Внутрисосудистый гемолиз лечение. Дифференциальная диагностика гемолитических анемий

Хроматин – комплекс ядерной ДНК с белками (гистоны, негистоновые белки).

Гетерохроматин (транкрипционно неактивный , конденсированный хроматин) интерфазного ядра. В СМ (видны в световой микроскоп)– базофильные глыбки, в ЭМ (видно в электронный микроскоп) – скопления плотных гранул. Располагается преимущественно по периферии ядра и вокруг ядрышек. Типичный пример гетерохроматина -тельце Барра .

Тельце Барра

Во всех соматических клетках генетически женского организма одна из Х –хромосом инактивирована и известна как половой хроматин (тельце Барра). Инактивация Х-хромосомы известна каклайонизация.

Лайонизация – механизм компенсации дозы генов Х-хромосомы у женщин объясняет гипотизаМэри Лайон.

Согласно гипотезе, инактивация Х-хромосомы происходит в раннем эмриогенезе, осуществляеися случайным образом (инактивированной может быть либо отцовская, либо материнская Х-хромосома), затрагивает целиком всю Х-хромосому и характеризуется устойчивостью, передаваясь клеточным потомкам. Клетки женского организма по экспрессии генов Х-хромосомы мозаичны.

Эухроматин – транскрипционно активная и менее конденсированная часть хроматина, локализуется в более светлых участках ядра между гетерохроматином.

Хромосома

Хромосомы видны при митозе или мейозе, когда хроматин конденсирован полностью.

Рис. 8. Организация хроматина в хромосоме. Хроматин состоит из структурных единиц - нуклеосом, разделённых интервалами в 200 пар оснований. Во время митоза в результате плотной упаковки нуклеосом хроматин полностью конденсируется, формируя видимые хромосомы (из Widneil СС, Pfeninger КН, 1990)

ОРГАНИЗАЦИЯ ХРОМАТИНА В ХРОМОСОМЕ

Хроматин состоит из структурных единиц – нуклеосом, разделенных интервалами в 200 пар оснований. Во время митоза в результате плотной упаковки нуклеосом хроматин полностью конденсируется, формируя видимые хромосомы. (рис. 8)

Состав хромосом

Каждая хромосома содержит одну молекулу ДНК и ДНК- связывающие белки; хроматин в составе хромосомы образует многочисленные петли. Хромосома состоит из структурных единиц – нуклеосом. (рис. 9, 10)

Рис.9. Нуклеосома в неконденсирован­ном хроматине содержит по две копии гистонов Н2А, Н2В, НЗ и Н4. Двойная спираль ДНК лежит на поверхности октамера гистонов и накручена на него. В конденсированном хроматине дополни­тельно присутствует гистон H 1, соединя­ющий нуклеосомы [из Trifonov EN , 1981|

Нуклеосомы – сферические структуры диаметром 10 нм.

I

III

IV

V

Рис . 10. Уровни упаковки ДНК в хромосоме I – нуклеиновая нить,II – хроматиновая фибрилла,III – серия петельных доменов,IV – конденсированный хроматин в составе петельного домена,V – метафазная хромосома; 1 – гистон Н1, 2 – ДНК, 3 – прочие гистоны, 4 – микротрубочки ахроматинового веретена, 5 – кинетохор, 6 – центромера, 7 – хроматиды (по Б. Албертсу и соавт., с изменениями и дополнениями).

ГЕНОМ

Геном – полный комплект генов в хромосомах.Кариотип – описывает количество и структуру хромосом.Гаплоидный набор – 23 хромосомы – характерен для гамет.Диплоидный набор - стандарт хромосом (23 х 2) – для соматических клеток.

Соматических клеток самок плацентарных млекопитающих , включая человека. Хорошо прокрашивается осно́вными красителями .

Таким образом, у самки млекопитающего, гетерозиготной по какому-либо признаку, определяемому геном X-хромосомы, в разных клетках работают разные аллели этого гена (мозаицизм). Классическим видимым примером такого мозаицизма является окраска черепаховых кошек - в половине клеток активна X-хромосома с «рыжим», а в половине - с «чёрным» аллелем гена, участвующего в формировании меланина . Коты черепаховой окраски встречаются крайне редко и имеют две X-хромосомы (анеуплоидия) .

У людей и животных с анеуплоидией, имеющих в геноме 3 и более X-хромосом (см., напр., синдром Клайнфельтера), число телец Барра в ядре соматической клетки на единицу меньше числа X-хромосом.

Источники


Wikimedia Foundation . 2010 .

