Плазменные кристаллы: от космических исследований до медицинских применений на Земле и вновь обратно в космос. Пылевая плазма намекает на молекулу жизни

Дело о т.н. «плазменном кристалле» академика Владимира Фортова

Предмет обсуждения:
Проект «Плазменный кристалл» (плазменно-пылевые кристаллы в условиях микрогравитации), действительные и мнимые перспективы его применения, обстоятельства, связанные с «плазменным кристаллом».

Материалы можно найти в темах:
«Афера: вакуумный Клондайк академии наук»,
«Вниманию комитета МЕГАБРИТВА. Обсуждаем поля кручения, наномиры, плазменные кристаллы, суперструны»,
«Цитатник по плазменному кристаллу академика Фортова»).

Краткое популярное описание проекта «плазменный кристалл»:
«Если у меня есть плазма, стандартная, кондовая, обыкновенная, к примеру, как в той же лампе дневного света, и в нее насыплю пыли, то каждая пылинка зарядится до потенциала один-два электрон-вольта. Пылинки начнут взаимодействовать... и я получаю в лабораторных условиях те самые процессы, что идут в звездах» (академик Владимир Фортов. Интервью «парламентской газете», № 790 за 8/23/01 Рубрика: сенсации XXI века Кристаллы из космоса)

Краткий перечень обещаний, по проекту «плазменный кристалл»
А) Создание ядерной батареи нового поколения
Б) Изготовление алмазов чистой воды размером несколько сантиметров
В) Производство лекарственных препаратов высокой степени очистки
Г) Проведение высокоэффективного химического катализа
Д) Ликвидация радиоактивных выбросов при ядерных катастрофах
Е) Создание двигателя нового типа для межзвездных полетов

Описание экспериментов:
«НАУЧНЫЕ ИССЛЕДОВАНИЯ НА РОССИЙСКОМ СЕГМЕНТЕ
ТЕХНИЧЕСКИЕ ЭКСПЕРИМЕНТЫ И ИССЛЕДОВАНИЯ
ЭКСПЕРИМЕНТ "ПЛАЗМЕННЫЙ КРИСТАЛЛ"
Научный руководитель: академик РАН В.Е. Фортов

Используемая научная аппаратура:
Аппаратура "Плазменный кристалл-3":
Экспериментальный блок.
- Частота разряда формируемой плазмы - 13,56 МГц
- Давление газа в рабочей камере - 0,03 - 0,1 мм рт. ст.
- Плотность монодисперсных частиц - 1,5 г/куб.см
- Размеры пылевых частиц - 3,4 и 6,9 мкм
Турбонасос;
Аппаратура "Телесайенс" для управления процессом и регистрации результатов эксперимента.

Расходуемые материалы:
Видеокассеты Hi-8 для записи процесса формирования плазменно-пылевых структур;
Карта PCMCIA для записи параметров проведения эксперимента (давления газа, мощности ВЧ-излучения, размеров пылевых частиц и др.).

Цель:
Этап 1а. Исследование плазменно-пылевых структур в газоразрядной плазме высокочастотного емкостного разряда.
Этап 1б. Исследование плазменно-пылевых структур в плазме тлеющего разряда постоянного тока.
Этап 2. Исследование воздействия УФ-спектра космического излучения на поведение ансамбля макрочастиц, заряжающихся путем фотоэмиссии.
Этап 3. Исследование плазменно-пылевых структур в условиях открытого космоса при воздействии УФ-излучения Солнца, плазменных потоков и ионизирующих излучений.

Задачи:
Изучение физических явлений в плазменно-пылевых кристаллах при различных уровнях давления инертного газа и мощности ВЧ - генератора в условиях микрогравитации
Ожидаемые результаты:
Разработка технологии формирования и контроля упорядоченных структур заряженных твердых пылевых микрочастиц в плазме»
(по официальному сообщению РКК «Энергия»)

ИНФОРМАЦИЯ ДЛЯ УЧАСТНИКОВ ОБСУЖДЕНИЯ

Правила обсуждения
1. Сообщения размещаются исключительно по обсуждаемой теме и с приведением содержательных аргументов.
2. В случае, если аргументы находятся в материале по ссылке - приводится часть текста, находящегося по ссылке, либо аннотация, с четким объяснением того, какое отношение данный текст имеет к обсуждаемой теме.
3. Вопросы задаваются только по существу представленных аргументов.
4. Модераторы не будут допускать никаких отклонений от правил. Все сообщения, не соответствующие правилам, будут удаляться из темы и перемещаться в отдельную папку.

