Процессы прямого получения железа из руд. Производство стали

Процессы прямого получения железа из руд. Производство стали.

Процессы прямого получения железа из руд

Под процессами прямого получения железа понимают такие химические, электрохимические или химико-термические процессы, которые дают возможность получать непосредственно из руды, минуя доменную печь, металлическое железо в виде губки, крицы или жидкого металла.

Такие процессы ведутся, не расходуя металлургический кокс, флюсы, электроэнергию (на подготовку сжатого воздуха), а также позволяют получить очень чистый металл.

Методы прямого получения железа известны давно. Опробовано более 70 различных способов, но лишь немногие осуществлены и притом в небольшом промышленном масштабе.

В последние годы интерес к этой проблеме вырос, что связано, помимо замены кокса другим топливом, с развитием способов глубокого обогащения руд, обеспечивающих не только высокого содержания железа в концентратах (70…72%), но и почти полное освобождение его от серы и фосфора.

Получение губчатого железа в шахтных печах.

Схема процесса представлена на рис. 2.1.

Рис. 2.1. Схема установки для прямого восстановления железа из руд и получения металлизованных окатышей

При получении губчатого железа добытую руду обогащают и получают окатыши. Окатыши из бункера 1 по грохоту 2поступают в короб 10 шихтозавалочной машины и оттуда в шахтную печь 9 , работающую по принципу противотока. Просыпь от окатышей попадает в бункер 3 с брикетировочным прессом и в виде окатышей вновь поступает на грохот 2. Для восстановления железа из окатышей в печь по трубопроводу 8 подают смесь природного и доменного газов, подвергнутую в установке 7конверсии, в результате которой смесь разлагается на водород и оксид углерода . В восстановительной зоне печи Всоздается температура 1000…1100 0 C, при которой и восстанавливают железную руду в окатышах до твёрдого губчатого железа. Содержание железа в окатышах достигает 90…95%. Для охлаждения железных окатышей по трубопроводу 6 в зону охлаждения 0 печи подают воздух. Охлаждённые окатыши 5 выдаются на конвейер 4 и поступают на выплавку стали в электропечах.

Восстановление железа в кипящем слое.

Мелкозернистую руду или концентрат помещают на решётку, через которую подают водород или другой восстановительный газ под давлением 1,5 МПа. Под давлением водорода частицы руды находятся во взвешенном состоянии, совершая непрерывное движение и образуя «кипящий», «псевдосжиженый» слой. В кипящем слое обеспечивается хороший контакт газа-восстановителя с частицами оксидов железа. На одну тонну восстановленного порошка расход водорода составляет 600…650 м 3 .

Получение губчатого железа в капсулах-тиглях.

Используют карбидокремниевые капсулы диаметром 500 мм и высотой 1500 мм. Шихта загружается концентрическими слоями. Внутренняя часть капсулы заполнена восстановителем – измельч¨нным тв¨рдым топливом и известняком (10…15%) для удаления серы. Второй слой – восстанавливаемая измельч¨нная руда или концентрат, окалина, затем еще один концентрический слой – восстановителя и известняка. Установленные на вагонетки капсулы медленно перемещаются в туннельной печи длиной до 140 м, где происходит нагрев, выдержка при 1200 0 C и охлаждение в течение 100 часов.

Восстановленное железо получают в виде толстостенных труб, их чистят, дробят и измельчают, получая железный порошок с содержанием железа до 99 %, углерода – 0,1…0,2%.

Производство стали

Сущность процесса

Стали – железоуглеродистые сплавы, содержащие практически до 1,5% углерода, при большем его содержании значительно увеличиваются твёрдость и хрупкость сталей и они не находят широкого применения.

Основными исходными материалами для производства стали являются передельный чугун и стальной лом (скрап).

Железо окисляется в первую очередь при взаимодействии чугуна с кислородом в сталеплавильных печах:

Одновременно с железом окисляются кремний, фосфор, марганец и углерод. Образующийся оксид железа при высоких температурах отдаёт свой кислород более активным примесям в чугуне, окисляя их.

Процессы выплавки стали осуществляют в три этапа.

Первый этап – расплавление шихты и нагрев ванны жидкого металла.

Температура металла сравнительно невысокая, интенсивно происходит окисление железа, образование оксида железа и окисление примесей: кремния, марганца и фосфора.

Наиболее важная задача этапа – удаление фосфора. Для этого желательно проведение плавки в основной печи, где шлак содержит . Фосфорный ангидрид образует с оксидом железа нестойкое соединение . Оксид кальция – более сильное основание, чем оксид железа, поэтому при невысоких температурах связывает и переводит его в шлак:

Для удаления фосфора необходимы невысокие температура ванны металла и шлака, достаточное содержание в шлаке . Для повышения содержания в шлаке и ускорения окисления примесей в печь добавляют железную руду и окалину, наводя железистый шлак. По мере удаления фосфора из металла в шлак, содержание фосфора в шлаке увеличивается. Поэтому необходимо убрать этот шлак с зеркала металла и заменить его новым со свежими добавками .

Второй этап – кипение металлической ванны – начинается по мере прогрева до более высоких температур.

При повышении температуры более интенсивно протекает реакция окисления углерода, происходящая с поглощением теплоты:

Для окисления углерода в металл вводят незначительное количество руды, окалины или вдувают кислород.

При реакции оксида железа с углеродом, пузырьки оксида углерода выделяются из жидкого металла, вызывая «кипение ванны». При «кипении» уменьшается содержание углерода в металле до требуемого, выравнивается температура по объ¨му ванны, частично удаляются неметаллические включения, прилипающие к всплывающим пузырькам , а также газы, проникающие в пузырьки . Вс¨ это способствует повышению качества металла. Следовательно, этот этап - основной в процессе выплавки стали.

Также создаются условия для удаления серы. Сера в стали находится в виде сульфида (), который растворяется также в основном шлаке. Чем выше температура, тем большее количество сульфида железа растворяется в шлаке и взаимодействует с оксидом кальция :

Образующееся соединение растворяется в шлаке, но не растворяется в железе, поэтому сера удаляется в шлак.

Третий этап – раскисление стали заключается в восстановлении оксида железа, растворённого в жидком металле.

При плавке повышение содержания кислорода в металле необходимо для окисления примесей, но в готовой стали кислород – вредная примесь, так как понижает механические свойства стали, особенно при высоких температурах.

Сталь раскисляют двумя способами: осаждающим и диффузионным.

Осаждающее раскисление осуществляется введением в жидкую сталь растворимых раскислителей (ферромарганца, ферросилиция, алюминия), содержащих элементы, которые обладают большим сродством к кислороду, чем железо.

В результате раскисления восстанавливается железо и образуются оксиды: , которые имеют меньшую плотность, чем сталь, и удаляются в шлак.