Смотреть что такое "Тельце Барра" в других словарях:

    Тельце Барра. См. половой хроматин. (Источник: «Англо русский толковый словарь генетических терминов». Арефьев В.А., Лисовенко Л.А., Москва: Изд во ВНИРО, 1995 г.) … Молекулярная биология и генетика. Толковый словарь.

    тельце барра - ЭМБРИОЛОГИЯ ЖИВОТНЫХ ТЕЛЬЦЕ БАРРА – во всех соматических клетках генетически женского организма одна из Х хромосом инактивирована и известна как половой хроматин … Общая эмбриология: Терминологический словарь

    Тельце Барра - интенсивно красящаяся структура, наблюдающаяся в ядрах разных типов клеток у самок млекопитающих. Представляет собой сильно спирализованную и поэтому неактивную Х хромосому. Инактивация одной из Х хромосом происходит случайным образом … Словарь по психогенетике

    См. Хроматин половой. Источник: Медицинский словарь … Медицинские термины

    - (М. L. Barr, род. в 1908 г., канадский гистолог) см. Хроматин половой … Большой медицинский словарь

    Черепаховая окраска самок кошек является видимым примером инактивации Х хромосомы. Черный и оранжевый аллели гена окраски меха располагаются на Х хромосоме. Окраска конкретного участка меха определяется тем, какой из аллелей гена активен в данном … Википедия

    половой хроматин - тельце Барра Гетерохроматинизированная в процессе лайонизации и интенсивно прокрашиваемая при анализе интерфазных ядер Х хромосома самок млекопитающих; выявление П.х. лежит в основе экспресс метода (т.е. без культивирования клеток и получения… … Справочник технического переводчика

    Плотное окрашивающееся тельце, обнаруживаемое в недслящихся (интерфазных см. Интерфаза) ядрах клеток у гетерогаметных (имеющих Х и Y Половые хромосомы) животных и человека. П. х. подразделяют на Х хроматин, или тельце Барра (открыт в 1949 … Большая советская энциклопедия

    Ядро фибробласта женщины с гетерохроматином, помеченным флуоресцентным красителем. Стрелкой указано положение тельца Барра Гетерохроматин участки … Википедия

    I совокупность генетически детерминированных признаков особи, определяющих ее роль в процессе размножения. Развитие признаков мужского (обозначают знакома Марса ♂) и женского (знак Венеры ♀) полов определяется хромосомными наборами (см.… … Медицинская энциклопедия

В 1949 г. М. Барр и Ч. Бертрам, изучая нейро­ны кошки, обратили внимание на то, что в интерфазном ядре клетки содержится интенсивно окрашиваемое тельце, причем оно присутствует только в ядрах клеток самок и отсутствует у самцов. Оно было найдено у многих животных и всегда только у особей женского пола. Это тельце получило название полового хроматина, или тельца Барра. У ряда позвоночных и у человека оно появляется в раннем онтогенезе на стадии гаструлы, но раньше развития гонад (половых желез). На локализацию, форму и структуру полового хроматина не влияют поло­вые гормоны, следовательно, он не является вторичным половым признаком. Между числом телец полового хроматина и числом X- хромосом в ядре имеется прямая связь. Половой хроматин в интер­фазных ядрах обусловлен спирализацией одной из Х-хромосом, инактивация которой является механизмом, выравнивающим баланс генов половых хромосом в клетках самцов и самок (т. е. это один из механиз­мов дозовой компенсации генов). 6

В 1961 г. несколько исследователей одновременно высказали предположения, что одна из Х-хромосом у нормальных женщин отно­сительно не активна в генетическом отношении. В 1961 году англий­ская исследовательница М. Лайон выдвинула гипотезу о механизмах инактивации одной из Х-хромосом клеток женского организма. Основ­ные положения этой гипотезы следующие:

1. Одна из двух Х-хромосом клеток женщины неактивна.

2. Неактивная хромосома может быть отцовского или материнского организма.

3. Инактивация происходит в раннем эмбриогенезе и сохраняется во время дальнейшего размножения и развития клеточной линии. Этот процесс инактивации Х-хромосомы в ряду поколений обратим:

XX* ->- УХ -> XX* и т. д. (здесь звездочкой обозначена спирали-зованная Х-хромосома). Такой тип обратимых изменений генетического материала португальский генетик Серра предложил называть трепцией (от греч. treptos - изменение).

