого данного факта, который выглядит проще, чем тот способ, который предоставляет теория относительности. Однако важным свойством специальной теории относительности является то, что она объясняет не каждый отдельный факт, а всю эту совокупность фактов, вместе взятых. Вот если вы придумали объяснение какого-то одного факта, выделенного из всей этой совокупности, пусть оно объясняет этот факт лучше, чем специальная теория относительности, на ваш взгляд, однако еще нужно проверить, что он и все остальные факты тоже объясняет. А как правило, все эти объяснения, которые звучат более просто, не объясняют всего остального. И надо помнить, что в тот момент, когда придумывается та или иная теория, - это действительно какой-то психологический, научный подвиг. Потому что фактов на этот момент существует один, два или три. И вот человек, основываясь на этом одном или трех наблюдениях, формулирует свою теорию.

В тот момент кажется, что она противоречит всему, что было до того известно, если теория кардинальная. Придумываются вот такие парадоксы, чтобы ее опровергнуть, и так далее. Но, как правило, эти парадоксы объясняются, появляются какие-то новые дополнительные экспериментальные данные, они проверяются, соответствуют ли они этой теории. Также из теории следуют какие-то предсказания. Она же основывается на каких-то фактах, что-то там утверждает, из этого утверждения можно что-то вывести, получить и потом сказать, что если эта теория верна, то должно быть так-то и так-то. Идем, проверяем, так это или не так. Так-то. Значит, теория хороша. И так до бесконечности. В общем-то требуется бесконечно много экспериментов, чтобы подтвердить теорию, но на данный момент в той области, в которой специальная и общая теория относительности применимы, фактов, опровергающих эти теории, не существует.

Эмиль Ахмедов, доктор физико-математических наук, ведущий научный сотрудник Института теоретической и экспериментальной физики имени А. И. Алиханова, доцент кафедры теоретической физики МФТИ, доцент факультета математики НИУ ВШЭ

Комментарии: 0

    Эмиль Ахмедов

    Какие наблюдения лежат в основе специальной теории относительности? Как был выведен постулат о том, что скорость света не зависит от системы отсчета? О чем теорема Нётер? И существуют ли явления, которые противоречат СТО? Об этом рассказывает доктор физико-математических наук Эмиль Ахмедов.

    Эмиль Ахмедов

    Как меняются физические законы в различных системах отсчета? Какой физический смысл имеет искривление пространства? И как функционирует Global Positioning System? О неинерциальных системах отсчета, ковариантности и физическом смысле искривления пространства рассказывает доктор физико-математических наук Эмиль Ахмедов.

    Рено де ля Тай

    Теория относительности, открытая в 1904 году, была признана научным сообществом, начиная с 1915 года. Никакая Нобелевская премия никогда за эту теорию присуждена не была. Причина понятна: тот, кто первым сформулировал принцип относительности, умер в 1912 году. Это был Анри Пуанкаре.

    Игорь Волобуев

    Сто лет назад, в начале декабря 1915 года, Эйнштейн направил в печать работу, в которой были получены правильные уравнения гравитационного поля, тем самым было закончено создание общей теории относительности. Эйнштейн работал над этой теорией 10 лет, с тех пор как в 1905 году, 110 лет назад, создал специальную теорию относительности. Физик Игорь Волобуев о релятивистской механике, принципе эквивалентности и орбите Меркурия.

    Советский короткометражный фильм, объясняющий теорию относительности, который выполнен в необычном формате диалога. В купе поезда, идущего в Новосибирск, учёный-физик объясняет своим попутчикам-актёрам, что такое теория относительности. Несмотря на доступность изложения, рассказ принимается с разной степенью понимания каждым из её собеседников.

    Говорят, что прозрение пришло к Альберту Эйнштейну в одно мгновение. Ученый якобы ехал на трамвае по Берну (Швейцария), взглянул на уличные часы и внезапно осознал, что если бы трамвай сейчас разогнался до скорости света, то в его восприятии эти часы остановились бы - и времени бы вокруг не стало. Это и привело его к формулировке одного из центральных постулатов относительности - что различные наблюдатели по-разному воспринимают действительность, включая столь фундаментальные величины, как расстояние и время.

    Эмиль Ахмедов

    Известно утверждение, что скорость света не зависит от системы отсчета. Это утверждение верно только в плоском пространстве-времени, а не искривленном, а кроме того, только при переходе из инерциальной системы отсчета в инерциальную. Если вы перешли в плоском пространстве-времени из инерциальной системы отсчета в инерциальную, то тогда скорость света не зависит от скорости движения одной системы относительно другой. Но если вы перейдете в неинерциальную систему отсчета, то уже скорость света не является такой святой коровой, она может зависеть даже от координат, если вы ее понимаете как деление пространственного приращения на приращение временное. Физик Эмиль Ахмедов о принципе Ферма, ньютоновой гравитации и эффектах общей теории относительности.

    Эмиль Ахмедов

    В современном понимании оказывается, что закон сохранения энергии и закон сохранения импульса следуют из более фундаментального принципа, заключающегося в так называемой трансляционной инвариантности в пространстве и времени. Что это значит? Что означает вообще трансляционная инвариантность?

    Эмиль Ахмедов

    Мой рассказ будет больше историческим: я расскажу о том, как возникла теория Максвелла и понятие электромагнитных волн. Были известны законы Кулона, закон Био - Савара, разные законы индукции Фарадея и другие. Этот набор экспериментальных данных Максвелл попытался описать теоретически. Насколько мне известно, его труд состоит из примерно шестисот страниц. Он пытался чисто механически объяснить законы Фарадея, описывая электромагнитное поле как набор шестеренок с разными сортами зацеплений. В XIX веке механическое описание природы было очень популярно. Большая часть этих шестисот страниц пропала, поскольку в них не было никаких конструктивных утверждений. Может, я немного преувеличиваю, но единственное конструктивное, что было в этом труде Максвелла, - это его уравнения, формулы.

    Эмиль Ахмедов

    Практически все знают соотношение E0=mc^2. Любой образованный человек знает, что E=mc^2. При этом забывают, что если тоньше приглядеться и неколлоквиально смотреть на него, то соотношение выглядит как E0=mc^2, у E есть индекс 0, и оно связывает энергию покоя с массой и скоростью света. При этом надо помнить, что энергия здесь ключевое понятие. Значит, коллоквиально говоря, это соотношение говорит о том, что любая масса - это энергия, но не любая энергия - это масса. Вот об этом не надо забывать, что не любая энергия - это масса! Любая масса - это энергия, но обратное неверно. И не для любой энергии, а только для энергии покоя верно, что она равна mc^2.Откуда следует это соотношение? Физик Эмиль Ахмедов о соотношении массы и энергии, пространстве-времени Минковского и координатах 4-вектора.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Курсовая работа

Парадоксы специальной теории относительности

Введение

3. Относительность расстояний

4. Преобразования Лоренца

5. Парадоксы СТО

5.2 Парадокс часов

5.3 Парадокс транспорта

5.4 Парадокс колеса

5.5 Парадокс шеста и сарая

5.6 Тонкий человек на решетке

Заключение

Литература

Введение

Парадоксы, т. е. неожиданные следствия или выводы теории, противоречащие сложившимся ранее представлениям, играют особую роль в процессе развития науки. При разрешении того или иного теоретического парадокса приходится обращаться к наиболее принципиальным положениям теории и иногда пересматривать или уточнять связанные с ней представления. Таким образом, теоретические парадоксы в процессе их разрешения представляют некоторую внутреннюю причину развития теории, способствующую ее логическому совершенствованию, а иногда даже выяснению границ применимости и путей дальнейшего обобщения.

Конечно, основным для развития всякой теории являются факты, получаемые из экспериментов и наблюдений. Однако одни только факты не могут сами по себе подтвердить, уточнить или изменить теорию, если они не приводят к подтверждению и уточнению или пересмотру логической структуры теории. Поэтому для развития теории имеет большое значение раскрытие внутренних противоречий и их разрешение. Противоречия же в теории отчетливее всего обнаруживаются, когда они возникают в форме тех или иных парадоксов. Таким образом, анализ теоретических парадоксов не является самоцелью, а представляет лишь средство для выяснения истинного содержания теории, уточнения отдельных ее положений и отыскания путей ее дальнейшего развития. Многие противоречия возникают в теории относительности из-за стандартного способа ее изложения по тому классическому образцу, который был дан еще Эйнштейном. Со времени первой работы Эйнштейна теория относительности пополнилась большим количеством новых представлений. В результате многочисленных приложений выяснилось главное содержание теории. Выяснилось, что некоторые представления, считавшиеся основными в период зарождения теории, оказались в действительности лишь вспомогательными средствами, использованными для построения теории. Оказалось, также, что теория может быть построена на базе различных постулатов. Выяснилось, иначе говоря, что постулаты Эйнштейна не могут отождествляться с самим содержанием теории относительности.

Глубокий анализ содержания теории относительности важен именно сейчас, когда намечается новый этап крутой ломки теоретических представлений в связи с проникновением внутрь самих элементарных частиц и открытием принципиально новых физических процессов в космосе, протекающих в радиогалактиках и сверхзвездах или квазарах.

Мы увидим, что анализ вопроса о предельности скорости сигналов в теории относительности приведет нас к пересмотру содержания, так называемого принципа причинности и к общему выводу о принципиальной возможности существования частиц, имеющих отрицательные и даже мнимые собственные массы. Но если такие частицы действительно существуют в природе, то их открытие приведет к радикальной перестройке всей существующей физической картины мира. А это в свою очередь приведет к новым открытиям, умножающим власть человека над природой.