Секретариат комитета Мегабритва

Описываются проведенные в период 2001-2014 гг. с участием российских и немецких ученых и космонавтов исследования плазменных кристаллов на Международной космической станции. В ходе экспериментов обнаружен ряд новых эффектов и явлений, не наблюдаемых в условиях земной гравитации и расширяющих наши представления о структуре и динамике материи.
Для специалистов по физике пылевой плазмы, а также всех, кого интересуют вопросы постановки современного космического эксперимента, организации и практики космических исследований.

ТОЧКА ОТСЧЕТА.
Научное исследование в условиях космоса - предприятие многосложное. От замысла до полного воплощения проект может продлиться более двадцати лет. Это означает, что исследователи должны быть достаточно молоды или что им, возможно, придется передать свои знания и навыки и препоручить свои обязанности по эксперименту младшим коллегам.

Космические исследования бывают разные - могут быть исследования из космоса (например, дистанционное зондирование Земли или астрономия), исследования самого космоса (например, изучение околоземного пространства, космической погоды, исследование межпланетной среды, а также отдельных планет, Луны, астероидов и комет) и еще исследования с использованием специфических особенностей космоса (скажем, невесомости, точнее говоря, микрогравитации и огромных расстояний). Некоторые исследования удобней производить на беспилотных космических аппаратах с помощью автоматов и робототехники, а иные требуют экспериментов, производимых людьми, - подобно тем, что производятся в земных научных лабораториях.

СОДЕРЖАНИЕ
От авторов
1. Точка отсчета
2. «Плазменный кристалл»
3. Нужен космический эксперимент
4. Кристаллизация российско-германского сотрудничества
5. Германия: эксперимент в параболическом полете
6. Германия: ракетный эксперимент
7. Россия: первый эксперимент «Плазменный кристалл» в космосе
8. Как рождалась международная космическая станция
9. Российско-германский план
10. Прощание с «Миром»
11. Создание экспериментальной установки
12. Космодром «Байконур»
13. Эксперимент «ПК-3»
14. Центр подготовки космонавтов
15. Королев - космический город
16. Эксперимент «ПК-3+»
17. «Плазменный кристалл» в созвездии космонавтов
18. Наши встречи на Земле
19. Результаты исследований
20. Будущее уже рядом
21. Заключительное слово
Библиография.

Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Плазменный кристалл, Космические эксперименты, Фортов В.Е., Батурин Ю.М., Морфилл Г.О., Петров О.Ф., 2015 - fileskachat.com, быстрое и бесплатное скачивание.

  • Гравитация, От хрустальных сфер до кротовых нор, Петров А.Н., 2013
  • Опорный конспект лекций по курсу Лазерные технологии, Введение в лазерные технологии, Вейко В.П., Петров А.А., 2009


В ноябре было объявлено о прекращении на МКС эксперимента "Плазменный кристалл". Специальное оборудование для эксперимента было помещено в грузовой корабль "Альберт Эйнштейн" и сгорело вместе с ним над Тихим океаном. Так закончилась длинная история, наверное, самого известного космического эксперимента. Я хочу рассказать о нём и чуть-чуть рассказать о науке на МКС в целом.