Спирализованная Х-хромосома в клетке образует половой хроматин или тельце Барра. Если у женщин в ядре клетки несколько Х-хромосом, то в клетках несколько телец Барра, активной остается лишь одна Х-хромосома. Х-хромосома инактивируется не вся, часть коротко­го плеча остается генетически активной. Инактивация Х-хромосомы в определенной мере зависит от стадии клеточного цикла и физиологи­ческого состояния организма. По наличию лишнего или отсутствию тельца Барра можно диагносцировать некоторые виды наследствен­ных заболеваний (например, синдром Клайнфельтера, синдром Шерешевского - Тернера). Клетки, не содержащие половой хроматин (хроматин-отрицательные клетки), обнаруживаются у индивидуумов, имеющих набор хромосом 45, ХО (синдром Шерешевского - Тернера);

46, XY (нормальные мужчины); 47, XYY (синдром Клайнфельтера с двумя Y-хромосомами). Обычно в клетках нормального мужского организма встречается некоторое количество псевдотелец Барра (конденсированных участков аутосом) и спирализованных Y-хромосом, поэтому при диагностике различных хромосомных заболева­ний необходимо уметь отличать эти образования от типичного полового хроматина, образованного спирализованной лишней Х-хромосомой. Тельце Барра обнаруживается при хромосомном наборе 46, XX (нормальные женщины); 47, ХХУ и 48, ХХУУ (клас­сический синдром Клайнфельтера). Два тельца Барра обнаруживаются у человека, имеющего три Х-хромосомы, (47, XXX); три Х-хромосомы и одну У (48, ХХХУ, синдром Клайнфельтера); 49, ХХХУУ (синдром Клайнфельтера). Три тельца Барра встречаются при кариотипе 48, ХХХХ и 49, ХХХХУ (тяжелый синдром Клайнфельтера).

В полиплоидных клетках число телец полового хроматина соот­ветствует плоидности. По формуле Гарднера, число телец Барра (В)

равно В = Х - , где Х - число Х-хромосом, Р - степень плоид­ности клетки. В неполиплоидных клетках число телец полового хромати­на равно числу Х-хромосом минус единица = Х - 1).

Структурные изменения хромосом

Хромосомы могут подвергаться различным структурным измене­ниям. Особенно важное значение имеют потеря отдельных фрагмен­тов хромосом (деления) или перенос участка одной хромосомы на дру­гую (транслокация). Транслокация обозначается латинской буквой /, в скобках рядом с ней пишут индекс группы или номер хромосомы-донора, обозначение переносимого участка. Эти же обозначения ука­зываются для хромосомы-реципиента, например 46, XXt (Ср + + В4q -). В скобках буквами р и q указывают плечи хромосом, затрагиваемые транслокацией. Короткое плечо хромосомы обозна­чают буквой р, длинное - буквой q, спутник - буквой s, и т. д. Уве­личение длины плеча обозначается знаком плюс, а уменьшение - зна­ком минус (оба они ставятся после символа хромосомы).

Появление одной лишней хромосомы в кариотипе приводит к трисомии. Кратное увеличение числа всех хромосом носит название поли­плоидии (могут быть триплоиды, тетраплоиды и т. д.). Потеря одной из пары гомологичных хромосом приводит к состоянию, которое на­зывается моносомией. Изменения числа или строения хромосом назы­вается хромосомными аберрациями.

Рассмотрим наиболее частые виды структурных нарушений хро­мосом - делеции и транслокации. При делеции общее количество хромосом не изменено. Однако в какой-то хромосоме недостает гене­тического материала, что вызывает различные изменения фенотипа. Чаще всего встречается делеция 5-й и 18-й аутосом и Х-хромосомы. Делеции приводят к развитию различных наследственных заболеваний и синдромов.

В 1963 г. Ж. Лежен описал синдром «кошачьего крика». Крик таких детей напоминает «мяуканье кошки». У детей резкое недораз­витие гортани, круглое лунообразное лицо, микроцефалия, микрогнатия, монголоидный разрез глаз, низко расположенные деформированные ушные раковины, мышечная гипотония, слабо выраженные вторичные половые признаки. Эти дети умственно отсталые. В кариотипе детей отмечается делеция короткого плеча 5-й пары хромосом.

Деления длинного и короткого плеча 18-й хромосомы сопровож­дается различными нарушениями строения лица, скелета, внутренних органов. У детей отмечается умственная отсталость, гипотрофия, гипотония, микроцефалия, недоразвитие лица, низкий грубый голос, недоразвитие наружных половых органов, среднего уха, атрезия наружного слухового прохода и другие аномалии.

При делеции короткого плеча 18-й хромосомы у больных также отмечаются различные дефекты со стороны скелета, внутренних орга­нов и умственная отсталость.