1. Постулаты специальной теории относительности (СТО)

Классическая механика Ньютона прекрасно описывает движение макротел, движущихся с малыми скоростями (х << c). В нерелятивистской физике принималось как очевидный факт существование единого мирового времени t, одинакового во всех системах отсчета. В основе классической механики лежит механический принцип относительности (или принцип относительности Галилея): законы динамики одинаковы во всех инерциальных системах отсчета. Этот принцип означает, что законы динамики инвариантны (т. е. неизменны) относительно преобразований Галилея, которые позволяют вычислить координаты движущегося тела в одной инерциальной системе (K), если заданы координаты этого тела в другой инерциальной системе (K"). В частном случае, когда система K" движется со скоростью х вдоль положительного направления оси x системы K (рис. 1.1), преобразования Галилея имеют вид:

x=x"+хt, y=y", z=z", t=t".

Предполагается, что в начальный момент оси координат обеих систем совпадают.

Рисунок 1.1 Две инерциальные системы отсчета K и K"

Из преобразований Галилея следует классический закон преобразования скоростей при переходе от одной системы отсчета к другой:

ux=u"x+х, uy=u"y, uz=u"z.

Ускорения тела во всех инерциальных системах оказываются одинаковыми:

Следовательно, уравнение движения классической механики (второй закон Ньютона) не меняет своего вида при переходе от одной инерциальной системы к другой.

К концу XIX века начали накапливаться опытные факты, которые вступали в противоречие с законами классической механики. Большие затруднения возникли при попытках применить механику Ньютона к объяснению распространения света. Предположение о том, что свет распространяется в особой среде - эфире, было опровергнуто многочисленными экспериментами. Американский физик А. Майкельсон сначала самостоятельно в 1881 году, а затем совместно с Э. Морли (тоже американец) в 1887 году пытался обнаружить движение Земли относительно эфира («эфирный ветер») с помощью интерференционного опыта. Упрощенная схема опыта Майкельсона-Морли представлена на рис. 1.2.

Рисунок 1.2 Упрощенная схема интерференционного опыта Майкельсона-Морли. - орбитальная скорость Земли

В этом опыте одно из плеч интерферометра Майкельсона устанавливалось параллельно направлению орбитальной скорости Земли (х=30 км/с). Затем прибор поворачивался на 90°, и второе плечо оказывалось ориентированным по направлению орбитальной скорости. Расчеты показывали, что если бы неподвижный эфир существовал, то при повороте прибора интерференционные полосы должны были сместиться на расстояние, пропорциональное (х/c)2. Опыт Майкельсона-Морли, неоднократно повторенный впоследствии с все более возрастающей точностью, дал отрицательный результат. Анализ результатов опыта Майкельсона-Морли и ряда других экспериментов позволил сделать вывод о том, что представления об эфире как среде, в которой распространяются световые волны, ошибочно. Следовательно, для света не существует избранной (абсолютной) системы отсчета. Движение Земли по орбите не влияет на оптические явления на Земле.

Исключительную роль в развитии представлений о пространстве и времени сыграла теория Максвелла. К началу XX века эта теория стала общепризнанной. Предсказанные теорией Максвелла электромагнитные волны, распространяющиеся с конечной скоростью, уже нашли практическое применение - в 1895 году А. С. Поповым было изобретено радио. Но из теории Максвелла следует, что скорость распространения электромагнитных волн в любой инерциальной системе отсчета имеет одно и то же значение, равное скорости света в вакууме. Это значит, что уравнения, описывающие распространение электромагнитных волн, не инвариантны относительно преобразований Галилея. Если электромагнитная волна (в частности, свет) распространяется в системе отсчета K" (рис. 1.1) в положительном направлении оси x", то в системе K свет должен, согласно галилеевской кинематике распространяться со скоростью c+х, а не c.

Итак, на рубеже XIX и XX веков физика переживала глубокий кризис. Выход был найден Эйнштейном ценой отказа от классических представлений о пространстве и времени. Наиболее важным шагом на этом пути явился пересмотр используемого в классической физике понятия абсолютного времени. Классические представления, кажущиеся наглядными и очевидными, в действительности оказались несостоятельными. Многие понятия и величины, которые в нерелятивистской физике считались абсолютными, т. е. не зависящими от системы отсчета, в эйнштейновской теории относительности переведены в разряд относительных.

Так как все физические явления происходят в пространстве и во времени, новая концепция пространственно-временных закономерностей не могла не затронуть в итоге всю физику.

В основе специальной теории относительности лежат два принципа или постулата, сформулированные Эйнштейном в 1905 г.

Принцип относительности: все законы природы инвариантны по отношению к переходу от одной инерциальной системы отсчета к другой. Это означает, что во всех инерциальных системах физические законы (не только механические) имеют одинаковую форму. Таким образом, принцип относительности классической механики обобщается на все процессы природы, в том числе и на электромагнитные. Этот обобщенный принцип называют принципом относительности Эйнштейна.

Принцип постоянства скорости света: скорость света в вакууме не зависит от скорости движения источника света или наблюдателя и одинакова во всех инерциальных системах отсчета. Скорость света в СТО занимает особое положение. Это предельная скорость передачи взаимодействий и сигналов из одной точки пространства в другую.

Эти принципы следует рассматривать как обобщение всей совокупности опытных фактов. Следствия из теории, созданной на основе этих принципов, подтверждались бесконечными опытными проверками. СТО позволила разрешить все проблемы «доэйнштейновской» физики и объяснить «противоречивые» результаты известных к тому времени экспериментов в области электродинамики и оптики. В последующее время СТО была подкреплена экспериментальными данными, полученными при изучении движения быстрых частиц в ускорителях, атомных процессов, ядерных реакций и т. п.

Постулаты СТО находятся в явном противоречии с классическими представлениями. Рассмотрим такой мысленный эксперимент: в момент времени t=0, когда координатные оси двух инерциальных систем K и K" совпадают, в общем начале координат произошла кратковременная вспышка света. За время t системы сместятся относительно друг друга на расстояние хt, а сферический волновой фронт в каждой системе будет иметь радиус ct (рис.1. 3), так как системы равноправны и в каждой из них скорость света равна c.

Рисунок 1.3 Кажущееся противоречие постулатов СТО

С точки зрения наблюдателя в системе K центр сферы находится в точке O, а с точки зрения наблюдателя в системе K" он будет находиться в точке O". Следовательно, центр сферического фронта одновременно находится в двух разных точках.

Причина возникающего недоразумения лежит не в противоречии между двумя принципами СТО, а в допущении, что положение фронтов сферических волн для обеих систем относится к одному и тому же моменту времени. Это допущение заключено в формулах преобразования Галилея, согласно которым время в обеих системах течет одинаково: t=t". Следовательно, постулаты Эйнштейна находятся в противоречии не друг с другом, а с формулами преобразования Галилея. Поэтому на смену галилеевых преобразований СТО предложила другие формулы преобразования при переходе из одной инерциальной системы в другую - так называемые преобразования Лоренца, которые при скоростях движения, близких к скорости света, позволяют объяснить все релятивистские эффекты, а при малых скоростях (х << c) переходят в формулы преобразования Галилея. Таким образом, новая теория (СТО) не отвергла старую классическую механику Ньютона, а только уточнила пределы ее применимости. Такая взаимосвязь между старой и новой, более общей теорией, включающей старую теорию как предельный случай, носит название принципа соответствия .

2. Относительность промежутков времени

При выполнении любых физических измерений исключительную роль играют пространственно-временные соотношения между событиями. В СТО событие определяется как физическое явление, происходящее в какой-либо точке пространства в некоторый момент времени в избранной системе отсчета. Таким образом, чтобы полностью охарактеризовать событие, требуется не только выяснить его физическое содержание, но и определить его место и время. Для этого необходимо использовать процедуры измерения расстояний и промежутков времени. Эйнштейн показал, что эти процедуры нуждаются в строгом определении.

Для того чтобы в выбранной системе отсчета выполнять измерения промежутка времени между двумя событиями (например, началом и концом какого-либо процесса), происходящими в одной и той же точке пространства, достаточно иметь эталонные часы. Наибольшей точностью в настоящее время обладают часы, основанные на использовании собственных колебаний молекул аммиака (молекулярные часы) или атомов цезия (атомные часы). Измерение промежутка времени опирается на понятие одновременности: длительность какого-либо процесса определяется путем сравнения с промежутком времени, отделяющим показание часов, одновременное с концом процесса, от показания тех же часов, одновременного с началом процесса. Если же оба события происходят в разных точках системы отсчета, то для измерения промежутков времени между ними в этих точках необходимо иметь синхронизованные часы.

Эйнштейновское определение процедуры синхронизации часов основано на независимости скорости света в пустоте от направления распространения. Пусть из точки A в момент времени по часам A отправляется короткий световой импульс (рис. 2.1). Пусть время прихода импульса в B и отражения его назад на часах B есть t". Наконец, пусть отраженный сигнал возвращается в A в момент по часам A. Тогда по определению часы в A и B идут синхронно, если t"=()/2.