Диффузионное раскисление осуществляется раскислением шлака. Ферромарганец, ферросилиций и алюминий в измельчённом виде загружают на поверхность шлака. Раскислители, восстанавливая оксид железа, уменьшают его содержание в шлаке. Следовательно, оксид железа, растворённый в стали переходит в шлак. Образующиеся при этом процессе оксиды остаются в шлаке, а восстановленное железо переходит в сталь, при этом в стали снижается содержание неметаллических включений и повышается ее качество.

В зависимости от степени раскисления выплавляют стали:

а) спокойные,

б) кипящие,

в) полуспокойные.

Спокойная сталь получается при полном раскислении в печи и ковше.

Кипящая сталь раскислена в печи неполностью. Ее раскисление продолжается в изложнице при затвердевании слитка, благодаря взаимодействию оксида железа и углерода: ,

Образующийся оксид углерода выделяется из стали, способствуя удалению из стали азота и водорода, газы выделяются в виде пузырьков, вызывая её кипение. Кипящая сталь не содержит неметаллических включений, поэтому обладает хорошей пластичностью.

Полуспокойная сталь имеет промежуточную раскисленность между спокойной и кипящей. Частично она раскисляется в печи и в ковше, а частично – в изложнице, благодаря взаимодействию оксида железа и углерода, содержащихся в стали.

Легирование стали осуществляется введением ферросплавов или чистых металлов в необходимом количестве в расплав. Легирующие элементы, у которых сродство к кислороду меньше, чем у железа (), при плавке и разливке не окисляются, поэтому их вводят в любое время плавки. Легирующие элементы, у которых сродство к кислороду больше, чем у железа (), вводят в металл после раскисления или одновременно с ним в конце плавки, а иногда в ковш.

Способы выплавки стали

Чугун переделывается в сталь в различных по принципу действия металлургических агрегатах: мартеновских печах, кислородных конвертерах, электрических печах.

Производство стали в мартеновских печах

Мартеновский процесс (1864-1865, Франция). В период до семидесятых годов являлся основным способом производства стали. Способ характеризуется сравнительно небольшой производительностью, возможностью использования вторичного металла – стального скрапа. Вместимость печи составляет 200…900 т. Способ позволяет получать качественную сталь.

Мартеновская печь (рис.2.2.) по устройству и принципу работы является пламенной отражательной регенеративной печью. В плавильном пространстве сжигается газообразное

топливо или мазут. Высокая температура для получения стали в расплавленном состоянии обеспечивается регенерацией тепла печных газов.

Современная мартеновская печь представляет собой вытянутую в горизонтальном направлении камеру, сложенную из огнеупорного кирпича. Рабочее плавильное пространство ограничено снизу подиной 12, сверху сводом 11, а с боков передней 5 и задней 10 стенками. Подина имеет форму ванны с откосами по направлению к стенкам печи. В передней стенке имеются загрузочные окна 4 для подачи шихты и флюса, а в задней – отверстие 9 для выпуска готовой стали.

Рис.2.2. Схема мартеновской печи

Характеристикой рабочего пространства является площадь пода печи, которую подсчитывают на уровне порогов загрузочных окон. С обоих торцов плавильного пространства расположены головки печи 2, которые служат для смешивания топлива с воздухом и подачи этой смеси в плавильное пространство. В качестве топлива используют природный газ, мазут.

Для подогрева воздуха и газа при работе на низкокалорийном газе печь имеет два регенератора 1.

Регенератор – камера, в которой размещена насадка – огнеупорный кирпич, выложенный в клетку, предназначен для нагрева воздуха и газов.

Отходящие от печи газы имеют температуру 1500…1600 0 C. Попадая в регенератор, газы нагревают насадку до температуры 1250 0 C. Через один из регенераторов подают воздух, который проходя через насадку нагревается до 1200 0 C и поступает в головку печи, где смешивается с топливом, на выходе из головки образуется факел 7, направленный на шихту 6.

Отходящие газы проходят через противоположную головку (левую), очистные устройства (шлаковики), служащие для отделения от газа частиц шлака и пыли и направляются во второй регенератор.

Охлажд¨нные газы покидают печь через дымовую трубу 8.

После охлаждения насадки правого регенератора переключают клапаны, и поток газов в печи изменяет направление.

Температура факела пламени достигает 1800 0 C. Факел нагревает рабочее пространство печи и шихту. Факел способствует окислению примесей шихты при плавке.

Продолжительность плавки составляет 3…6 часов, для крупных печей – до 12 часов. Готовую плавку выпускают через отверстие, расположенное в задней стенке на нижнем уровне пода. Отверстие плотно забивают малоспекающимися огнеупорными материалами, которые при выпуске плавки выбивают. Печи работают непрерывно, до остановки на капитальный ремонт – 400…600 плавок.

В зависимости от состава шихты, используемой при плавке, различают разновидности мартеновского процесса:

– скрап-процесс, при котором шихта состоит из стального лома (скрапа) и 25…45 % чушкового передельного чугуна, процесс применяют на заводах, где нет доменных печей, но много металлолома.

– скрап-рудный процесс, при котором шихта состоит из жидкого чугуна (55…75 %), скрапа и железной руды, процесс применяют на металлургических заводах, имеющих доменные печи.

Футеровка печи может быть основной и кислой. Если в процессе плавки стали, в шлаке преобладают основные оксиды, то процесс называют основным мартеновским процессом, а если кислые – кислым .

Наибольшее количество стали производят скрап-рудным процессом в мартеновских печах с основной футеровкой.

В печь загружают железную руду и известняк, а после подогрева подают скрап. После разогрева скрапа в печь заливают жидкий чугун. В период плавления за счет оксидов руды и скрапа интенсивно окисляются примеси чугуна: кремний, фосфор, марганец и, частично, углерод. Оксиды образуют шлак с высоким содержанием оксидов железа и марганца (железистый шлак). После этого проводят период «кипения» ванны: в печь загружают железную руду и продувают ванну подаваемым по трубам 3 кислородом. В это время отключают подачу в печь топлива и воздуха и удаляют шлак.

Для удаления серы наводят новый шлак, подавая на зеркало металла известь с добавлением боксита для уменьшения вязкости шлака. Содержание в шлаке возрастает, а уменьшается.

В период «кипения» углерод интенсивно окисляется, поэтому шихта должна содержать избыток углерода. На данном этапе металл доводится до заданного химического состава, из него удаляются газы и неметаллические включения.

Затем проводят раскисление металла в два этапа. Сначала раскисление идет путем окисления углерода металла, при одновременной подаче в ванну раскислителей – ферромарганца, ферросилиция, алюминия. Окончательное раскисление алюминием и ферросилицием осуществляется в ковше, при выпуске стали из печи. После отбора контрольных проб сталь выпускают в ковш.

В основных мартеновских печах выплавляют стали углеродистые конструкционные, низко- и среднелегированные (марганцовистые, хромистые), кроме высоколегированных сталей и сплавов, которые получают в плавильных электропечах.