А где открытия?
Прежде всего, необходимо сделать несколько демотивирующее вступление. Современная наука - это не компьютерная игра, где, в принципе, нет бесполезных исследований, и каждое открытие дает заметный бонус. И, увы, прошли времена, когда гений-одиночка типа Эдисона мог один наизобретать много кардинально меняющих жизнь устройств. Сейчас наука - это методичное движение вслепую по всем доступным путям, которое осуществляется большими организациями, длится годами и может привести к нулевым результатам. Поэтому информация об исследованиях на МКС, которая публикуется регулярно , без адаптации в научно-популярный вид выглядит, если честно, весьма скучно. В то же время, некоторые из этих экспериментов являются действительно интересными, и, если и не обещают нам мгновенных сказочных результатов, то дают надежду на улучшение понимания того, как устроен мир, и куда нам двигаться за новыми фундаментальными и прикладными открытиями.
Идея эксперимента
Известно, что вещество может пребывать в четырёх фазовых состояниях - твердом, жидком, газообразном и плазменном. Плазма - это 99,9% массы Вселенной, начиная от звезд и заканчивая межзвездным газом. На Земле плазма - это молнии, северное сияние и, например, газоразрядные лампы. Плазма, содержащая частицы пыли также весьма распространена - это планетарные кольца, кометные хвосты, межзвездные облака. И идея эксперимента состояла в искусственном создании плазмы с микрочастицами пыли и наблюдением за её поведением в условиях земной тяжести и микрогравитации.

В первом варианте эксперимента (на картинке) ампула с пылевой плазмой подсвечивалась лучами Солнца, пыль в плазме подсвечивал лазер, и подсвеченный участок снимался на камеру. В дальнейшем применялись более сложные экспериментальные установки. "Черная бочка", сгоревшая вместе с "Альбертом Эйнштейном" была установкой уже третьего поколения.

Результаты
Эксперименты в условиях микрогравитации оправдали надежды ученых - пылевая плазма по своей структуре становилась кристаллической или проявляла свойства жидкостей. В отличие от идеального газа, в котором молекулы движутся хаотично (см. тепловое движение), пылевая плазма, будучи газом, проявляет свойства твердых и жидких тел - возможны процессы плавления и испарения.
В то же время, были и неожиданные открытия. Например, в кристалле могла возникнуть полость. Почему - пока неизвестно.


Но самым неожиданным открытием явилось то, что пылевая плазма при некоторых условиях формировала спиральные структуры, похожие на ДНК! Возможно, даже происхождение жизни на Земле каким-то образом связано с пылевой плазмой.

Перспективы
Результаты многолетних исследований по эксперименту "Плазменный кристалл" показывают принципиальную возможность:

  • Формирования в пылевой плазме наноматериалов с уникальными свойствами.

  • Осаждения материалов из пылевой плазмы на подложку и получения новых типов покрытий - многослойных, пористых, композитных.

  • Очистки воздуха от промышленных и радиационных выбросов и при плазменном травлении микросхем.

  • Плазменной стерилизация неживых предметов и открытых ран на живых существах.


  • К сожалению, вся эта красота станет доступной не раньше, чем лет через десять. Потому что по результатам работы нужно построить экспериментальные прикладные установки, опытные образцы, провести испытания или клинические исследования, организовать серийное производство.

В ноябре было объявлено о прекращении на МКС эксперимента «Плазменный кристалл». Специальное оборудование для эксперимента было помещено в грузовой корабль «Альберт Эйнштейн» и сгорело вместе с ним над Тихим океаном. Так закончилась длинная история, наверное, самого известного космического эксперимента. Я хочу рассказать о нём и чуть-чуть рассказать о науке на МКС в целом.

А где открытия?
Прежде всего, необходимо сделать несколько демотивирующее вступление. Современная наука - это не компьютерная игра, где, в принципе, нет бесполезных исследований, и каждое открытие дает заметный бонус. И, увы, прошли времена, когда гений-одиночка типа Эдисона мог один наизобретать много кардинально меняющих жизнь устройств. Сейчас наука - это методичное движение вслепую по всем доступным путям, которое осуществляется большими организациями, длится годами и может привести к нулевым результатам. Поэтому информация об исследованиях на МКС, которая публикуется регулярно , без адаптации в научно-популярный вид выглядит, если честно, весьма скучно. В то же время, некоторые из этих экспериментов являются действительно интересными, и, если и не обещают нам мгновенных сказочных результатов, то дают надежду на улучшение понимания того, как устроен мир, и куда нам двигаться за новыми фундаментальными и прикладными открытиями.
Идея эксперимента
Известно, что вещество может пребывать в четырёх фазовых состояниях - твердом, жидком, газообразном и плазменном. Плазма - это 99,9% массы Вселенной, начиная от звезд и заканчивая межзвездным газом. На Земле плазма - это молнии, северное сияние и, например, газоразрядные лампы. Плазма, содержащая частицы пыли также весьма распространена - это планетарные кольца, кометные хвосты, межзвездные облака. И идея эксперимента состояла в искусственном создании плазмы с микрочастицами пыли и наблюдением за её поведением в условиях земной тяжести и микрогравитации.