Рисунок 2.1 Синхронизация часов в СТО

Существование единого мирового времени, не зависящего от системы отсчета, которое принималось как очевидный факт в классической физике, эквивалентно неявному допущению о возможности синхронизации часов с помощью сигнала, распространяющегося с бесконечно большой скоростью.

Итак, в разных точках выбранной системы отсчета можно расположить синхронизованные часы. Теперь можно дать определение понятия одновременности событий, происходящих в пространственно-разобщенных точках: эти события одновременны, если синхронизованные часы показывают одинаковое время.

Рассмотрим теперь вторую инерциальную систему K", которая движется с некоторой скоростью х в положительном направлении оси x системы K. В разных точках этой новой системы отсчета также можно расположить часы и синхронизировать их между собой, используя описанную выше процедуру. Теперь интервал времени между двумя событиями можно измерять как по часам в системе K, так и по часам в системе K". Будут ли эти интервалы одинаковы? Ответ на этот вопрос должен находиться в согласии с постулатами СТО.

Пусть оба события в системе K" происходят в одной и той же точке и промежуток времени между ними равен по часам системы K". Этот промежуток времени называется собственным временем. Каким будет промежуток времени между этими же событиями, если его измерить по часам системы K?

Для ответа на этот вопрос рассмотрим следующий мысленный эксперимент. На одном конце твердого стержня некоторой длины расположена импульсная лампа B, а на другом конце - отражающее зеркало M. Стержень расположен, неподвижно в системе K" и ориентирован параллельно оси y" (рис. 2.2). Событие 1 - вспышка лампы, событие 2 - возвращение короткого светового импульса к лампе.

Рисунок 2.2.

Относительность промежутков времени. Моменты наступлений событий в системе K" фиксируются по одним и тем же часам C, а в системе K - по двум синхронизованным пространственно-разнесенным часам и. Система K" движется со скоростью х в положительном направлении оси x системы K

В системе K" оба рассматриваемых события происходят в одной и той же точке. Промежуток времени между ними (собственное время) равен. С точки зрения наблюдателя, находящегося в системе K, световой импульс движется между зеркалами зигзагообразно и проходит путь 2L, равный

где ф - промежуток времени между отправлением светового импульса и его возвращением, измеренный по синхронизованным часам и, расположенными в разных точках системы K. Но согласно второму постулату СТО, световой импульс двигался в системе K с той же скоростью c, что и в системе K". Следовательно, ф=2L/c.

Из этих соотношений можно найти связь между ф и:

Таким образом, промежуток времени между двумя событиями зависит от системы отсчета, т. е. является относительным. Собственное время всегда меньше, чем промежуток времени между этими же событиями, измеренный в любой другой системе отсчета. Этот эффект называют релятивистским замедлением времени. Замедление времени является следствием инвариантности скорости света.

Эффект замедления времени является взаимным, в согласии с постулатом о равноправии инерциальных систем K и K": для любого наблюдателя в K или K" медленнее идут часы, связанные с системой, движущейся по отношению к наблюдателю. Этот вывод СТО находит непосредственное опытное подтверждение. Например, при исследовании космических лучей в их составе обнаружены м-мезоны - элементарные частицы с массой, примерно в 200 раз превышающей массу электрона. Эти частицы нестабильны, их среднее собственное время жизни равно. Но в космических лучах м-мезоны движутся со скоростью, близкой к скорости света. Без учета релятивистского эффекта замедления времени они в среднем пролетали бы в атмосфере путь, равный c ?660 м. На самом деле, как показывает опыт, мезоны за время жизни успевают пролетать без распада гораздо большие расстояния. Согласно СТО, среднее время жизни мезонов по часам земного наблюдателя равно

Так как близко к единице. Поэтому средний путь проходимый мезоном системе, оказывается значительно больше 660 м.

С релятивистским эффектом замедления времени связан так называемый «парадокс близнецов». Предполагается, что один из близнецов остается на Земле, а второй отправляется в длительное космическое путешествие с субсветовой скоростью. С точки зрения земного наблюдателя, время в космическом корабле течет медленнее, и когда астронавт возвратится на Землю, он окажется гораздо моложе своего брата-близнеца, оставшегося на Земле. Парадокс заключается в том, что подобное заключение может сделать и второй из близнецов, отправляющийся в космическое путешествие. Для него медленнее течет время на Земле, и он может ожидать, что по возвращению после длительного путешествия на Землю он обнаружит, что его брат-близнец, оставшийся на Земле, гораздо моложе его.

Чтобы разрешить «парадокс близнецов», следует принять во внимание неравноправие систем отсчета, в которых находятся оба брата-близнеца. Первый из них, оставшийся на Земле, все время находится в инерциальной системе отсчета, тогда как система отсчета, связанная с космическим кораблем, принципиально неинерциальная. Космический корабль испытывает ускорения при разгоне во время старта, при изменении направления движения в дальней точке траектории и при торможении перед посадкой на Землю. Поэтому заключение брата-астронавта неверно. СТО предсказывает, что при возвращении на Землю он действительно окажется моложе своего брата, оставшегося на Земле.

Эффекты замедления времени пренебрежимо малы, если скорость космического корабля гораздо меньше скорости света c. Тем не менее, удалось получить прямое подтверждение этого эффекта в экспериментах с макроскопическими часами. Наиболее точные часы - атомные работающие на пучке атомов цезия. Эти часы «тикают» 9192631770 раз в секунду. Американские физики в 1971 году провели сравнение двух таких часов, причем одни из них находились в полете вокруг Земли на обычном реактивном лайнере, а другие оставались на Земле в военно-морской обсерватории США. В соответствии с предсказаниями СТО, путешествующие на лайнерах часы должны были отстать от находящихся на Земле часов на (184±23)·10-9 с. Наблюдаемое отставание составило (203±10)·10-9 с, т. е. в пределах ошибок измерений. Через несколько лет эксперимент был повторен и дал результат, согласующийся со СТО с точностью 1 %.

В настоящее время уже необходимо принимать во внимание релятивистский эффект замедления хода часов при транспортировке атомных часов на большие расстояния.

3. Относительность расстояний

Пусть твердый стержень покоится в системе отсчета K", движущейся со скоростью х относительно системы отсчета K (рис. 3.1). Стержень ориентирован параллельно оси x". Его длина, измеренная с помощью эталонной линейки в системе K", равна. Ее называют собственной длиной. Какой будет длина этого стержня, измеренная наблюдателем в системе K? Для ответа на этот вопрос необходимо дать определение процедуры измерения длины движущегося стержня.

Под длиной стержня в системе K, относительно которой стержень движется, понимают расстояние между координатами концов стержня, зафиксированными одновременно по часам этой системы. Если известна скорость системы K" относительно K, то измерение длины движущегося стержня можно свести к измерению времени: длина движущегося со скоростью х стержня равна произведению, где - интервал времени по часам в системе K между прохождением начала стержня и его конца мимо какой-нибудь неподвижной точки (например, точки A) в системе K (рис. 3.1). Поскольку в системе K оба события (прохождение начала и конца стержня мимо фиксированной точки A) происходят в одной точке, то промежуток времени в системе K является собственным временем. Итак, длина движущегося стержня равна

Рисунок 3.1 Измерение длины движущегося стержня

Найдем теперь связь между и. С точки зрения наблюдателя в системе K", точка A, принадлежащая системе K, движется вдоль неподвижного стержня налево со скоростью х, поэтому можно записать =хф,

где ф есть промежуток времени между моментами прохождения точки A мимо концов стержня, измеренный по синхронизованным часам в K". Используя связь между промежутками времени ф и

Таким образом, длина стержня зависит от системы отсчета, в которой она измеряется, т. е. является относительной величиной. Длина стержня оказывается наибольшей в той системе отсчета, в которой стержень покоится. Движущиеся относительно наблюдателя тела сокращаются в направлении своего движения. Этот релятивистский эффект носит название лоренцево сокращения длины.

Расстояние не является абсолютной величиной, оно зависит от скорости движения тела относительно данной системы отсчета. Сокращение длины не связанно с какими-либо процессами, происходящими в самих телах. Лоренцево сокращение характеризует изменение размера движущегося тела в направлении его движения. Если стержень на рис. 3.1 расположить перпендикулярно оси x, вдоль которой движется система K", то длина стержня оказывается одинаковой для наблюдателей в обеих системах K и K". Это утверждение находится в соответствии с постулатом о равноправии всех инерциальных систем. Для доказательства можно рассмотреть следующий мысленный эксперимент. Расположим в системах K и K" вдоль осей y и y" два жестких стержня. Стержни имеют одинаковые собственные длины, измеренные неподвижными по отношению к каждому из стержней наблюдателями в K и K", и один из концов каждого стержня совпадает с началом координат O или O". В некоторый момент стержни оказываются рядом, и представляется возможность сравнить их непосредственно: конец каждого стержня может сделать метку на другом стержне. Если бы эти метки не совпали с концами стержней, то один из них оказался бы длиннее другого с точки зрения обеих систем отсчета. Это противоречило бы принципу относительности.

Следует обратить внимание, что при малых скоростях движения (х << c) формулы СТО переходят в классические соотношения: и. Таким образом, классические представления, лежащие в основе механики Ньютона и сформировавшиеся на основе многовекового опыта наблюдения над медленными движениями, в специальной теории относительности соответствуют предельному переходу при в=х/c>0. В этом проявляется принцип соответствия.