В кислых мартеновских печах выплавляют качественные стали. Применяют шихту с низким содержанием серы и фосфора.

Основными технико-экономическими показателями производства стали в мартеновских печах являются:

· производительность печи – съ¨м стали с 1м 2 площади пода в сутки (т/м 2 в сутки), в среднем составляет 10 т/м 2 ; р

· расход топлива на 1т выплавляемой стали, в среднем составляет 80 кг/т.

С укрупнением печей увеличивается их экономическая эффективность.

Производство стали в кислородных конвертерах.

Кислородно-конвертерный процесс – выплавка стали из жидкого чугуна в конвертере с основной футеровкой и продувкой кислородом через водоохлаждаемую фурму.

Первые опыты в 1933-1934 – Мозговой.

В промышленных масштабах – в 1952-1953 на заводах в Линце и Донавице (Австрия) – получил название ЛД-процесс. В настоящее время способ является основным в массовом производстве стали.

Кислородный конвертер – сосуд грушевидной формы из стального листа, футерованный основным кирпичом.

Вместимость конвертера – 130…350 т жидкого чугуна. В процессе работы конвертер может поворачиваться на 360 0 для загрузки скрапа, заливки чугуна, слива стали и шлака.

Шихтовыми материалами кислородно-конвертерного процесса являются жидкий передельный чугун, стальной лом (не более 30%), известь для наведения шлака, железная руда, а также боксит и плавиковый шпат для разжижения шлака.

Последовательность технологических операций при выплавке стали в кислородных конвертерах представлена на рис. 2.3.

Рис.2.3. Последовательность технологических операций при выплавке стали в кислородных конвертерах

После очередной плавки стали выпускное отверстие заделывают огнеупорной массой и осматривают футеровку, ремонтируют.

Перед плавкой конвертер наклоняют, с помощью завалочных машин загружают скрап рис. (2.3.а), заливают чугун при температуре 1250…1400 0 C (рис. 2.3.б).

После этого конвертер поворачивают в рабочее положение (рис. 2.3.в), внутрь вводят охлаждаемую фурму и через не¨ подают кислород под давлением 0,9…1,4 МПа. Одновременно с началом продувки загружают известь, боксит, железную руду. Кислород проникает в металл, вызывает его циркуляцию в конвертере и перемешивание со шлаком. Под фурмой развивается температура 2400 0 C. В зоне контакта кислородной струи с металлом окисляется железо. Оксид железа растворяется в шлаке и металле, обогащая металл кислородом. Растворенный кислород окисляет кремний, марганец, углерод в металле, и их содержание падает. Происходит разогрев металла теплотой, выделяющейся при окислении.

Фосфор удаляется в начале продувки ванны кислородом, когда ее температура невысока (содержание фосфора в чугуне не должно превышать 0,15 %). При повышенном содержании фосфора для его удаления необходимо сливать шлак и наводить новый, что снижает производительность конвертера.

Сера удаляется в течение всей плавки (содержание серы в чугуне должно быть до 0,07 %).

Подачу кислорода заканчивают, когда содержание углерода в металле соответствует заданному. После этого конвертер поворачивают и выпускают сталь в ковш (рис. 2.3.г), где раскисляют осаждающим методом ферромарганцем, ферросилицием и алюминием, затем сливают шлак (рис. 2.3.д).

В кислородных конвертерах выплавляют стали с различным содержанием углерода, кипящие и спокойные, а также низколегированные стали. Легирующие элементы в расплавленном виде вводят в ковш перед выпуском в него стали.

Плавка в конвертерах вместимостью 130…300 т заканчивается через 25…30 минут.

Технология получения железа в древности

Для получения железа из руды, сначала нужно получить крицу. Для этого сначала использовалась окисленная железная руда, которая чаще всего залегает у поверхности. После открытия ее свойств такие залежи быстро истощились в результате их интенсивной разработки.

Болотные руды распространены гораздо шире. Они образовались в субатлантическом периоде, когда в процессе заболачивания железная руда оседала на дно водоемов. Все средневековье черная металлургия использовала болотные руды. Ими даже платили повинности. Получение железа из руды в относительно большом количестве стало возможным после изобретения сыродутного горна. Это название появилось после изобретения дутья подогретым воздухом в доменных печах. В древности же металлурги подавали в горн сырой (холодный) воздух. При температуре 900 o с помощью углекислого газа, отнимающего у окиси железа кислород, происходит восстановление железа из руды и получается тесто или бесформенный, пропитанный шлаком пористый кусок – крица. Для осуществления этого процесса был необходим древесный уголь как источник углекислого газа. Крица после этого проковывалась, для того чтобы удалить из нее шлак. Сыродутный способ, иногда называемый варкой железа, неэкономичен, но он долгое время оставался единственным и неизменным способом получения черного металла.

Сначала железо выплавляли в обычных, закрытых сверху ямах, позднее стали строить глиняные печи-горны. В рабочее пространство горна слоями загружали измельченную руду и уголь, все это поджигалось, и через отверстия-сопла специальными (кожаными) мехами нагнетался воздух. Каменная порода оседает в шлак при температуре 1300-1400 o , при которой получается сталь – железо, содержащее от 0.3 до 1.2%. углерода. При остывании оно становится очень твердым. Чтобы получить чугун – плавкое железо с содержанием углерода 1.5-5%, – нужна более сложная конструкция горна с большим рабочим пространством. При этом температура плавления железа оказывалась ниже, и оно частично вытекало из горна вместе со шлаком. При остывании оно становилось хрупким, и его поначалу выбрасывали, но потом научились использовать. Чтобы получить из чугуна ковкое железо, нужно удалить из него углерод.

Технология создания железных сплавов

Первым устройством для получения железа из руды была одноразовая сыродутная печь. При огромном количестве недостатков, долгое время это был единственный способ получить металл из руды.

Древние люди долгое время жили богато и счастливо - каменные топоры делали из яшмы, а для получения меди пережигали малахит, но все хорошее имеет тенденцию кончаться. Одной из причин краха античной цивилизации Средиземноморья стало истощение минеральных ресурсов. Золото кончилось не в казне, а в недрах, олово иссякло даже на «Оловянных островах». Хотя медь и добывается на Синае и Кипре до сих пор, но те месторождения, которые разрабатываются сейчас, римлянам доступны не были. Среди прочего, кончилась и пригодная для сыродутной обработки руда. Только свинца ещё было много.

Впрочем, варварские племена, заселившие ставшую бесхозной Европу, долгое время не знали, что недра её истощены предшественниками. Учитывая громадное падение объёма производства металлов, тех ресурсов, которыми римляне побрезговали, долгое время хватало. Позже, металлургия стала возрождаться в первую очередь в Германии и Чехии - то есть, там, куда римляне не добрались с кирками и тачками.