Делеция короткого плеча Х-хромосомы может трактоваться как частичная моносомия по Х-хромосоме. Описана у женщин, у которых наблюдается задержка роста, недоразвитие яичников без тяжелых соматических аномалий. Хотя половой хроматин у них выявляется, однако его размеры значительно меньше, чем в норме.

При хронических миелолейкозах отмечается укорочение корот­кого плеча 21-й хромосомы (так называемая филадельфийская хро­мосома). Однако эта хромосома обнаруживается только в клетках крови и пунктате костного мозга. Другие же клетки имеют нормальный кариотип.

В результате двух концевых нехваток с последующим соединением разорванных концов образуются кольцевые хромосомы. Поэтому дан­ное нарушение структуры хромосом фактически является частным случаем делеции. Клиническая картина больных - носителей кольце­вых хромосом - напоминает таковую при делеции соответствующей хромосомы. Так, при кольцевой хромосоме группы В (5-я пара) раз­вивается клиническая картина синдрома «кошачьего крика», а при кольцевой Х-хромосоме клиническая картина близка синдрому Шерешевского - Тернера.

Транслокации - это структурные перестройки, при которых про­исходит обмен генетического материала между хромосомами. Возмож­ны различные виды транслокаций: реципрокные, при которых про­исходит взаимный обмен фрагментами; нереципрокные, когда генети­ческий материал одной хромосомы переносится на другую, и наконец центрические соединения. Наиболее часто встречаются именно пос­ледние транслокации между акроцентрическими хромосомами. При этом утрачивается только небольшой фрагмент коротких плечей акроцентрических хромосом. Большую часть таких перестроек можно считать сбалансированной, так как они не вызывают серьезных откло­нений в фенотипе носителя транслокации. Однако потомство таких носителей имеет клинически выраженные дефекты, характерные для аномального набора хромосом.

Известно, что болезнь Дауна может наблюдаться как при трисомии по 21-й аутосоме, так и при транслокации фрагмента этой хромо­сомы на другие. У таких больных хромосом 46, но одна из хромосом фактически двойная, так как к ней еще прикреплен фрагмент 21-й хромосомы и в результате такая перестройка оказывается не сбалан­сированной. У родителей этих больных кариотип включал 45 хромосом, но одна из хромосом была фактически двойной (с транслокацией). При оплодотворении яйцеклетки, содержащей эту хромосому, нормаль­ным спермием в зиготе фактически будут три 21-х хромосомы, что фенотипически проявляется болезнью Дауна.

21-я хромосома чаще всего транслоцируется на 15-ю или на дру­гие хромосомы группы Д (13-ю, 14-ю) у женщин, или на 22-ю у муж­чин. В таком случае у молодых здоровых родителей может ро­диться ребенок с болезнью Дауна в отличие от трисомии 21-й хро­мосомы, которая чаще бывает у детей, рожденных пожилыми мате­рями. Определить наличие транслокации у индивидуума до рождения ребенка с болезнью Дауна без исследования кариотипа фактически невозможно, так как фенотип этих носителей мало чем отличается от фенотипов лиц с нормальными генотипами. Поэтому во всех этих слу­чаях исследование кариотипа имеет особенно важное значение.

Механизм развития болезни Дауна при транслокации у одного из родителей можно представить следующим образом. При трансло­кации кариотип индивидуума состоит из 45 хромосом, так как одна хромосома увеличена в размере. Транслокация касается всех клеток, в том числе и оогоний и сперматогоний. При образовании половых клеток (гамет) в одну гамету попадает 23 хромосомы, а в другую 22. Но транслоцированная хромосома может оказаться как в гамете с 22 хромосомами, так и в гамете с 23 хромосомами. Таким образом, те­оретически возможны 4 варианта гамет: 23 нормальные хромосомы, 23 с транслокацией, 22 нормальные хромосомы и 22 с транслокацией. Если транслокацию обозначить апострофом, то получится следующий ряд гамет: 23 23 1 22 22 1 .

Если эти гаметы будут оплодотворены нормальной гаметой про­тивоположного пола, то получим следующие комбинации: 1) 23 + 23 = = 46 хромосом (нормальный кариотип); 2) 23 1 + 23 = 46 1 хромосом, но фактически 47 хромосом (в данном случае разовьется болезнь Дау­на); 3) 22 + 23 = 45 хромосом (такая зигота не жизнеспособна и по­гибает); 4) 22 1 +23 = 45 1 хромосом (в этом случае рождается ин­дивидуум с транслокацией, как и один из его родителей).