В первом варианте эксперимента (на картинке) ампула с пылевой плазмой подсвечивалась лучами Солнца, пыль в плазме подсвечивал лазер, и подсвеченный участок снимался на камеру. В дальнейшем применялись более сложные экспериментальные установки. «Черная бочка», сгоревшая вместе с «Альбертом Эйнштейном» была установкой уже третьего поколения.

Результаты
Эксперименты в условиях микрогравитации оправдали надежды ученых - пылевая плазма по своей структуре становилась кристаллической или проявляла свойства жидкостей. В отличие от идеального газа, в котором молекулы движутся хаотично (см. тепловое движение), пылевая плазма, будучи газом, проявляет свойства твердых и жидких тел - возможны процессы плавления и испарения.
В то же время, были и неожиданные открытия. Например, в кристалле могла возникнуть полость. Почему - пока неизвестно.


Но самым неожиданным открытием явилось то, что пылевая плазма при некоторых условиях формировала спиральные структуры, похожие на ДНК! Возможно, даже происхождение жизни на Земле каким-то образом связано с пылевой плазмой.

Перспективы
Результаты многолетних исследований по эксперименту «Плазменный кристалл» показывают принципиальную возможность:
  • Формирования в пылевой плазме наноматериалов с уникальными свойствами.
  • Осаждения материалов из пылевой плазмы на подложку и получения новых типов покрытий - многослойных, пористых, композитных.
  • Очистки воздуха от промышленных и радиационных выбросов и при плазменном травлении микросхем.
  • Плазменной стерилизация неживых предметов и открытых ран на живых существах.
К сожалению, вся эта красота станет доступной не раньше, чем лет через десять. Потому что по результатам работы нужно построить экспериментальные прикладные установки, опытные образцы, провести испытания или клинические исследования, организовать серийное производство.

Легендарный эксперимент «Плазменный кристалл» продолжен на МКС с новым оборудованием. Уникальный прибор, который недавно был доставлен на борт космической станции, - это устройство дополнительного регулятора расхода газа. Новое оборудование позволит получать более точные результаты в ходе эксперимента по изучению плазмы и повысит чистоту самого эксперимента. Данные о том, что представляет собой пылевая плазма, позволят создать новые компактные энергетические батареи и лазеры, разработать новую технологию выращивания алмазов, а также послужить основой для развития новой области - плазменной медицины.

Любое вещество может пребывать в четырех фазовых состояниях - твердом, жидком, газообразном и плазменном. Плазма - это более 99% видимой массы Вселенной, начиная от звезд и заканчивая межзвездным газом. Плазма, содержащая частицы пыли, весьма распространена в космосе - это планетарные кольца, хвосты комет, межзвездные облака.

Исследование плазмы с микрочастицами размером несколько микрон (пылевые частицы) и наблюдение за ее поведением в условиях микрогравитации, при которой происходит почти полная компенсация веса микрочастиц, идет уже более двух десятков лет. Еще в январе 1998 года на российском орбитальном комплексе «Мир» космонавты Анатолий Соловьев и Павел Виноградов проводили на установке «Плазменный кристалл – 1» (ПК-1) первый эксперимент по изучению физики плазменно-пылевых структур, в том числе плазменных кристаллов и жидкостей. В августе того же года на «Мире» начали проводить исследования на аппаратуре ПК-2, состоящем из газоразрядной трубки и устройства для видеорегистрации эксперимента. В марте 2001 года Сергей Крикалев и Юрий Гидзенко провели первую сессию эксперимента на МКС на установке ПК-3, созданной совместно российскими и немецкими специалистами. Первые эксперименты на новой экспериментальной установке «Плазменный кристалл – 4», созданной также совместно учеными из Объединенного института высоких температур (ОИВТ) РАН и Германского космического агентства (ДЛР), начались в июне 2015 года. В процессе исследований была выявлена необходимость усовершенствования этой установки. В июле этого года на МКС доставлено дополнительное оборудование для повышения качества эксперимента «Плазменный кристалл – 4».