Более высокую ступень в развитии чёрной металлургии представляли собой постоянные высокие печи называемые в Европе штукофенами. Это действительно была высокая печь - с четырёхметровой трубой для усиления тяги. Мехи штукофена качались уже несколькими людьми, а иногда и водяным двигателем. Штукофен имел дверцы, через которые раз в сутки извлекалась крица.

Изобретены штукофены были в Индии в начале первого тысячелетия до новой эры. В начале нашей эры они попали в Китай, а в VII веке вместе с «арабскими» цифрами арабы заимствовали из Индии и эту технологию. В конце XIII века штукофены стали появляться в Германии и Чехии (а ещё до того были на юге Испании) и в течение следующего века распространились по всей Европе.

Производительность штукофена была несравненно выше, чем сыродутной печи - в день он давал до 250 кг железа, а температура плавления в нем оказывалась достаточна для науглероживания части железа до состояния чугуна. Однако штукофенный чугун при остановке печи застывал на её дне, смешиваясь со шлаками, а очищать металл от шлаков умели тогда только ковкой, но как раз ей-то чугун и не поддавался. Его приходилось выбрасывать.

Иногда, впрочем, штукофенному чугуну пытались найти какое-то применение. Например, древние индусы отливали из грязного чугуна гробы, а турки в начале XIX века - пушечные ядра. Трудно судить, как гробы, но ядра из него получались - так себе.

Ядра для пушек из железистых шлаков в Европе отливали еще в конце XVI в. Из литой брусчатки делались дороги. В Нижнем Тагиле до сих пор сохранились здания с фундаментами из литых шлаковых блоков.

Металлурги давно заметили связь между температурой плавления и выходом продукта - чем выше она была, тем большую часть содержащегося в руде железа удавалось восстановить. Потому рано или поздно им приходила мысль форсировать штукофен предварительным подогревом воздуха и увеличением высоты трубы. В середине XV века в Европе появились печи нового типа - блауофены, которые сразу преподнесли сталеварам неприятный сюрприз.

Более высокая температура плавления действительно значительно повысила выход железа из руды, но она же повысила и долю железа науглероживающегося до состояния чугуна. Теперь уже не 10 %, как в штукофене, а 30 % выхода составлял чугун - «свиное железо», ни к какому делу не годное. В итоге, выигрыш часто не окупал модернизации.

Блауофенный чугун, как и штукофенный, застывал на дне печи, смешиваясь со шлаками. Он выходил несколько лучшим, так как его самого было больше, следовательно, относительное содержание шлаков выходило меньше, но продолжал оставаться малопригодным для литья. Чугун получаемый из блауофенов оказывался уже достаточно прочен, но оставался ещё очень неоднородным - из него выходили только предметы простые и грубые - кувалды, наковальни. Уже прилично выходили пушечные ядра.

Кроме того, если в сыродутных печах могло быть получено только железо, которое потом науглероживалось, то в штукофенах и блауофенах внешние слои крицы оказывались состоящими из стали. В блауофенных крицах стали было даже больше, чем железа. С одной стороны, это казалось хорошо, но, вот, разделить-то сталь и железо оказывалось весьма затруднительно. Содержание углерода становилось трудно контролировать. Только долгой ковкой можно было добиться однородности его распределения.

В своё время, столкнувшись с этими затруднениями, индусы не стали двигаться дальше, а занялись тонким усовершенствованием технологии и пришли к получению булата. Но, индусов в ту пору интересовало не количество, а качество продукта. Европейцы, экспериментируя с чугуном, скоро открыли передельный процесс, поднимающий металлургию железа на качественно новый уровень.

Следующим этапом в развитии металлургии стало появление доменных печей. За счёт увеличения размера, предварительного подогрева воздуха и механического дутья, в такой печи все железо из руды превращалось в чугун, который расплавлялся и периодически выпускался наружу. Производство стало непрерывным - печь работала круглосуточно и не остывала. За день она выдавала до полутора тонн чугуна. Перегнать же чугун в железо в горнах было значительно проще, чем выколачивать его из крицы, хотя ковка все равно требовалась - но теперь уже выколачивали шлаки из железа, а не железо из шлаков.

Доменные печи впервые были применены на рубеже XV-XVI веков в Европе. На Ближнем Востоке и в Индии эта технология появилась только в XIX веке (в значительной степени, вероятно, потому, что водяной двигатель из-за характерного дефицита воды на Ближнем Востоке не употреблялся). Наличие в Европе доменных печей позволило ей обогнать в XVI веке Турцию если не по качеству металла, то по валу. Это оказало несомненное влияние на исход борьбы, особенно когда оказалось, что из чугуна можно лить пушки.

С начала XVII века европейской кузницей стала Швеция, производившая половину железа в Европе. В середине XVIII века её роль в этом отношении стала стремительно падать в связи с очередным изобретением - применением в металлургии каменного угля.

Прежде всего надо сказать, что до XVIII века включительно каменный уголь в металлургии практически не использовался - из-за высокого содержания вредных для качества продукта примесей, в первую очередь - серы. С XVII века в Англии каменный уголь, правда, начали применять в пудлинговочных печах для отжига чугуна, но это позволяло достичь лишь небольшой экономии древесного угля - большая часть топлива расходовалась на плавку, где исключить контакт угля с рудой было невозможно.

Среди многих металлургических профессий того времени, пожалуй, самой тяжелой была профессия пудлинговщика. Пудлингование было основным способом получения железа почти на протяжении всего XIX в. Это был очень тяжелый и трудоемкий процесс. Работа при нем шла так: На подину пламенной печи загружались чушки чугуна; их расплавляли. По мере выгорания из металла углерода и других примесей температура плавления металла повышалась и из жидкого расплава начинали «вымораживаться» кристаллы довольно чистого железа. На подине печи собирался комок слипшейся тестообразной массы. Рабочие-пудлинговщики приступали к операции накатывания крицы при помощи железного лома. Перемешивая ломом массу металла, они старались собрать вокруг лома комок, или крицу, железа. Такой комок весил до 50 - 80 кг и более. Крицу вытаскивали из печи и подавали сразу под молот - для проковки с целью удаления частиц шлака и уплотнения металла.

Устранять серу коксованием научились в Англии в 1735 году, после чего возможность использовать для выплавки железа большие запасы каменного угля. Но за пределами Англии эта технология распространилась только в XIX веке.

Потребление же топлива в металлургии уже тогда было огромно - домна пожирала воз угля в час. Древесный уголь превратился в стратегический ресурс. Именно изобилие дерева в самой Швеции и принадлежащей ей Финляндии позволило шведам развернуть производство таких масштабов. Англичане, имевшие меньше лесов (да и те были зарезервированы для нужд флота), вынуждены были покупать железо в Швеции до тех пор, пока не научились использовать каменный уголь.