4. Преобразования Лоренца

Классические преобразования Галилея несовместимы с постулатами СТО и, следовательно, должны быть заменены. Эти новые преобразования должны установить связь между координатами (x, y, z) и моментом времени t события, наблюдаемого в системе отсчета K, и координатами (x", y", z") и моментом времени t" этого же события, наблюдаемого в системе отсчета K".

Кинематические формулы преобразования координат и времени в СТО называются преобразованиями Лоренца. Они были предложены в 1904 году еще до появления СТО как преобразования, относительно которых инвариантны уравнения электродинамики. Для случая, когда система K" движется относительно K со скоростью х вдоль оси x, преобразования Лоренца имеют вид:

Из преобразований Лоренца вытекает целый ряд следствий. В частности, из них следует релятивистский эффект замедления времени и лоренцево сокращение длины. Пусть, например, в некоторой точке x" системы K" происходит процесс длительностью (собственное время), где и - показания часов в системе K" в начале и конце процесса. Длительность ф этого процесса в системе K будет равна

Аналогичным образом, можно показать, что из преобразований Лоренца вытекает релятивистское сокращение длины. Одним из важнейших следствий из преобразований Лоренца является вывод об относительности одновременности. Пусть, например, в двух разных точках системы отсчета K" () одновременно с точки зрения наблюдателя в K" () происходят два события. Согласно преобразованиям Лоренца, наблюдатель в системе K будет иметь

Следовательно, в системе K эти события, оставаясь пространственно разобщенными, оказываются неодновременными. Более того, знак разности определяется знаком выражения, поэтому в одних системах отсчета первое событие может предшествовать второму, в то время как в других системах отсчета, наоборот, второе событие предшествует первому. Этот вывод СТО не относится к событиям, связанным причинно-следственными связями, когда одно из событий является физическим следствием другого. Можно показать, что в СТО не нарушается принцип причинности, и порядок следования причинно-следственных событий одинаков во всех инерциальных системах отсчета.

Относительность одновременности пространственно-разобщенных событий можно проиллюстрировать на следующем примере.

Пусть в системе отсчета K" вдоль оси x" неподвижно расположен длинный жесткий стержень. В центре стержня находится импульсная лампа B, а на его концах установлены двое синхронизованных часов (рис. 4.1(a)), система K" движется вдоль оси x системы K со скоростью х. В некоторый момент времени лампа посылает короткие световые импульсы в направлении концов стержня. В силу равноправия обоих направлений свет в системе K" дойдет до концов стержня одновременно, и часы, закрепленные на концах стержня, покажут одно и то же время t". Относительно системы K концы стержня движутся со скоростью х так, что один конец движется навстречу световому импульсу, а другой конец свету приходится догонять. Так как скорости распространения световых импульсов в обоих направлениях одинаковы и равны c, то, с точки зрения наблюдателя в системе K, свет раньше дойдет до левого конца стержня, чем до правого (рис. 4.1(b)).

Рисунок 4.1.

Относительность одновременности. Световой импульс достигает концов твердого стержня одновременно в системе отсчета K" (a) и не одновременно в системе отсчета K (b)

Преобразования Лоренца выражают относительный характер промежутков времени и расстояний. Однако в СТО наряду с утверждением относительного характера пространства и времени важную роль играет установление инвариантных физических величин, которые не изменяются при переходе от одной системы отсчета к другой. Одной из таких величин является скорость света в вакууме c, которая в СТО приобретает абсолютный характер. Другой важной инвариантной величиной, отражающей абсолютный характер пространственно-временных связей, является интервал между событиями.

Пространственно-временной интервал определяется в СТО следующим соотношением:

где - промежуток времени между событиями в некоторой системе отсчета, а - расстояние между точками, в которых происходят рассматриваемые события, в той же системе отсчета. В частном случае, когда одно из событий происходит в начале координат системы отсчета в момент времени, а второе - в точке с координатами x, y, z в момент времени t, пространственно-временной интервал между этими событиями записывается в виде

С помощью преобразований Лоренца можно доказать, что пространственно-временной интервал между двумя событиями не изменяется при переходе из одной инерциальной системы в другую. Инвариантность интервала означает, что, несмотря на относительность расстояний, и промежутков времени, протекание физических процессов носит объективный характер и не зависит от системы отсчета.

Если одно из событий представляет собой вспышку света в начале координат системы отсчета при t=0, а второе - приход светового фронта в точку с координатами x, y, z в момент времени t (рис. 1.3), то

и, следовательно, интервал для этой пары событий s=0. В другой системе отсчета координаты и время второго события будут другими, но и в этой системе пространственно-временной интервал s" окажется равным нулю, так как

Для любых двух событий, связанных между собой световым сигналом, интервал равен нулю.

Из преобразований Лоренца для координат и времени можно получить релятивистский закон сложения скоростей. Пусть, например, в системе отсчета K" вдоль оси x" движется частица со скоростью

Составляющие скорости частицы u"x и u"z равны нулю. Скорость этой частицы в системе K будет равна

С помощью операции дифференцирования из формул преобразований Лоренца можно найти:

Эти соотношения выражают релятивистский закон сложения скоростей для случая, когда частица движется параллельно относительной скорости систем отсчета K и K".

При х << c релятивистские формулы переходят в формулы классической механики: ux=u"x+х, uy=0, uz=0.

Если в системе K" вдоль оси x" со скоростью u"x=c распространяется световой импульс, то для скорости ux импульса в системе K получим

Таким образом, в системе отсчета K световой импульс также распространяется вдоль оси x со скоростью c, что согласуется с постулатом об инвариантности скорости света .

5. Парадоксы СТО

5.1 Парадокс эйнштейновского поезда

Пусть на поезде, движущемся со скоростью, близкой к единице, едут три человека (А, О и В). А едет в голове поезда, О в середине, а В -- в хвосте (рис. 1).

Рисунок 1. Кто подал сигнал первым - путешественник А или путешественник В?

На земле около железнодорожного пути стоит четвертый человек, О". В тот самый момент, когда О проезжает мимо О", сигналы ламп вспышек от А и В достигают О и О". Кто первым послал сигнал? Пользуясь только тем фактом, что скорость света конечна и не зависит от скорости движения его источника.

Наблюдатели А и В покоятся относительно наблюдателя О. К тому же они находятся на равных расстояниях от О, что последний может не спеша проверить, пользуясь своей линейкой. Следовательно, сигналам от А и от В требуется одно и то же время, чтобы достигнуть О. Эти сигналы принимаются наблюдателем О одновременно. Поэтому наблюдатель О заключает, что наблюдатели Аи В послали свои сигналы в один и тот же момент: .

Наблюдатель О", стоящий рядом с железнодорожными путями, делает совершенно иные выводы. Его рассуждения таковы: «Две вспышки пришли ко мне, когда середина поезда проходила мимо меня. Значит, обе эти вспышки должны быть испущены до того, как середина поезда поравнялась со мной. А до этого момента наблюдатель А был ко мне ближе, чем наблюдатель В. Поэтому свет от В должен был пройти до меня более длинный путь и затратить на это большее время, чем свет от А. Но оба сигнала поступили ко мне одновременно. Следовательно, наблюдатель В должен был послать свой сигнал раньше, чем наблюдатель А» (<0). Итак, наблюдатель О", стоящий рядом с железнодорожными путями, делает заключение, что сначала послал свои сигнал В, а потом уже А, тогда как едущий на поезде наблюдатель О заключает, что оба наблюдателя, А и В, послали сигналы в одно и то же время.

Чему равен промежуток времени между посылкой сигналов наблюдателями А и В? В нештрихованной системе отсчета (поезд) эти сигналы были отправлены одновременно, так что. Расстояние между точками посылки сигналов равно, где L -- длина поезда. Поэтому в штрихованной системе отсчета (движущейся вправо по отношению к нештрихованной системе, то есть поезду, как это бывает обычно при использовании штрихованных и нештрихованных обозначений) промежуток времени между посылкой сигналов А и В можно найти по формулам преобразования Лоренца:

Знак «минус» показывает, что наблюдатель В, находящийся на положительной части оси x / , отправил свой сигнал раньше по «ракетному» времени (более отрицательное время!), чем наблюдатель А .

5.2 Парадокс часов

Пусть часы А находятся в точке I в неподвижной инерциальной системе отсчета, а одинаковые

Рисунок 2

с ними часы В, находившиеся в начальный момент также в точке I, движутся к точке II со скоростью v. Затем, пройдя путь I до точки II, часы В замедляются и, приобретая противоположную скорость -- . возвращаются в точку I (рис. 2).

Если время, требуемое на изменение скорости часов В на обратную, достаточно мало по сравнению с временем прямолинейного и равномерного движения от точки I до точки II, то время, отмеренное часами А, и время, отмеренное часами В, можно вычислить согласно

по формулам

где -- возможная малая поправка на время ускоренного движения часов В. Следовательно, часы B, вернувшись в точку I, реально отстанут от часов A на время

Поскольку расстояние может быть сделано сколь угодно большим, постольку поправка может не приниматься во внимание вообще. Особенность этого кинематического следствия преобразований Лоренца состоит в том, что здесь отставание хода движущихся часов является вполне реальным эффектом.

Реально должны отстать все процессы, связанные с системой, от процессов, идущих в системе. В том числе должны отстать и биологические процессы организмов, находящихся вместе с часами В. Должны замедлиться физиологические процессы в организме человека, путешествующего в системе, в результате чего организм, находившийся в системе, в момент ее возврата в точку I окажется менее постаревшим, чем организм, остававшийся в системе.