Цель ученых - получение и изучение плазменно-пылевых кристаллов и других упорядоченных структур в плазме. В частности, это позволяет изучать законы процессов, происходящих в протозвездах, протопланетарных кольцах и других небесных телах. В ходе экспериментов микроскопические частицы определенного размера (диаметром несколько микрометров) вводятся в неоновую или аргоновую плазму в газоразрядной трубке. Когда микрочастицы попадают в плазму, они собирают электроны и положительные ионы, в результате чего они приобретают отрицательный заряд из-за более высокой подвижности электронов. Микрочастицы отталкиваются друг от друга и формируют различные трехмерные структуры. Такие исследования невозможно проводить на Земле, так как пылевые частицы подвержены действию силы тяжести и могут формировать либо двухмерные структуры, либо сильно деформированные (сжатые) трехмерные.

Несмотря на то что за 20-летнюю историю исследования пылевой плазмы дали много новых интересных данных, до сих пор не удалось создать полную математическую модель поведения самоорганизующихся частиц. Новое оборудование, разработанное учеными из ОИВТ РАН и ДЛР, позволит проводить более «чистые» эксперименты за счет снижения потока газа, который образует плазму, в десятки раз. Теперь можно расширить диапазон давлений газа и получать новые знания о процессах в пылевой плазме.

Когда микрочастицы находятся в плазме, на них действует целый ряд сил. Одна из основных сил - электрическая, воздействующая на частицу в поле разряда. Вторая - сила ионного увлечения. Третья сила - трение о газ: если тело входит в атмосферу, то оно теряет скорость именно из-за него, - рассказал «Известиям» старший научный сотрудник ОИВТ РАН Андрей Липаев. - Соответственно, когда мы организуем режим с протоком, возникает своего рода ветер, который увлекает частицы. Прибор, который использовался первоначально для перекрывания потока, в процессе эксплуатации в сложных условиях космического эксперимента стал давать значительную утечку газа, и частицы просто уносило его потоком.

Для решения этой проблемы специалисты ОИВТ РАН и ДЛР разработали дополнительное устройство, которое позволяет полноценно управлять потоком газа с помощью внешнего регулятора давления и двух дополнительных клапанов. Так можно достичь стабильного положения частиц. В результате у ученых появилась возможность в полной мере контролировать условия эксперимента.

Можно сказать, что до сих пор мы просто не могли получить необходимый контроль над потоком газа и, следовательно, качественные результаты. Раньше работать с частицами размером менее 3 микрон попросту было невозможно. Между тем именно частицы размером около 1 микрона интересны с точки зрения изучения таких процессов, как, например, формирование структур, - отметил Андрей Липаев.

Новое оборудование уже установлено на МКС, с борта передается картинка в Центр управления полетами. Сотрудники ОИВТ РАН получают телеметрию и видео эксперимента, также работают звуковые каналы связи с бортом МКС - можно слышать, как проходят переговоры. Новый многодневный эксперимент с использованием дополнительного оборудования по изучению пылевых частиц в плазме недавно был завершен и оправдал ожидания. Теперь ученые будут проводить подробный анализ его результатов.

Как сообщил «Известиям» директор ОИВТ РАН Олег Петров, полученные в ходе эксперимента данные помогут понять суть процессов самоорганизации.

Исследуемая нами система является открытой диссипативной системой: есть постоянный приток энергии и постоянный ее отток. Такие системы характерны для всех живых организмов. Что происходит с этой системой, какие в ней есть явления самоорганизации? Всё это можно и нужно исследовать, - отметил Олег Петров.

Данные о том, что представляет собой пылевая плазма, могут принести большую практическую пользу: они позволят, в частности, создать новые компактные энергетические батареи и лазеры и разработать технологию выращивания алмазов в условиях микрогравитации. Также данные, поступающие с борта МКС, важны для развития новой, плазменной, медицины, суть которой в том, что низкотемпературная плазма может инициировать, стимулировать и контролировать сложные биохимические процессы в живых системах.

Эксперимент ПК-4 проводится при поддержке «Роскосмоса» и Европейского космического агентства.