Электрический и индукционный способы выплавки железа

Разнообразие составов сталей очень затрудняет их выплавку. Ведь в мартеновской печи и конвертере атмосфера окислительная, и такие элементы, как хром, легко окисляются и переходят в шлак, т.е. теряются. Значит, чтобы получить сталь с содержанием хрома 18%, в печь надо дать гораздо больше хрома, чем 180 кг на тонну стали. А хром – металл дорогой. Как найти выход из этого положения?

Выход был найден в начале XX в. Для выплавки металла было предложено использовать тепло электрической дуги. В печь круглого сечения загружали металлолом, заливали чугун и опускали угольные или графитовые электроды. Между ними и металлом в печи («ванне») возникала электрическая дуга с температурой около 4000°C. Металл легко и быстро расплавлялся. А в такой закрытой электропечи можно создавать любую атмосферу – окислительную, восстановительную или совершенно нейтральную. Иными словами, можно предотвратить выгорание ценных элементов. Так была создана металлургия качественных сталей.

Позднее был предложен еще один способ электроплавки – индукционный. Из физики известно, что если металлический проводник поместить в катушку, по которой проходит ток высокой частоты, то в нем индуцируется ток и проводник нагревается. Этого тепла хватает, чтобы за определенное время расплавить металл. Индукционная печь состоит из тигля, в футеровку которого вделана спираль. По спирали пропускают ток высокой частоты, и металл в тигле расплавляется. В такой печи тоже можно создать любую атмосферу.

В электрических дуговых печах процесс плавки идет обычно в несколько стадий. Сначала из металла выжигают ненужные примеси, окисляя их (окислительный период). Затем из печи убирают (скачивают) шлак, содержащий окислы этих элементов, и загружают ферросплавы – сплавы железа с элементами, которые нужно ввести в металл. Печь закрывают и продолжают плавку без доступа воздуха (восстановительный период). В результате сталь насыщается требуемыми элементами в заданном количестве. Готовый металл выпускают в ковш и разливают.

Химические реакции при получении железа

В современной промышленности железо получают из железной руды, в основном из гематита (Fe 2 O 3) и магнетита (Fe 3 O 4).

Существуют различные способы извлечения железа из руд. Наиболее распространённым является доменный процесс.

Первый этап производства - восстановление железа углеродом в доменной печи при температуре 2000 °C. В доменной печи углерод в виде кокса, железная руда в виде агломерата или окатышей и флюс (например, известняк) подаются сверху, а снизу их встречает поток нагнетаемого горячего воздуха.

В печи углерод кокса окисляется до монооксида углерода (угарного газа) кислородом воздуха:

2C + O 2 → 2CO.

В свою очередь, угарный газ восстанавливает железо из руды:

3CO + Fe 2 O 3 → 2Fe + 3CO 2 .

Флюс добавляется для извлечения нежелательных примесей из руды, в первую очередь силикатов, таких как кварц (диоксид кремния). Типичный флюс содержит известняк (карбонат кальция) и доломит (карбонат магния). Против других примесей используют другие флюсы.

Действие флюса: карбонат кальция под действием тепла разлагается до оксида кальция (негашёная известь):

CaCO 3 → CaO + CO 2 .

Оксид кальция соединяется с диоксидом кремния, образуя шлак:

CaO + SiO 2 → CaSiO 3 .

Шлак, в отличие от диоксида кремния, плавится в печи. Более лёгкий, чем железо, шлак плавает на поверхности, и его можно сливать отдельно от металла. Шлак затем употребляется в строительстве и сельском хозяйстве. Расплав железа, полученный в доменной печи, содержит довольно много углерода (чугун). Кроме случаев, когда чугун используется непосредственно, он требует дальнейшей переработки.

Излишний углерод и другие примеси (сера, фосфор) удаляют из чугуна окислением в мартеновских печах или в конвертерах. Электрические печи используют и для выплавки легированных сталей.

Кроме доменного процесса, распространён процесс прямого получения железа. В этом случае предварительно измельчённую руду смешивают с особой глиной, формируя окатыши. Окатыши обжигают, и обрабатывают в шахтной печи горячими продуктами конверсии метана, содержащими водород. Водород легко восстанавливает железо, при этом не происходит загрязнения железа такими примесями как сера и фосфор - обычными примесями в каменном угле. Железо получается в твёрдом виде, и в дальнейшем переплавляется в электрических печах.

Химически чистое железо получается электролизом растворов его солей.

В жизни мы постоянно сталкиваемся со сплавами, самый распространенный из которых сталь. Поэтому нет ничего удивительно, что у кого-нибудь да возникнет вопрос о том, как делают сталь?

Сталь – это один из сплавов железа и углерода, получивший широчайшее распространение в повседневной жизни. Процесс производства стали многоступенчатый и состоит из нескольких этапов: добыча и обогащение руды, получение агломерата, производства чугуна и выплавка стали.

Руда и агломерат

Месторождения руд позволяют добывать как богатые, так и бедные породы. Богатую руду можно сразу использовать как производственное сырье. Чтобы можно было выплавлять и бедную руду, ее необходимо обогатить, то есть увеличить в ней содержание чистого металла. Для этого руду измельчают и, применяя различные технологии, отделяют частицы, богатые соединениями металла. Например, для железных руд применяют магнитную сепарацию – воздействие магнитным полем на исходное сырье с целью отделение частиц богатых железом.

Получается низкодисперсионный концентрат, который спекают в более крупные куски. Результат обжига железных руд и есть агломерат. Виды агломератов получили название по основному сырью, входящему в их состав. В нашем случае это железорудный агломерат. Теперь, чтобы понять, как делают сталь, необходимо проследить дальнейший технологический процесс.

Производство чугуна.

Чугун выплавляют в доменных печах, которые функционируют по принципу противотока. Загрузка агломерата, кокса и другого шихтового материала осуществляется сверху. Снизу вверх, навстречу этим материалам, поднимаются потоки раскаленного газа от сгорания кокса. Начинается череда химических процессов, в результате чего происходит восстановление железа и насыщение его углеродом. Температурный режим при этом сохраняется в районе 400-500 градусов Цельсия. В нижних частях печи, куда постепенно опускается восстановленное железо, температура увеличивается до 900-950 градусов. Образуется жидкий сплав железа с углеродом – чугун. К основным химическим характеристикам чугуна относятся: содержание углерода более 2,14 %, обязательное наличие в составе серы, кремния, фосфора и марганца. Чугун отличается повышенной хрупкостью.

Выплавка стали.

Теперь мы приблизились к последнему этапу, позволяющему узнать, как делают сталь. В химическом плане сталь отличается от чугуна пониженным содержанием углерода; соответственно, основная задача производственного процесса – уменьшить содержание углерода и других примесей в основном сплаве железа. Для производства стали используют мартеновские печи, кислородные конвертеры или электропечи.