Парадоксальным представляется здесь то, что одни из часов реально отстают от других. Ведь это кажется противоречащим самому принципу относительности, так как согласно последнему любую из систем и можно считать неподвижной. Но тогда представляется, что лишь в зависимости от нашего выбора реально отстающими могут стать любые из часов А и В. Но последнее явно абсурдно, так как реально отстают часы В от часов А.

Ошибочность последнего рассуждения состоит в том, что системы и физически не равноправны, так как система все время инерциальная, система же некоторый промежуток времени, когда производится изменение ее скорости на обратную, неинерциальная. Следовательно, вторая из формул (1) для системы неправильна, так как во время ускорения ход удаленных

часов может сильно изменяться за счет инерциального гравитационного поля.

Однако и это совершенно правильное объяснение представляется весьма поразительным. Ведь в течение большого промежутка времени обе системы движутся друг относительно друга прямолинейно и равномерно. Поэтому с точки зрения системы часы А, находящиеся в, отстают (а не уходят вперед) в полном соответствии с формулой (1). И лишь за малый промежуток времени, когда в системе действуют инерциальные силы, часы А быстро уходят вперед на промежуток времени, вдвое больший, чем, ычисляемый по формуле (2). При этом чем большее ускорение испытывает система, тем быстрее бежит время на часах А.

Наглядно суть полученных выводов может быть разъяснена на плоскости Минковского (рис. 3).

Рисунок 3

Отрезок Оb на рис. 3, а изображает покоящиеся часы А, ломаная линия Оаb -- движущиеся часы B. В точке а действуют силы, ускоряющие систему часов В и изменяющие ее скорость на обратную. Точки, расставленные на оси Ob, разделяют единичные промежутки времени в неподвижной системе, связанной с часами А.

Точки на ломаной Оаb отмечают равные единичные промежутки времени, измеряемые часами B, находящимися в системе. Из рисунка видно, что число единичных отрезков, укладывающихся на линии Оb, больше, чем число таких же, но относящихся к системе отрезков, укладывающихся на ломаной Оаb. Следовательно, часы В отстают от часов А.

Согласно рисунку «неподвижные» часы А также отстают от часов В вплоть до момента, изображаемого точкой а. Одновременным с этим моментом является момент, однако до тех пор, пека часы В еще движутся со скоростью. Но через малый промежуток времени, требуемый для замедления часов В и сообщения им скорости -- , на часах В практически останется тот же момент А, но одновременным с ним моментом в системе станет момент, т. е. почти мгновенно время системы как бы перескочит на конечный интервал.

Этот перескок времени не является, однако, реально наблюдаемым эффектом. Действительно, если из системы регулярно, через единичные интервалы посылать в систему световые сигналы, то они совершенно регулярно будут приниматься системой сперва более редко, а затем, после изменения скорости на обратную, более часто. Никакого разрыва в показаниях часов А в системе наблюдаться не будет, как это видно из рис. 3 б,

Таким образом, «парадокс часов» также является лишь непривычным для обычных представлений о пространстве и времени следствием псевдоевклидовой геометрии четырехмерного пространственно-временного многообразия .

5.3 Парадокс транспорта

Транспортер представляет собой бесконечную ленту из гибкого материала, которая движется па направляющим с помощью двух шкивов, укрепленных на станине АВ (рис. 4). Приведем этот транспортер в действие с таким расчетом, чтобы скорость движения ленты приблизилась к световой. Тогда длина ее горизонтальных частей уменьшится в К раз, хотя расстояние между центрами шкивов останется без перемен. Если вначале лента свободно провисала, она натянется. А

Рисунок 4

при недостаточном запасе длины материал ленты подвергнется растяжению. При этом в нем возникнут соответствующие напряжения, которые в принципе могли бы быть обнаружены динамометром и даже привести к обрыву. Наоборот, станина АВ под влиянием натяжения ленты подвергается деформации сжатия, которая также может быть обнаружена динамометром.

Так будут описываться явления в системе «Станина». Если, однако, систему отсчета связать не со станиной, а с лентой, то покоящейся придется считать ленту, а станину -- движущейся с большой скоростью. Тогда сократиться должна уже не лента, а станина, результатом чего будет уже не тугое натяжение, а свободное провисание ленты.

Но этот вывод явно противоречит принципу относительности: рассуждения, касающиеся одного и того же явления, в двух разных системах отсчета приводят к взаимно исключающим результатам. Произведя соответствующий опыт, можно будет опровергнуть один из них и подтвердить другой. А это позволит определить, который из двух объектов (лента или станина) находится в «истинном», а какой только в «кажущемся» движении.

Таким образом, мы сталкиваемся с парадоксом: в данном конкретном случае применение теории относительности приводит к отрицанию одной из ее собственных основ -- принципа относительности Эйнштейна.

Правда, от этого парадокса можно было бы отмахнуться: ведь скользящие по шкивам участки ленты движутся криволинейно, а частная теория относительности требует, чтобы все системы отсчета были инерциальными.

Но это -- не ответ на парадокс, а только попытка уклониться от его действительного анализа (вроде следующего «объяснения»: «Получить вечный двигатель, соединив электромотор с динамо-машиной ремнем и проводами, разумеется, не удастся, потому что ремень обязательно перетрется»).

Можно, конечно, предположить, что криволинейные участки ленты не укорачиваются, а удлиняются как раз настолько, что компенсируется основной эффект. Но достаточно увеличить расстояние между осями шкивов, например, в 10 раз, чтобы компенсация нарушилась: основной эффект укорочения прямолинейных участков возрастает вдесятеро, тогда как предполагаемый маскирующий эффект криволинейных частей останется тем же самым.

Действительное разъяснение парадокса состоит в невозможности связать инерциальную систему отсчета со всей лентой. А если система связана только с одним из ее участков, она не инерциальная: ведь каждый участок ленты (можно представлять его себе окрашенным в особый цвет) периодически меняет направление своего движения на противоположное.

Можно, конечно, воспользоваться инерциальной системой отсчета, которая все время движется относительно станины в том же направлении и с той же скоростью, что и нижняя часть ленты. В этой системе станина движется со скоростью влево, нижняя часть ленты, естественно, неподвижна, а верхняя движется в ту же сторону, что и станина, но с релятивистски удвоенной скоростью

При этом станина укорачивается в К раз, нижняя часть ленты сохраняет натуральную длину, но зато верхняя сокращается значительно сильнее, чем в К раз (приблизительно в раз). В результате общая длина ленты уменьшается настолько, что она, несмотря на укорочение станины, натягивается, а не провисает (количественная сторона дела рассматривается в дополнении Д).

Как и следовало ожидать, рассмотрение в любой действительно инерциальной системе отсчета приводит к одинаковому результату (натяжению ленты). Тем самым парадокс полностью снимается: в данном опыте станина и лента физически неравноправны, так как в отличие от станины лента не может считаться покоящейся ни в одной инерциальной системе (потому что ее части движутся друг относительно друга). По этой именно причине укорачивается лента по сравнению со станиной, а не наоборот.

Рассмотрим еще один довод, который мог бы быть выдвинут в подкрепление парадокса противниками теории относительности. Ровно половина ленты не работающего еще транспортера окрашена в черный цвет. Выберем такой момент времени, когда окрашенная часть ленты находится внизу, а неокрашенная -- вверху (рис. 5).

Рисунок 5

В системе «Станина» обе части ленты, сокращаясь в одинаковое число раз, всегда будут оставаться равными по длине, как это и показано на рис. 5.

В противоположность этому в инерциальной системе «Нижний участок ленты» уменьшение общей длины ленты происходит только за счет ее верхней части, тогда как нижняя часть ленты по сравнению со станиной даже удлиняется в К раз. Поэтому некоторая часть окрашенной «половины» неизбежно перейдет вверх, так что расположение ленты на шкивах будет соответствовать не рис. 5, а рис. 6.

Рисунок 6

Казалось бы, достаточно взглянуть на работающий транспортер, чтобы установить, который из двух противоречащих друг другу выводов соответствует действительности, и тем самым выделить преимущественную систему!

Но это совсем не так. Чтобы установить, который из двух рисунков 5 или 6) подтверждается на опыте, нужно определить, одновременно ли проходят обе границы окрашенной «половины» ленты через крайнее правое и крайнее левое положения. А ведь в каждой системе отсчета понятие одновременности -- свое! Поэтому нет ничего невозможного в том, что в одной системе отсчета будет «наблюдаться» картина, показанная на рис, 5, а в другой -- показанная на рис. 6 .

5.4 Парадокс колеса

Вообразим большое колесо, которое может вращаться относительно системы «Звезды» (рис. 7).

Рисунок 7

Вначале колесо неподвижно, а затем приводится в столь быстрое вращение, что линейная скорость его краев приближается к световой. При этом участки обода АВ, ВС и т. д. сокращаются в К раз, тогда как радиальные «спицы» ОА, ОВ, ОС и т. д. сохраняют свою длину (ведь релятивистское укорочение испытывают только продольные размеры, т. е. размеры в направлении движения).

Выходит, что при неизменном диаметре длина окружности уменьшится в К раз. Если K=10, то окружность станет приблизительно втрое короче своего диаметра -- прямая перестанет служить кратчайшим расстоянием между точками!

Как справится теория относительности с такой геометрической несообразностью?