Шансы родить ребенка с болезнью Дауна (при транслокации у одного из родителей) составляют 33%. Это очень большой риск и в таком случае дальнейшее деторождение не желательно, тем более что есть риск получить транслокацию и у внуков. Если рождается ребе­нок с болезнью Дауна, вызванной трисомией по 21-й хромосоме, у родителей с нормальным кариотипом, то шансы родить повторно та­кого же ребенка очень незначительны. Однако не во всех случаях при рождении ребенка с болезнью Дауна вследствие транслокации 21-й хромосомы транслокация имеется в соматических клетках ма­тери. Примерно у половины матерей кариотип бывает нормаль­ный, а транслокация произошла во время мейоза, предшествующего образованию яйцеклетки, из которой развился организм больного ребенка.

Половые хромосомы (гоносомы, гетеросомы) различаются как по строению (длина, положение центромеры, количество гетерохроматина), так и по содержанию генов.

Хромосома X - это субметацентрическая хромосома средних размеров, входит в группу С). Она есть в соматических клетках индивидов обоих полов: в двойном экземпляре у женщин с кариотипом 46,ХХ и в одном экземпляре у мужчин с кариотипом 46,ХY; а также в одном экземпляре во всех яйцеклетках и 50% сперматозоидов.Хромосома X богата эухроматиновыми участками и содержит 1336 генов, среди которых: соматические гены, регуляторные гены феминизации, структурные гены феминизации, структурные гены маскулинизации. Таким образом, хромосома Х является обязательной в кариотипе соматической клетки как женского, так и мужского полов.

Хромосома Y является мелкой акроцентрической хромосомой, входит в группу G; 2/3 дистального плеча q представлены гетерохроматином и генетически неактивны. Хромосома Y представлена одним экземпляром во всех соматических клетках индивидов мужского пола с кариотипом 46,XY и у 50% сперматозоидов. Она содержит 307 генов, среди которых: регуляторные гены маскулинизации (SRY + Tdf), гены, обеспечивающие фертильность (AZF1, AZF2), несколько структурных соматических генов и псевдогены.

Морфологические и генетические различия между хромосомами X и Y, а также отличия по количеству хромосом Х в кариотипе стало причиной генетического неравенства между полами (у женщин по сравнению с мужчинами двойная доза генов хромосомы Х. Однако это неравенство не проявляется, благодаря механизму компенсации, в результате которого функциональной остается только одна хромосома Х в соматических клетках и мужчин и женщин, а именно:

В клетках 46,ХХ – активна только одна хромосома Х;

В клетках 46,XY – активны хромосомы Х и Y;

В клетках 47,ХХХ – активна только одна хромосома Х;

В клетках 47,ХХY – активна только одна хромосома Х и одна хромосома Y;

В клетках 48,ХХХY – активна только одна хромосома Х и одна Y;

Путем гетерохроматинизации одной из двух хромосом Х и женщин образуется половой хроматин Х, а в результате гетерохроматинизации 2/3q хромосомы Y у лиц мужского пола образуется половой хроматин Y.

Половой хроматин Х:

Представляет инактивированную хромосому Х. в форме факультативного гетерохроматина, в соматических клетках 46,ХХ;

Выявляется в интерфазных ядрах соматических клеток в виде тельца Барра размером около 1µm;

Тест Барра используется для определения количества хромосом Х в кариотипе в норме и в случае гносомных анеуплоидий;

Число хр.Х = числу телец Барра + 1 (активная хр.Х);

46,ХХ – 1 тельце Барра;

46,ХY – отсутствует тельце Барра;

47,ХХХ – 2 тельца Барра;

47,ХХY – 1 тельце Барра;

45,Х – отсутствует тельце Барра;

48,ХХХХ – 3 тельца Барра.

Половой хроматин Y:

Представлен 2/3 плеча Y q хромосомы Y, в форме конститутивного гетерохроматина, в соматических клетках 46,XY и сперматозоидах 23,Y;

Выявляется в интерфазных ядрах клеток в виде тельца F (флуоресцентного) размером около 1µm;

Тест F используется для идентификации хромосомы Y (пренатальное определение пола);

Число хр.Y = числу телец F;

46,ХХ – отсутствует тельце F;

46,ХY – 1 тельце F;

47,ХYY – 2 тельца F;

47,ХХY – 1 тельце F;

48,ХХYY – 2 тельца F;

46,X,i(Yp) – отсутствует тельце F;

46,X,i(Yq) – 1(0,5 µm) тельце F.