По различным технологиям расплавленный чугун продувается кислородом при очень высоких температурах. Происходит обратный процесс – окисление железа на уровне примесей, входящих в сплав. Полученный шлак в дальнейшем убирается. В результате продувки кислородом понижается содержание углерода и происходит преобразование чугуна в сталь.

В сталь могут добавляться легирующие элементы, изменяющие свойства материала. Поэтому сталью считается сплав железо-углерод с содержанием железа не менее 45 %.

Вышеописанные процессы разъяснили, как делают сталь, из каких материалов и с применением каких технологий.

Руководители:

А.М. Подурец

В.Ф. Кузнецова

Введение

Нас давно интересовала история развития металлургии в нашем крае, эта история связана, в основном, с братьями Баташовыми, которые владели заводами в нашем округе. В предыдущие годы мы занимались исследованием их заводов в Илёве , Сноведи , а также в Рязанской и Владимирской областях . Известно, что на заводах Баташовых существовал полный металлургический цикл: от добычи руды до изготовления железных изделий. В процессе изучения истории заводов нас очень интересовал вопрос о развитии технологии металлургии, и данную работу мы посвятили древнему процессу получения железа.

Развитие металлургии железа

Первые известные археологам железные предметы относятся к 10 веку до н.э. Первое железо ценилось очень дорого и не сразу использовалось для изготовления орудий труда. Самым древним способом получения железа из руды был, так называемый, сыродутный способ, при котором в горн или печь загружают железную руду и уголь, при горении которого происходит частичное восстановление железа из руды. В горн нагнетали «сырой», не подогретый воздух, откуда и произошло название самой техники. Плавление в горне измельченной железной руды в смеси с древесным углем происходило при высокой температуре. По мере выгорания угля твердые зерна железа, восстановленные из руды, опускались в низ печи и, свариваясь, образовывали губчатый сгусток, называемый крицей. Для уплотнения металла вынутую из горна застывшую крицу многократно проковывали, получая монолитный кусок железа весом до 5-6 кг. Товарным крицам металлургии придавали округлую лепешкообразную форму.

Впоследствии, при производстве железа примитивные кричные горны были заменены доменными печами: эти печи имеют больший размер, производительность, а также в них достигается большая температура. Продукцией домны является чугун (железо с высоким содержанием углерода), который потом перерабатывается в железо или сталь .

Цели и задачи работы

Цель работы : реконструировать сыродутный способ получения железа в современных условиях.

Задачи :

1) Найти руду, необходимую для выплавки железа.

2) Соорудить печь, максимально соответствующую древним образцам.

3) Провести процесс плавки.

4) Проанализировать полученные образцы.

Описание получения железа в литературе

Одним из источников по которому мы восстанавливали древний способ получения железа была книга Жюля Верна “Таинственный остров” . В книге описывается, как несколько людей попали на необитаемый остров в одной одежде и постепенно сами создавали себе разные удобства, в том числе они выплавляли железо для собственных нужд.

Их способ выплавки назывался “каталонским”. Он заключался в следующем. ”Каталонский способ в собственном смысле требует постройки печей и тиглей, в которые укладываются пластами руда и уголь.” Но герой книги инженер Сайрес Смит предполагал обойтись без этих конструкций. Он возвёл «кубическое сооружение из угля и руды и направил в центр него струю воздуха». “Каменный уголь, так же как и руду, удалось без труда собрать поблизости прямо с поверхности земли. Сначала руду искрошили на мелкие куски и очистили руками от грязи. Затем уголь и руду слой за слоем сложили в кучу, как делает угольщик с деревом, которое он хочет обжечь. Таким образом, под действием воздуха, нагнетаемого мехами, уголь должен был превратиться в углекислоту и затем в окись углерода, которой предстояло восстановить магнитный железняк, то есть отнять от него кислород”. Воздушное дутьё было организовано с помощью мехов из тюленьих шкур.

Железо было получено, но “это оказалось трудным делом. Понадобилось всё терпение, вся изобретательность колонистов, чтобы успешно его осуществить. В конце концов, оно удалось, и была получена железная болванка в губчатом состоянии, которую надо было ещё ковать, чтобы выгнать из неё жидкий шлак. Таким образом, был получен грубый, но годный к употреблению металл”.

Мы пытались воплотить в реальность то, что было описано Жюлем Верном. Основным отличием нашего способа являлось то, что мы использовали печь.

Процесс получения железа

Добыча руды

3 июня 2010 года мы поехали исследовать окрестности села Елизарьева, где, как нам было известно, находились дудки-шахты по добыче железной руды. От Сарова мы добрались до места примерно за 20 минут. Добравшись до места, мы пошли на поиск руды, которая должна была располагаться в области старых шахт. Больше всего руды мы нашли там, где не было травы и был снят (траншея антипожарная) или утрамбован (дорога) слой грунта. Именно в траншее мы и нашли большинство руды разных размеров, вплоть до 15*10*10 см (приблизительно). В основном руда была серого и бурого цвета. Преобладает руда бурого цвета. Мы набрали ведро руды. Также мы увидели около десятка остатков дудок, которые засыпаны и уже заросли травой.

Старая дудка вблизи села Елизарьева

Железная руда

Измельчение руды

Мы решили дробить руду до размеров не более 1см 3 , чтобы её было легче расплавить. Мы раздробили всю руду, находящуюся в ведре и получили примерно 3/5 ведра дроблёной руды.

Кладка печи

Для печи были использованы обломки силикатных кирпичей. Кладка печи осуществлялась с помощью смеси цемента с песком. Мы намесили раствор и ряд за рядом складывали кирпичи в печь, скрепляя их раствором.

Приготовление раствора

Наша печь

Плавка

Печь предварительно нагрели, сжигая в ней дрова в течение полутора часов.

В прогретую печь мы засыпали руду, а затем древесный уголь, приобретённый в магазине, слоями. Нам надо было добиться температуры в 900 градусов по Цельсию, поэтому помимо условий, предоставленных нам природой, нам пришлось использовать пылесосы для дутья (имитация мехов). Пылесосов было два и включались они поочерёдно, работая по 30 минут без перерыва. Но уже через час плавки печь начала трескаться, так как силикатный кирпич не выдерживал столь высокой температуры. Но при том, что она трескалась, за 2ч30мин плавки не рассыпалась. В процессе плавки мы измеряли температуру внутри печи с помощью специального прибора. Она колебалась от 800 до 1300 градусов по Цельсию. Весь процесс с подготовкой занял 4ч.

Воздушное дутьё. На фото — Валентина Фёдоровна Кузнецова — хозяйка пылесоса

Измерение температуры при помощи пирометра проводит Алексей Ковалёв

Результат плавки

После разборки печи на следующий день мы извлекли из неё серые кусочки со слабо выраженным металлическим блеском.