Чтобы лучше разобраться в деталях физических процессов, сопутствующих быстрому вращению, представим себе сначала, что мы резко охлаждаем покоящееся колесо. Допустим, что его обод изготовлен из материала с большим коэффициентом температурного расширения и сжатия, тогда как длина спиц почти не меняется с температурой. Тогда в результате охлаждения в колесе возникнут механические напряжения: дуговые стержни, стремясь сократиться, будут надавливать на спицы.

В зависимости от механической прочности и упругих свойств после охлаждения колеса либо его обод останется в растянутом состоянии, либо же укоротятся спицы (а вернее сказать, всегда будет в какой-то мере иметь место и тот и другой эффект). Во всяком случае, никакого укорочения окружности при неизменном диаметре не будет. Такое напряженное состояние колеса механически неустойчиво: малейшее отклонение в сторону -- и оно примет форму сферического сегмента (рис. 8).

Рисунок 8

Тогда действительно длина окружности обода будет меньше, чем, где r -- длина изогнутой спицы. Однако изгибанию колеса можно воспрепятствовать, придав ему достаточную жесткость на изгиб или поместив его между двумя прочными пластинами.

Нечто аналогичное происходит и тогда, когда неподвижное вначале колесо приводится в быстрое вращение: его обод стремится сократиться, а спицы -- сохранить неизменную длину. Какая из этих тенденций возьмет верх -- всецело зависит от механических свойств обода и спиц; но никакого укорочения обода без пропорционального ему укорочения спиц не будет (разве что колесо примет форму сферического сегмента). Очевидно, что с принципиальной точки зрения ничто не изменится также и в том случае, если колесо со спицами будет заменено сплошным диском.

Итак, никакого неразрешимого противоречия с геометрией не возникает. Нужно только иметь в виду, что в теории относительности, даже при рассмотрении чисто кинематических вопросов, не всегда допустимо пользоваться абстракцией абсолютно недеформируемого тела (впрочем, представление об абсолютно жестком стержне неприемлемо уже и потому, что с помощью его можно было бы мгновенно передавать сигнал: благодаря неизменности длины оба его конца смещались бы одновременно).

Однако предположим теперь, что колесо изготовлено (например, отлито) внутри быстро вращающейся мастерской. Это значит, что именно в состоянии быстрого вращения относительно системы «Звезды» оно свободно от внутренних напряжений. Если его остановить, обод будет стремиться к удлинению, а спицы -- к сохранению своей длины. При этом возникают напряжения противоположного характера по сравнению с предыдущим случаем: в частности, колесо не будет проявлять никакой тенденции к превращению в сферический сегмент; наоборот, оно будет образовывать по краям складки.

Рассмотрим теперь те же явления в системе «Вращающаяся мастерская». Тогда нам придется считать, что отлитое в этой мастерской колесо, о котором только что шла речь, сперва покоилось, а потом пришло в быстрое вращение. Но при этом в нем возникли внутренние напряжения, ведущие к образованию краевых складок, а не сферического сегмента. Налицо резкое расхождение с результатом такого же эксперимента в системе «Звезды», позволяющее отличить ее от системы «Вращающаяся мастерская».

На этот раз возможность отличить одну систему отсчета от другой не мнимая, а действительная. Однако она ничуть не противоречит частной теории относительности, ведь только одна из этих систем является инерциальной. При этом неинерциальность системы отсчета, вращающейся относительно неподвижных звезд, могла бы быть еще проще обнаружена и по другим, нерелятивистским эффектам (например, центробежному).

В так называемой общей теории относительности Эйнштейном была сделана попытка сформулировать принцип относительности таким образом, чтобы он охватывал не только инерциальные, но также и неинерциальные системы. Однако, как убедительно показал акад. В. А. Фок, это могло быть достигнуто только за счет выхолащивания из самого принципа относительности всего его физического содержания. В действительности же (как показывает уже существование центробежных сил) никакого физически содержательного «общего принципа относительности» не существует, а так называемая «общая теория относительности» в действительности является не расширением частной, а теорией всемирного тяготения.

Это не значит, конечно, что нельзя пользоваться вращающимися и вообще неинерциальными системами отсчета. Необходимо лишь помнить, что с инерциальными они не равноправны, и физические явления в них подчиняются иным законам.

Более детальное исследование показывает, что своеобразие неинерциальных систем распространяется не только на физические, но даже и на геометрические соотношения. Когда экспериментатор, пользующийся вращающейся системой отсчет, измеряет длину окружности, он располагает метр в направлении движения. Поэтому с точки зрения неподвижного наблюдателя он получает преувеличенное значение длины окружности, ибо пользуется сокращенным метром. Когда же вращающийся наблюдатель измеряет диаметр, он располагает свой метр перпендикулярно к направлению движения и потому получает результат, с которым безоговорочно согласится также и неподвижный наблюдатель. Но при правильной длине диаметра и преувеличенной длине окружности отношение их уже не может равняться .

5.5 Парадокс шеста и сарая

Возьмем шест длиной 20 м и будем двигать его в направлении его длины с такой скоростью, чтобы в лабораторной системе отсчета он оказался длиной всего 10 м. Тогда в некоторый момент этот шест можно целиком спрятать в сарае, длина которого также 10 м.. Но рассмотрим то же самое в системе отсчета бегуна с шестом. Для него наполовину сократившимся в длину оказывается сарай. Как же можно спрятать 20-метровый шест в 5-метровом сарае?!

Разрешение этого «парадокса» состоит в том, что в системе отсчета бегуна передний конец шеста покидает сарай прежде, чем задний конец шеста входит в сарай. Поэтому с точки зрения бегуна шест вообще ни в какой момент времени не находится в сарае целиком. Последовательность событий можно подробнее проиллюстрировать двумя диаграммами пространства-времени (рис. 9 и 10),

Рисунок 9. пространственно - временная Рисунок 10 пространственно - временная диаграмма в системе отсчета сарая диаграмма в системе отсчета бегуна

численные значения длин и моментов времени, на которых можно получить из следующих соображений. Так как множитель, описывающий лорецево сокращение, по условию задачи равен 2, то

Поэтому из тождества

следует, что

Отсюда относительная скорость двух систем отсчета равна

Чтобы найти численные значения, приведенные на рисунках 9 и 10, достаточно воспользоваться этими данными, а также тем, что длина шеста в системе отсчета бегуна равна 20 м, а в лабораторной системе 10 м .

Подобные документы

    Различная запись преобразования Лоренца. Следствия преобразований. Парадоксы кинематики специальной теории относительности: одногодок (модифицированный парадокс близнецов), антиподов, "n близнецов", расстояний и пешеходов. Итоги теории относительности.

    реферат , добавлен 03.04.2012

    Инерциальные системы отсчета. Классический принцип относительности и преобразования Галилея. Постулаты специальной теории относительности Эйнштейна. Релятивистский закон изменения длин промежутков времени. Основной закон релятивистской динамики.

    реферат , добавлен 27.03.2012

    Экспериментальные основы специальной теории относительности, ее основные постулаты. Принцип относительности Эйнштейна. Относительность одновременности как следствие постоянства скорости света. Относительность пространственных и временных интервалов.

    презентация , добавлен 23.10.2013

    Основные положения специальной теории относительности. Проведение расчета эффекта искривления пространства на этапе математического описания гравитационного взаимодействия. Сравнительное описание математической и физической моделей гравитационного поля.

    статья , добавлен 17.03.2011

    Общая теория относительности с философской точки зрения. Анализ создания специальной и общей теорий относительности Альбертом Эйнштейном. Эксперимент с лифтом и эксперимент "Поезд Эйнштейна". Основные принципы Общей Теории Относительности (ОТО) Эйнштейна.

    реферат , добавлен 27.07.2010

    Изучение ключевых научных открытий Альберта Эйнштейна. Закон внешнего фотоэффекта (1921 г.). Формула связи потери массы тела при излучении энергии. Постулаты специальной теории относительности Эйнштейна (1905 г.). Принцип постоянства скорости света.

    презентация , добавлен 25.01.2012

    Сущность принципа относительности Эйнштейна, его роль в описании и изучении инерциальных систем отсчета. Понятие и трактовка теории относительности, постулаты и выводы из нее, практическое использование. Теория относительности для гравитационного поля.

    реферат , добавлен 24.02.2009

    Возникновение теории относительности. Классическая, релятивистская, квантовая механика. Относительность одновременности событий, промежутков времени. Закон Ньютона в релятивистской форме. Связь между массой и энергией. Формула Эйнштейна, энергия покоя.

    курсовая работа , добавлен 04.01.2016

    Изменение формы движущегося объекта и другие явления в рамках преобразования Лоренца. Гносеологические ошибки Специальной теории относительности А. Эйнштейна. Проблема определения границ применимости альтернативной интерпретации преобразования Лоренца.

    доклад , добавлен 29.08.2009

    Доказательство ошибочности специальной теории относительности (СТО). Выяснение физического смысла преобразования Лоренца, подход к анализу "мысленных экспериментов" Эйнштейна и исправление ошибок в этих экспериментах. "Волновой вариант теории Ритца".

Парадоксы, даже те, что в теории относительности, - они не в природе, но в наших головах. А в природе есть закономерности, которые мы можем описывать, раскрывать, переводить на язык математики и прочее. Но, тем не менее, я как-то задумался: как бы я мог защитить парадоксы в выводах специальной теории относительности (СТО), по наивности забыв о том, что парадокс начинается с постулата этой теории, объявившей населению земного шара, что скорость света не аддитивна и никогда не складывается ни с кем и ни с чем, и ни при каких обстоятельствах и т.п.

Здесь, ввиду обширности темы парадоксов в исполнении теории относительности - СТО, я вынужден выражаться фрагментарно, опуская такие моменты, как способы нашего моделирования внешнего мира, корректность языка, посредством которого мы можем передавать друг другу сообщения об этих же наших внутренних моделях, которые при внешнем сходстве или одинаковости описывающих их слов могут совершенно не совпадать с тем, что характеризует модели на внутреннем (не вербальном) языке.

Итак, оставим все эти тонкости и перейдем, подобно создателю парадоксов теории относительности, к... мысленному эксперименту. Мы с вами летим в большой ракете над Землей. Летим по инерции. Но это, должен оговориться, никак не инерциальная система, как понимают ее физики-теоретики. То есть, система, не взаимодействующая с внешней средой. Нет таких систем в природе, а мы, конкретно, летим в силовом поле Земли.

Заодно пренебрежем и такими "тонкостями", излишними для парадоксов теории относительности, как сопротивление воздуха и не совсем прямолинейное движение ракеты, летящей над поверхностью не плоской, как известно, Земли.

С нами, в нашем инструментарии следования парадоксам, сверхточные атомные часы, хотя и не известные в период строительства теории относительности, точные весовые гири, точная измерительная линейка, и еще источник импульсного света, по которому и по часам мы еще до полета определили, что время прохождения светового импульса от начала до конца ракеты равно, скажем, одной микросекунде. Взвесили, также, до полета 1 кг сахара, измерили фрагменты ракеты линейкой, и вот теперь мы – в полете.

Первое, что мы обнаруживаем, что 1 кг сахара снова весит 1 кг, согласно весовой гире, размеры фрагментов ракеты по замерам посредством нашей линейки не изменились, и даже время прохождение светового импульса от начала до конца ракеты равно по-прежнему 1 микросекунде, если верить атомным часам. Это отвечает и теории относительности и парадоксов здесь тоже пока не видно.

Хорошо, немного изменим опыт. Нас догоняет предусмотренный теорией относительности внешний световой импульс. Догоняет тоже без всяких парадоксов. В момент, когда часть его проникает внутрь ракеты, мы включаем внутренний источник импульса и одновременно посылаем сигнал внешнему наблюдателю, неподвижному относительно выбранной точки на поверхности Земли. По достижению импульсами конца ракеты мы снова посылаем сигнал внешнему наблюдателю. По внутренним часам мы по-прежнему фиксируем, что время прохождения "внешнего" и "внутреннего" импульсов от начала до конца движущейся ракеты по "местным" часам равно 1 микросекунде.

Мы, в согласии с теорией относительности и даже с парадоксами СТО, не различаем в пределах непрозрачной ракеты движемся мы или нет. Но внутреннее состояние – наше, ракеты, ее фрагментов, линейки, "1 кг" сахара, весовой гири и т.д. существенно изменились. Изменились вследствие взаимодействия движущейся ракеты с силовым полем Земли. Размеры ракеты и линейки, да и нас самих, сократились в направлении движения ракеты. Это следует из формул теории относительности Лоренца и даже были попытки засечь это чудо экспериментально – см., например, статью Барашенкова В.С., "Кто опроверг теорию относительности?". Журнал «Знание - сила», 1993, № 7. http://www.znanie-sila.ru/projects/issue_166.html

Однако то, что мы согласно специальной теории относительности сокращаемся вместе с линейкой, это не так уж парадоксально, если вспомнить, что наша сплошность в определенном смысле иллюзорна. А иллюзорность – это еще не парадокс. Мы, как и все прочее "твердое", – своего рода энергетические полевые структуры, где "сплошные" ядра атомов и электронов занимают менее миллиардной части объем составляющих нас атомов, а ядра и электроны, в свою очередь, тоже не сплошные – и т.д.

Так вот, размеры в движущейся ракете сокращаются (в направлении ее движения), килограммы сахара и гири существенно потяжелели, а ход атомных часов замедлился – все согласно теории относительности и без парадоксов. Нет, я не говорю, что замедлилось время – это все же словоблудие. Здесь сначала бы надо договориться, что понимать под термином "время", чего до сих пор не сделано. Так что я говорю не о времени, а о показаниях часов, на которые также воздействует силовое поле Земли.

А как это будет выглядеть со стороны вышеупомянутого внешнего наблюдателя с точки зрения теории относительности или ее парадоксов? А он, внешний наблюдатель, с нами в "одной тарелке" – в одном и том же силовом поле Земли. Но его неподвижные, относительно выбранной точки поверхности Земли, часы взаимодействуют с силовым полем Земли иначе, чем наши часы в движущейся ракете. По своим часам, после некоторых вычислений, этот наблюдатель определит, что скорость "внешнего" и "внутреннего" импульсов света внутри ракеты для него равны обычной скорости света. Согласно теории относительности и тоже без парадоксов, если не называть временем ход часов.

Остается описать эти эксперименты в виде постулатов, постулаты облечь в математическую форму, из этой формы (форм) построить математическую конструкцию в виде теории относительности, а далее: подставляй в эту конструкцию результаты исходных замеров и сравнивай, насколько расчетный результат есть парадокс или согласуется с соответствующим ему экспериментальным результатом.

Просто? Как бы не так! Дедушка Эйнштейн сказал, что только сама теория, например СТО, позволяет судить о том, что мы в самом деле наблюдаем и какой смысл следует парадоксам или наблюдаемым результатам придавать. Такое, вот, масло масляное получилось в наукообразном оформлении – теория, замкнутая на саму себя. Вообще-то, я даже имею в виду не собственно теорию (ее математическую часть), а ее словесную философическую интерпретацию.

Но оставим эти мелочи. А как быть с внешним наблюдателем, который находится не на поверхности Земли, а в удалении от нее – таком, чтобы силовое поле Земли на него уже не влияло. То есть, совсем достигнуть подобного невозможно даже в парадоксах, но "мелочи" мы снова опускаем. Та вот, этот наблюдатель уже в другой, не нашей, "тарелке" и вообще, он, как и я с ним, теперь уже вне действия теории относительности в части СТО. И он определит, что скорость импульса света, излученного на Земле и направленного в сторону движения Земли, равна скорости движения Земли плюс скорость импульса света относительно движущейся Земли. Попросту, скорости движения Земли и излученного на ней импульса света складываются без всяких парадоксов. Не верите? Ну, я подобный эксперимент с космическим наблюдателем не проводил. А вы, вот, совсем другое дело. Вы помоложе меня, слетайте в космос вместе с теорией относительности и проверьте мои утверждения.

А вообще-то, каждая теория имеет свою ограниченную область применения. Не все вписывается в теорию относительности даже в рамках ее парадоксов. Об этом хорошо написано в статье "Эмпириокритицизм Маха и Авенариуса", Олег Акимов

http://sceptic-ratio.narod.ru/po/mach.htm

С вашего позволения я приведу сокращенные отрывки из этой статьи. Они касаются силы Кориолиса и гироскопов, проявления которых находится вне рамок рассмотрения специальной теории относительности, да и попросту противоречат парадоксу в ее утверждению относительно того, что внутри движущейся системы нельзя определить ничего, что касалось бы движения этой системы. Итак:

"Наблюдая за уходом воды в открытое отверстие слива ванны, вы всегда можете определить в каком из полушарий земли вы находитесь - в северном или южном. Сила Кориолиса раскручивает воду вблизи отверстия в северном полушарии по часовой стрелке, в южном - против часовой стрелке. Эта же сила в северном полушарии заставляет течение реки подмывать правый берег русла, а в южном - левый.

Ось волчка фиксирует только одно направление в пространстве. Чтобы зафиксировать свое абсолютное положение в мировом пространстве нужно взять три волчка, раскрученных по трем взаимно перпендикулярным осям. Соединив их жесткой конструкцией и снабдив необходимыми датчиками, вы получите прибор под названием гироскоп, который используется для навигации подводных, воздушных и космических судов. Механические гироскопы, раскрученные с помощью электрических двигателей, могут обеспечить, скажем, ориентацию гражданских самолетов в условиях тумана.

Слово «гироскоп» отсутствует в лексиконе релятивиста, вы не отыщите его на страницах книг по релятивизму. Оно будет смотреться в их тексте так же неуместно и оскорбительно, как и слово «чёрт» в молитве, обращенной к Богу. Люди далекие от знаний психологии больших групп населения задаются вопросами: «Как же так, всем ученым должна быть известна роль гироскопа, как прибора фиксирующего абсолютное положение в пространстве, почему они не говорят о нем с кафедр своих университетов и академий?»

Ответить на этот вопрос вам будет несложно, если вы представите себя в церкви. Вообразите далее, что кто-то громко выкрикнул: «Бога нет!» Как отреагируют на эту дерзкую выходку церковные служители и прихожане, догадаться несложно. Скорее всего, в следующий раз, когда он захочет войти в Божий храм, они туда его не пустят. Аналогичная ситуация возникает и в храме Науки. Если там кто-нибудь громко заявит: «Эйнштейн ошибся!» - этот смельчак моментально будете предан анафеме.

Почему так произошло, что случилось с научным сообществом, которое пошло за спекулятивными рассуждениями одного более чем странного физика? Как объяснить поведение миллионов людей, которые с восторгом и восхищением смотрели на «прекрасное платье короля», которого в действительности не было? Тут же можно задать встречные вопросы. А как не пойти за человеком, который сказал, что все мертвые воскреснут? Как не пойти за тем, кто обещал излечить больных от всех болезней, а здоровым подарить много золота и серебра, кто, обещал всех накормить и сделать счастливыми, всем дать одежду и кров над головой? Точно так же люди верят в сказку о путешествии во времени, о черных дырах во вселенной, о многомерности мироздания. Перед такими соблазнами никто не устоит; толпа раздавит всякого, кто встанет на пути к их счастливой мечте".

Ну, не только это. Как сказал мудрейший Козьма Прутков: "Люди блюдут свои интересы по обе стороны земного шара". Есть клановые интересы и есть исследования на этот счет. Люди, которые положили жизнь на околонаучные изыскания и приближенные к власть имущим, сделают все, чтобы раздавить того, кто станет на пути парадоксов специальной теории относительности, а заодно и своего благополучия и престижа. Причем, они даже сами себя при это убедят в своей "святой" правоте и в непогрешимой целесообразности их инквизиторских действий ради священных парадоксов СТО.

Однако, я отвлекся – это не тема данной статьи.

А вообще-то, описанные выше заумные или малоумные мысленные эксперименты с ракетой ничего не доказывают и не опровергают. Представим два встречных импульса света в летящей ракете. Здесь возможны две ситуации: скорости этих встречных импульсов одинаковы либо разные. В первом случае выполняется интерпретация ТО сторонниками этой теории, а во втором – надо говорить о необходимости ограничения области применимости ТО. Но есть и еще один аргумент у сторонников ТО: мы не умеем определять скорость света в одном направлении, поэтому и нет смысла говорить об абсолютных скоростях встречных импульсов, как и вообще о парадоксах специальной теории относительности.

Еще можно говорить о скорости света относительно встречного импульса света. Или о двух движущихся с 0,6 С встречных ракетах, взаимная (суммарная) скорость которых должна быть, по здравому смыслу, но не по ТО, больше С (константы скорости света). Можно говорить и о том, что подобные случаи зафиксированы астрономами для разлетающихся фрагментов космического объекта после его взрыва. Или можно говорить о парадоксе Эренфеста, где вращающийся с огромной скоростью диск, как оказалось, не деформируется и не исчезает вопреки существующей интерпретации ТО, где нестыковки с реальностью в специальной теории относительности ласкательно именуют парадоксами.

Но... это дело бесполезное. У сторонников ТО есть свои накатанные за 100 с лишним лет аргументы. Например: мир не такой, каким его воспринимает здравый смысл. Или: надо в какой-то ситуации уточнить определение момента одновременности событий, но только не интерпретацию ТО. Или: для каждого наблюдателя имеет место своя реальность, так что и проблемы несовместимости этих реальностей, как и парадоксов в теории относительности, попросту нет.

Нельзя какими-то аргументами переубедить верующего человека или сторонника эзотерической интерпретации теории относительности и парадоксов ТО.

ПАРАДОКСЫ СПЕЦИАЛЬНОЙ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ. Под словом «парадоксы» в данном случае понимают те выводы из СТО, которые, хотя и являются совершенно правильными по существу и подтверждаются экспериментами, тем не менее противоречат интуитивным, основанным на классической физике представлениям.

Два вывода из постулатов СТО (кстати, экспериментально подтвержденные) всегда вызывали особый интерес, хотя на практике с ними почти не приходится сталкиваться явно (неявно эти эффекты содержатся в любой релятивистской формуле).

Все дело в том, что эти выводы, на первый взгляд, совершенно не могут соответствовать реальности.

1. Самый известный – парадокс близнецов обычно формулируется так. Пусть брат-близнец А отправляется в космический полет на звезду Х , находящуюся от нас на расстоянии, скажем, 20 световых лет. Скорость звездолета близка к скорости света: v = 0,9с . Долетев до звезды примерно за 22,3 года (по своим часам), корабль разворачивается и летит обратно. Таким образом, по часам брата А, совершившего этот полет, прошло примерно T = 44,6 года. Второй брат-близнец Б дожидался возвращения брата А на Земле. У трапа звездолета брата А встретил дряхлый старец, которому пришлось ждать встречи более 100 лет.

Собственно, здесь еще нет парадокса. Действительно, при движении со скоростью v = 0,9c лоренц-фактор равен g » 2,3 и вследствие эффекта замедления времени по часам земного наблюдателя прошло время, равное gT » 103 года.

Парадокс возникает при попытке обратить рассуждение. Ведь с точки зрения брата А (неподвижный наблюдатель) движется брат Б, и по его часам проходит больше времени. Но с точки зрения брата Б движется брат А, и по его часам должно пройти больше времени. Таким образом, брат А должен вернуться постаревшим. Казалось бы, формулы СТО симметричны относительно замены v на –v . В чем же дело?

Этот парадокс разрешается следующим образом. Дело в том, что мировые линии братьев А и Б различны. Один из них (Б) находится в покое, другой (А) совершает движение с постоянной скоростью, которая в определенный момент изменяется на обратную, что возможно только при торможении и последующем ускорении космического корабля (что соответствует движению в неинерциальной системе отсчета). Таким образом, брат А движется от Земли и к Земле, находясь в покое сначала относительно одной инерциальной системы, а затем - относительно другой, и по дороге переходит на короткое время в неинерциальную систему. В то же время брат Б покоится относительно одной и той же инерциальной системы. Видно, что А и Б находятся в разных физических условиях, и это разрешает парадокс. Точный расчет показывает, что с точки зрения любого из братьев постареет больше тот, который неподвижен относительно Земли.

В ускорителях коротко живущие частицы, движущиеся со скоростями, близкими к скорости света, «живут» много дольше, чем «покоящиеся» частицы

2. Другой эффект – лоренцевское сокращение длины и связанные с ним парадоксы.

Пусть есть две инерциальные системы отсчета – S " и S . В системе S " жесткий стержень длиной Dx " покоится вдоль оси x и нужно определить его длину в системе S , относительно которой стержень движется со скоростью v . Чтобы измерить длину стержня в любой инерциальной системе, относительно которой стержень движется вдоль продольной оси, нужно одновременно наблюдать его концы. Это – ключевое положение, непонимание которого и приводит иногда к парадоксам.

В СТО нужно отличать то, что видит наблюдатель, от того, что он знает как бы пост-фактум. То, что наблюдатель видит или фотографирует в любой фиксированный момент времени, называется картиной мира в этот момент. Это понятие практически не очень важно, а теоретически очень сложно, т.к. то, что наблюдатель видит в данный момент, – это смесь событий, происходивших все дальше в прошлом и все дальше в пространстве.Если смотреть на ночное небо, полное звезд, то расстояния до этих звезд составляют от нескольких до сотен тысяч св. лет, следовательно, наблюдающий видит свет от этих звезд, испущенный в разное время и одновременно дошедший до его глаза, т.е он. видит разновременные события.

Полезнее понятие карты мира. Ее можно представлять как карту событий в сечении 4-мерного пространства Минковского плоскостью постоянного времени t = t 0. Карта мира – это как бы трехмерный мгновенный фотоснимок в натуральную величину, сделанный одновременно везде, застывшее мгновение в пространственной системе отсчета наблюдателя. Реализовать такую карту мира могут совместные снимки, сделанные вспомогательными наблюдателями, размещенными в узлах пространственной решетки в данной инерциальной системе, причем каждый фотографирует свою окрестность в заранее обусловленный момент времени t = t 0, а потом снимки склеиваются.

Когда говорят, что длина тела в системе S равна такой-то величине, речь идет о карте мира, т.е. об одновременной фиксации положений концов стержня в заданный момент времени. То, что на самом деле видит глаз, наблюдая движущееся тело, совершенно другой и не очень существенный вопрос.

Для вывода формулы сокращения длины преобразования Лоренца от системы S к системе S " записываются для приращений координат:

Dx ў0 = g(Dx 0 – v Dx 1), Dx ў1 = g(Dx 1 – v Dx 0).

Во второй формуле нужно положить Dx 0 = 0 (одновременная фиксация концов стержня в системе S !). Тогда Dx ў1 = gDx 1. Если обозначить Dx ў1 = L 0, а Dx 1 = L , то

L = L 0/g ,

(g – лоренц-фактор).

Все парадоксы сокращения длины связаны, конечно, с симметрией эффекта: если наблюдатель в S видит сокращение длины, то и наблюдатель в S " должен видеть то же самое. Из «парадоксов» СТО можно сделать важный вывод: какой бы результат ни получился путем корректных рассуждений в некоторой инерциальной системе отсчета, он является верным в любой другой инерциальной системе отсчета.

При правильном использовании, СТО не допускает никаких «парадоксов».

Некоторые кажущиеся очевидными вещи оказываются совсем не такими очевидными в рамках СТО. Например, казалось бы, если вдоль оси x летит куб заданного размера, то, в силу лоренцовского сокращения, он должен в лабораторной системе выглядеть сплющенным в направлении движения, превратившимся в параллелепипед. Подробный расчет показывает, однако, что это не так: видимый куб не меняет своих размеров и только поворачивается на некоторый угол относительно оси x . Этот результат («невидимость лоренцова сокращения») был получен только через пятьдесят лет после создания СТО.

Александр Берков