Разборка печи

Образцы полученного металла

Видимо, металлургическая реакция имела место (до и после)

Попытка проковать полученный металл

Следуя способу, описанному Жюлем Верном, образцы полученного металла следовало проковать. Для этого мы их отнесли в кузницу, там кузнец раскалил их в горне, но под его молотком наш металл рассыпался. Экспертиза, проделанная в одной из лабораторий ВНИИЭФ, показала, что полученное вещество состоит на 20% из железа, а остальное — оксиды железа.

Заключение

Металл мы получили, но он оказался не годным для изготовления каких-либо изделий.

В чём же была наша возможная ошибка? Мы разместили описание нашего опыта в интернете и получили множество комментариев , некоторые из которых оказались ценными.

В частности, пользователь с ником 3meys подсказал нам:

“При кричной плавке из руды температура должна быть ~900 градусов и как можно меньше не сгоревшего кислорода, чтоб он не окислял обратно металл”.

Из этого мы делаем вывод, что у нас была температура несколько выше необходимой, и восстановленное железо окислилось, что объясняет хрупкость и пористость полученных нами образцов.

Тем не менее, мы считаем, что добились поставленных целей — провели плавку, в результате которой был осуществлён металлургический процесс. С помощью нашего эксперимента мы приблизились к пониманию древнего металлургического производства.

Благодарности

Автор и руководители благодарят сотрудников Института Физики Взрыва РФЯЦ-ВНИИЭФ Алексея Евгеньевича Ковалёва за измерения температуры при помощи пирометра и Михаила Игоревича Ткаченко за проведение рентгеноструктурного анализа руды и металла.

Список литературы

  1. Михайлов Л. (руководители А.М. Подурец, В.Ф. Кузнецова). Унженские заводы Баташёвых. Доклад на Школьных Харитоновских чтениях, Саров, 2010.
  2. Воскобойников В.Г., Кудрин В.А., Якушев А.М. Общая металлургия. Москва, 2002.
  3. http://erzya.ru/culture/57-krichniki.html
  4. Верн Ж. Таинственный остров. Минск, 1984.
  5. http://leprosorium.ru/comments/948169.

Приложение

Сравнение технологии сегодня, в XVII — XVIII веках (вчера) и нашей

Добыча руды:

Измельчение руды.

Известное человечеству носило космическое происхождение, а, точнее говоря, метеоритное. Как инструментальный материал оно стало использоваться примерно 4 тыс. лет до нашей эры. Технология выплавки металла несколько раз появилась на свет и терялась в результате войн и смут, но, как считают историки, первыми освоили выплавку хетты.

Стоит отметить, что речь идет о сплавах железа с небольшим количеством примесей. Химически чистый металл стало возможным получить лишь с появлением современных технологий. Данная статья расскажет вам в подробностях об особенностях производства металла методом прямого восстановления, кричном, губчатого, сыродутного, горячебрикетированного железа, коснемся изготовления хлорного и чистого вещества.

Для начала стоит рассмотреть способ производство железа из железной руды. Железо – элемент весьма распространенный. По содержанию в земной коре металл занимает 4 место среди всех элементов и 2 среди металлов. В литосфере железо представлено обычно в виде силикатов. Наибольшее его содержание отмечено в основных и ультраосновных породах.

Практически все горные руды содержат какую-то толику железа. Однако разрабатываются лишь те породы, в которых доля элемента имеет промышленное значение. Но и в этом случае количество пригодных для разработки минералов более чем велико.

  • Прежде всего, это железняк – красный (гематит), магнитный (магнитит) и бурый (лимонит). Это сложные оксиды железа с содержанием элемента в 70–74%. Бурый железняк чаще встречается в корах выветривания, где формирует так называемые «железные шляпы» толщиной до нескольких сот метров. Остальные имеют в основном осадочное происхождение.
  • Очень распространен сульфид железа – пирит или серный колчедан, однако железной рудой он не считается и идет на производство серной кислоты.
  • Сидерит – карбонат железа, включает до 35%, это руда средняя по содержанию элемента.
  • Марказит – включает до 46,6%.
  • Миспикель – соединение с мышьяком и серой, содержит до 34,3% железа.
  • Леллингит – включает всего 27,2% элемента и считается рудой бедной.

Минеральные породы классифицируют по доле железа таким образом:

  • богатые – с содержанием металла более, чем 57%, с долей кремнезема менее 8–10%, и примесью серы и фосфора менее 0,15%. Такие руды не обогащаются, сразу отправляются на производство;
  • руда со средним содержанием включает не менее 35% вещества и нуждается в обогащении;
  • бедные железные руды должны содержать не менее 26%, и тоже обогащаются перед отправкой в цех.

Общий технологический цикл производства железа в виде чугуна, стали и проката рассмотрен в этом видео:

Разработка месторождений

Существует несколько методов добычи руды. Применяют тот, который находят наиболее экономически целесообразным.

  • Открытый способ разработки – или карьерный. Рассчитан на неглубокое залегание минеральной породы. Для добычи выкапывают карьер глубиной до 500 м и шириной, зависящей от мощности месторождения. Железную руду извлекают из карьера и транспортируют машинами, рассчитанными на перевозку тяжелых грузов. Как правило, так добывают именно богатую руду, так что необходимости в ее обогащении не возникает.
  • Шахтный – при залегании породы на глубине 600–900 м, бурят шахты. Такая разработка куда более опасна, поскольку связана со взрывными подземными работами: обнаруженные пласты взрывают, а затем собранную руду транспортируют наверх. При всей своей опасности этот метод считается более эффективным.
  • Гидродобыча – в этом случае бурят скважины на определенную глубину. В шахту спускают трубы и подают воду под очень большим давлением. Водная струя дробит породу, а затем железную руду поднимают на поверхность. Скважинная гидродобыча мало распространена, так как требует больших затрат.

Технологии производства железа

Все металлы и сплавы разделяют на цветные (вроде , и т.п.) и черные. К последним относятся чугун и сталь. 95% всех металлургических процессов приходится на черную металлургию, .

Несмотря на невероятное разнообразие получаемых сталей технологий изготовления не так уж много. Кроме того, чугун и сталь – это не совсем 2 разных продукта, чугун – обязательная предварительная стадия получения стали.

Классификация продукции

И чугун, и сталь относят к сплавам железа, где легирующим компонентом выступает углерод. Доля его невелика, но он придает металлу очень высокую твердость и некоторую хрупкость. Чугун, поскольку содержит больше углерода, более хрупкий, чем сталь. Менее пластичен, но отличается лучшей теплоемкостью и стойкостью к внутреннему давлению.

Чугун получают при доменной плавке. Различают 3 вида:

  • серый или литейный – получают методом медленного остывания. Сплав содержит от 1,7 до 4,2% углерода. Серый чугун хорошо обрабатывается механическими инструментами, прекрасно заполняет формы, поэтому его используют для производства литьевых изделий;
  • белый – или передельный, получают при быстром остывании. Доля углерода – до 4,5%. Может включать дополнительные примеси , графита, марганца. Белый чугун отличается твердостью и хрупкостью и в основном применяется для выплавки стали;
  • ковкий – включает от 2 до 2,2% углерода. Производится из белого чугуна путем длительного прогревания отливок и медленного длительного охлаждения.

Сталь может включать не более 2% углерода, получают ее 3 основными способами. Но в любом случае суть сталеварения сводится к отжигу нежелательных примесей кремния, марганца, серы и так далее. Кроме того, если получают легированную сталь, то в процессе изготовления вводят дополнительные ингредиенты.

По назначению сталь разделяют на 4 группы:

  • строительная – применяют в виде проката без термической обработки. Это материал для сооружения мостов, каркасов, изготовления вагонов и так далее;
  • машиностроительная – конструкционная, относится к категории углеродистой стали, включает не более 0,75% углерода и не более 1,1% марганца. Используется для производства разнообразных машинных деталей;
  • инструментальная – также углеродистая, но с низким содержанием марганца – не более 0,4%. Из нее производят разнообразный инструмент, в частности, металлорежущий;
  • сталь специального назначения – к этой группе относят все сплавы с особыми свойствами: жаропрочная сталь, нержавеющая, кислотоупорная и так далее.

Предварительный этап

Даже богатую руду перед выплавкой чугуна необходимо подготовить – освободить от пустой породы.

  • Агломерационный метод – руда дробится, размалывается и засыпается вместе с коксом на ленту агломерационной машины. Лента проходит через горелки, где под действием температуры загорается кокс. При этом руда спекается, а сера и другие примеси выгорают. Полученный агломерат подается в бункерные чаши, где охлаждается водой и продувается потоком воздуха.
  • Метод магнитной сепарации – руду дробят и подают на магнитный сепаратор, поскольку железо обладает способностью намагничиваться, минералы при промывании водой остаются в сепараторе, а пустая порода вымывается. Затем из полученного концентрата делает окатыши и горячебрикетированное железо. Последние допускается использовать для приготовления стали, минуя стадию получения чугуна.

Данное видео расскажет во всех подробностях о производстве железа:

Выплавка чугуна

Чугун выплавляют из руды в доменной печи:

  • приготавливают шихту – агломерат, окатыши, кокс, известняк, доломит и прочее. Состав зависит от вида чугуна;
  • шихту скиповым подъемником загружают в доменную печь. Температура в печи – 1600 С, снизу подается горячий воздух;
  • при такой температуре железо начинает плавиться, а кокс гореть. При этом происходит восстановление железа: сначала при сгорании угля получают угарный газ. Угарный газ реагирует с оксидом железа с получением чистого металла и углекислого газа;
  • флюс – известняк, доломит, добавляется в шихту для перевода нежелательных примесей в форму, которую легче устранить. Например, оксиды кремния не плавятся при такой низкой температуре и отделить их от железа невозможно. Но при взаимодействии с оксидом кальция, получаемым разложением известняка, кварц превращается в силикат кальция. Последний плавится при такой температуре. Он легче, чем чугун и остается плавать на поверхности. Отделить его достаточно просто – шлак периодически выпускают через летки;
  • жидкий чугун и шлак по разным каналам стекают в ковши.

Полученный чугун в ковшах транспортируют в сталеплавильный цех или к разливочной машине, где получают чугунные слитки.

Выплавка стали

Превращение чугуна в сталь производится 3 способами. В процессе выплавки выжигается лишний углерод, нежелательные примеси, а также добавляются необходимые компоненты – при варке специальных сталей, например.

  • Мартеновский – самый популярный метод получения, поскольку обеспечивает высокое качество стали. Расплавленный или твердый чугун с добавкой руды или скрапа подают в мартеновскую печь и плавят. Температура – около 2000 С, поддерживается за счет горения газообразного топлива. Суть процесса сводится к выжиганию углерода и других примесей из железа. Необходимые добавки, если речь идет о легированной стали, добавляют в конце выплавки. Готовый продукт разливают в ковши или на слитки в изложницы.
  • Кислородно-конвертный метод – или бессемеровский. Отличается более высокой производительностью. Технология включает продувку сквозь толщу чугуна сжатого воздуха под давлением в 26 кг/кв. см. При этом углерод сгорает, и чугун становится сталью. Реакция экзотермическая, так что температура при этом повышается до 1600 С. Чтобы повысить качество продукции, сквозь чугун продувают смесь воздуха с кислородом или даже чистый кислород.
  • Электроплавильный метод считается самым эффективным. Чаще всего его используют для получения многократно легированных сталей, так как технология выплавки в этом случае исключает попадание ненужных примесей из воздуха или газа. Температура в печидля производства железа достигается максимальная – около 2200 С за счет электродуги.

Прямое получение

С 1970 года стал использоваться и способ прямого восстановления железа. Метод позволяет миновать затратную стадию получения чугуна в присутствии кокса. Первые установки такого рода не отличались производительностью, но на сегодня способ стал довольно известен: оказалось, что в качестве восстановителя можно применять природный газ.

Сырьем для восстановления служат окатыши. Их загружают в шахтную печь, прогревают и продувают продуктом конверсии газа – угарный газ, аммиак, но в основном водород. Реакция происходит при температуре в 1000 С, при этом водород восстанавливает железо из оксида.

О производителях традиционного (не хлорного и т.п.) железа в мире поговорим ниже.

Известные производители

Самая большая доля месторождений железной руды приходится на Россию и Бразилию – 18%, Австралию – 14%, а также Украину – 11%. Крупнейшими экспортерами являются Австралия, Бразилия и Индия. Пик стоимости железа наблюдался в 2011 году, когда тонна металла оценивалась в 180 $. К 2016 цена упала до 35 $ за тонну.

К наиболее крупным производителям железа относят следующие компании:

  • Vale S. A. – бразильская горнодобывающая компания, крупнейший производитель железа и ;
  • BHP Billiton – австралийская компания. Основное ее направление – добыча нефти и газа. Но при этом она же является крупнейшим поставщиком меди и железа;
  • Rio Tinto Group – австралийско-британский концерн. Rio Tinto Group добывает и производит золото, железо, алмазы и уран;
  • Fortescue Metals Group – еще одна австралийская компания, специализирующаяся по добыче руды и производству железа;
  • В России крупнейшим производителем выступает Евразхолдинг – металлургическая и горнодобывающая компания. Также известны на мировом рынке Металлинвест и ММК;
  • ООО «Метинивест холдинг» – украинская горно-металлургическая компания.

Распространенность железа велика, способ добычи достаточно прост, да и выплавка в конечном счете – процесс экономически выгодный. Вместе с физическими характеристиками производство и обеспечивает железу роль главного конструкционного материала.

Изготовление хлорного железа показано в этом видеоролике: