Фоторецепторы в глазу у человека – система, позволяющая воспринимать окружающий мир. Особенности и функции зрительного анализатора

Возникновение зрительных образов связано с действием света на свето- и цветовоспринимающие элементы сетчатки. Сетчатка имеет сложное строение и образует 10 слоев клеток. Собственно, воспринимающие свет элементы (палочки и колбочки) передают возбуждение на биполярные, а затем на ганглиозные клетки, отростки которых образуют зрительный нерв. Место выхода зрительного нерва из глазного яблока - диск зрительного нерва, называют слепым пятном. Оно не содержит фоторецепторов и поэтому нечувствительно к свету. Мы не ощу­щаем наличия «дыры» в сетчатке.

Слои сетчатки и их функции

Название слоя Содержание
1. Пигментный эпителий Клетки имеют форму шестигранных призм, расположенных в 1 ряд. Тела клеток заполнены зернами пигмента фусцина.
2. Наружные сегменты фоторецепторов – палочек и колбочек Составляют светочувсвительный слой. Палочки тонкие, цилиндической формы. Колбочки имеют форму конуса или бутылки, короче и тоще палочек. Располагаются палочки и колбочки в виде палисада, неравномерно. Количество палочек на периферии возрастает, а колбочек уменьшается.
3. Наружная пограничная мембрана Отростки мюллеровых волокон образуют 3 и 10 слои.
4. Наружный зернистый слой Представлен ядрами палочек и колбочек (внутренний сегмент), которые располагаются кнутри от наружной пограничной мембраны
5. Наружный сетчатый слой Контакты (синапсы), обеспечивающие связь фоторецепторов (1 нейрон) и биполярных клеток (2 нейрон). В передаче нервного импульса участвует медиатор - ацетилхолин, который накапливается в синапсах.
6. Внутренний зернистый слой Тела и ядра биполярных клеток, которые имеют 2 отростка: один из них направлен кнаружи, навстречу синаптическому аппарату фоторецепторов, другой – кнутри для образования синапса с ганглиозными клетками. Биполяры входят в контакт с несколькими палочками, в то время как каждая колбочка контактирует с одним биполяром
7. Внутренний сетчатый слой Синапсы биполярных и ганглиозных клеток (3 нейрон)
8. Слой ганглиозных клеток Тела ганглиозных клеток, имеющих крупное ядро и сильно ветвящиеся дендриты.
9. Слой нервных волокон Аксоны ганглиозных клеток и центробежные волокна. Аксоны образуют слой нервных волокон и, собираясь в пучок, формируют зрительный нерв.
Внутренняя пограничная мембрана Отростки мюллеровых волокон образуют 3 и 10 слои

Пигментный слой сетчатки . Этот слой образован одним рядом эпителиальных клеток, содержащих большое количество различ­ных внутриклеточных органелл, включая меланосомы, придающие этому слою черный цвет. Этот пигмент, называемый также экра­нирующим пигментом, поглощает доходящий до него свет, пре­пятствуя тем самым его отражению и рассеиванию, что способ­ствует четкости зрительного восприятия. Клетки пигментного эпи­телия имеют многочисленные отростки, которые плотно окружают светочувствительные наружные сегменты палочек и колбочек, Пигментный эпителий участвует в ресинтезе (регенерации) зрительного пигмента после его обесцвечивания, в фагоцитозе и переваривании обломков наружных сегментов палочек и колбочек, иными словами, в меха­низме постоянного обновления наружных сегментов зрительных клеток, в защите зрительных клеток от опасности светового по­вреждения, а также в переносе к фоторецепторам кислорода и других необходимых им веществ. Следует отметить, что контакт между клетками пигментного эпителия и фоторецепторами доста­точно слабый. Именно в этом месте происходит отслойка сет­чатки. Отслойка сетчатки приводит к нарушению зрения не только вследствие ее смещения с места оптического фокусирования изображения, но и вследствие дегене­рации рецепторов из-за нарушения контакта с пигментным эпите­лием, что приводит к серьезнейшему нарушению метаболизма самих рецепторов. Метаболические нарушения усугубляются тем, что нарушается доставка питательных веществ из капилляров (аваскуляция).



Фоторецепторы .

К пигментному слою изнутри примы­кает слой фоторецепторов: палочек и колбочек. В сетчатке каж­дого глаза человека находится 6-7 млн. колбочек и 110-123 млн. палочек. Они распределены в сетчатке неравномерно. Центральная ямка сетчатки содержит только колбочки (до 140 тыс. на 1 мм 2). По направлению к периферии сетчатки их число уменьшается, а число палочек возрастает, так что на даль­ней периферии имеются только палочки. Колбочки функциони­руют в условиях больших освещенностей, они обеспечивают днев­ное и цветовое зрение; намного более светочувствительные па­лочки ответственны за сумеречное зрение.

Цвет воспринимается лучше всего при действии света на цент­ральную ямку сетчатки, где расположены почти исключительно колбочки. Здесь же и наибольшая острота зрения. По мере удале­ния от центра сетчатки восприятие цвета становятся все хуже. Периферия сетчатки, где находятся исключительно палочки, не воспринимает цвета. Зато световая чувствительность колбочкового аппарата сетчатки во много раз меньше, чем палочкового, поэтому в сумерках из-за резкого пони­жения «колбочкового» зрения и преобладания «периферического» зрения мы не различаем цвет («ночью все кошки серы»).

Нарушение функции палочек, возникающее при недостатке в пище витамина А, вызывает расстройство сумеречного зрения - так называемую куриную слепоту: человек совершенно слепнет в сумерках, но днем зрение остается нормальным. Наоборот, при поражении колбочек возникает светобоязнь: человек видит при слабом свете, но слепнет при ярком освещении. В этом случае может развиться и полная цветовая слепота - ахромазия.

26. СТРОЕНИЕ ФОТОРЕЦЕПТОРОВ

Рис. 12.
Рис. 13.
Рис. 12. Палочковидная зрительная клетка (Ι) и колбочковидная зрительная клетка (ΙΙ) - фоторецепторные клетки. Схема ультрамикро­скопического строения: 1-наружный сегмент палочки, 2-внутренний сегмент палочки, 3- связующий отдел между на­ружным и внутренним сегментами палочки, 4-диски, 5-клеточная оболочка, 6-двойные мик­рофибриллы, 7-пузырьки эндоплазматической сети, 8-митохондрии, 9-ядро, 10-область си­напса с биполярным нейроцитом, 11-пальцевид­ные отростки внутреннего сегмента колбочковидной зрительной клетки, 12-лучевой глиоцит. Рис. 13. Схема строения палочки (А)и кол­бочки (Б)в сетчатке позвоночных. В увеличен­ном виде показана структура мембраны дисков в наружных сегментах палочек и мембранные складки наружных сегментов колбочек.

Строение фоторецепторной клетки (рис. 12). Фоторецепторная клетка - палочка или колбочка - состоит из чувствительного к действию света наружного сегмента, содержащего зрительный пигмент, внутреннего сегмента, соединительной ножки, ядерной части с крупным ядром и пресинаптического окончания. Палочка и кол­бочка сетчатки обращены своими светочувствительными наруж­ными сегментами к пигментному эпителию, т. е. в сторону, проти­воположную свету.

У человека наружный сегмент фоторецептора (палочка или колбочка) содержит около тысячи фоторецепторных дисков. Наружный сегмент палочки намного длиннее, чем колбоч­ки, и содержит больше зрительного пигмента. Это частично объяс­няет более высокую чувствительность палочки к свету: палочку может возбудить всего один квант света, а для активации кол­бочки требуется больше сотни квантов.

Фоторецепторный диск образован двумя мембранами, соеди­ненными по краям. Мембрана диска - это типичная биологиче­ская мембрана, образованная двойным слоем молекул фосфолипидов, между которыми находятся молекулы белка.

Внутренний сегмент фоторецептора соединен с наружным сег­ментом модифицированной ресничкой, которая содержит девять пар микротрубочек. Внутренний сегмент содержит крупное ядро и весь метаболический аппарат клетки, в том числе митохондрии, обеспечивающие энергетические потребности фоторецептора, и систему белкового синтеза, обеспечивающую обновление мембран наружного сегмента. Здесь происходят синтез и включение моле­кул зрительного пигмента в фоторецепторную мембрану диска. За час на границе внутреннего и наружного сегмента в среднем заново образуется три новых диска. Затем они медленно (у чело­века примерно в течение 2-3 нед.) перемещаются от основания наружного сегмента палочки к его верхушке. В конце концов вер­хушка наружного сегмента, содержащая до сотни теперь уже ста­рых дисков, обламывается и фагоцитируется клетками пигментно­го слоя. Это один из важнейших механизмов защиты фоторецепторных клеток от накапливающихся в течение их световой жизни молекулярных дефектов.

Наружные сегменты колбочек также постоянно обновляются, но с меньшей скоростью. Интересно, что существует суточный ритм обновления: верхушки наружных сегментов палочек в основ­ном обламываются и фагоцитируются в утреннее и дневное время, а колбочек - в вечернее и ночное.

Пресинаптическое окончание рецептора содержит синаптическую ленту, вокруг которой много синаптических пузырьков, со­держащих глутамат.

Фоторецептор сочетает в своей структурно-функциональной организации два различных комплекса. Наружная часть фоторецепторной клетки, обращенная к пигментному эпителию, включает липопротеиновые структуры, содержащие зрительный пигмент - родопсин, поглощающий кванты света. Увеличение площади рецепторной мембраны в дисках наружного сегмента, где содержатся рецептивные белки, способствует увеличению чувствительности к свету. Противоположный полюс клетки оканчивается сложным синаптическим устройством, соответствующим сходным синапсам в нейронах, и передает информацию о восприятии зрительных сигналов следующим в цепи нервным клеткам. О структуре и функции фоторецепторов, специально в данной работе не изучавшихся, см. след. обзоры: Kolmer , Polyak , Walls , Pedler , Островский , Cohen, . Бабурина , Бабурина и Белтадзе , Stell , Винников , Rodieck , Лычаков , Подугольникова и Максимов , Говардовский , Бызов , Зак , Бочкин и Островский .

В рецептирующей клетке происходит преобразование световых, стимулов в рецепторный потенциал.

Под влиянием последнего изменяется выделение медиатора, который действует на нервное окончание сенсорного нейрона второго порядка и вызывает появление в нем постсинаптического потенциала.

Фоторецепторы изучаются более ста лет. Однако серьезные успехи в понимании структуры и функции палочек и колбочек связаны с несколькими последними десятилетиями, с появлением электронной микроскопии. Лишь на ультраструктурном уровне выяснилось, что мембранные диски палочек расположены стопками, отделенными от наружной плазматической мембраны, в колбочках же наружная плазматическая мембрана образует складки, соединяясь с каждым диском с одной стороны (рис. 2, а).

Стопки дисков постоянно обновляются, верхние стоики периодически перемещаются кнаружи, где фагоцитируются пигментным эпителием . Процесс отторжения дисков связан с суточным ритмом освещенности и у колбочек сетчатки некоторых рыб, рептилий, птиц происходит сразу после наступления темноты. У палочек многих позвоночных мембраны отторгаются в начале светового периода [Бабурина, Белтадзе, 1983].

Соединительная ножка , содержащая 9 пар фибрилл, связывает наружный и внутренний сегменты фоторецептора. В наружной части внутреннего сегмента тесно расположенное скопление митохондрий образует эллипсоид (рис. 2, а). Масляная капля, наблюдающаяся в колбочках некоторых позвоночных, видна среди митохондрий. Другими органоидами внутреннего сегмента являются параболоид (гранулы гликогена) и миоид.

Синаптические окончания палочек и колбочек образуют специализированные соединения с терминалями дендритов биполярных клеток, терминалями дендритов и аксонов горизонтальных клеток (рис. 2, б; 3).

Эти синапсы различаются по расположению и конструкции и могут быть инвагинирующими, полуинвагинирующими и поверхностными. Инвагинирующие синапсы формируются диадами и триадами, в которых центральный отросток обычно дендрит биполяра находится непосредственно под синаптической лентой, окруженной синаптическими пузырьками, а по бокам расположены терминали дендритов горизонтальных клеток (см. рис. 2, б; 3). В синаптическом окончании палочки наблюдаются лишь немногочисленные терминали дендритов нейронов второго порядка. Синаптические окончания колбочек, как правило, значительно сложнее, крупнее и включают множество триад, группирующихся вокруг синаптических лент. Детали синаптических соединений биполяров и горизонтальных клеток с терминалями фоторецепторов существенно отличаются у различных позвоночных.

Фоторецепторы связаны между собой, электронно-микроскопическими исследованиями между ними выявлены щелевые контакты. Они обнаружены между красными палочками у жабы , в сетчатке аксолотля и млекопитающих . Морфология щелевых контактов между фоторецепторами существенно отличается у различных видов позвоночных [Давыдова, 1983] по уровню расположения контактов, по видам рецепторов, между которыми имеются связи, по их протяженности и т. п. Установлено, что связанные между собой контактами фоторецепторы одинакового типа, например колбочки с одинаковой спектральной чувствительностью или палочки, обнаруживают и электрическую связь [Бызов, 1984]. Хотя, как правило, контакты наблюдаются между рецепторами одинакового типа, обнаружены связи и между рецепторами различных типов. Например, в сетчатке лягушки (Rana pipiens) на сериальных срезах у красной палочки найдено три контакта - с другой красной палочкой, с одиночной колбочкой и с основным членом двойной колбочки. Одиночная колбочка контактирует с тремя красными палочками . Щелевые контакты обнаружены между рецепторами разных типов и в сетчатке млекопитающего- кошки; например, тонкий длинный отросток колбочковой синаптической ножки образует связь со сферулой палочки . Авторы этой находки считают, что взаимодействие палочковой к колбочковой систем в некоторых преимущественно палочковых сетчатках у млекопитающих происходит уже на начальном уровне обработки зрительных сигналов.


Световая микроскопия позволяет наблюдать даже на уровне фоторецепторов более сложное строение у низших позвоночных по сравнению с млекопитающими. У многих видов позвоночных наблюдаются не только одиночные колбочки, но и двойные (рис. 1, А, Б), отсутствующие у млекопитающих (рис. 1, В). У птиц и черепах, как упомянуто выше, обнаружено не менее шести различных типов колбочек. По мнению Л. В. Зуевой , система цветового зрения рептилий и птиц состоит из четырех или даже больше приемников и, возможно, превосходит по способностям трехкомпонентную систему цветового зрения человека.

Рецепторный отдел зрительного анализатора

Раньше (в течение 200-летней истории исследования глаза) считалось, что рецепторный отдел зрительного анализатора (зрительной сенсорной системы) состоит из фоторецепторов только двух типов, но теперь мы должны говорить о трёх типах фоторецепторов сетчатки : 1) палочках, 2) колбочках и 3) пигментсодержащих ганглиозных клетках.

Сенсорные рецепторы сетчатки

    Колбочки (их 6-7 млн): им нужна высокая освещенность, они имеют разную чувствительность к разному спектру (длине волны), обеспечивают цветовое зрение, содержат пигмент йодопсин .

    Палочки (их 110-120 млн): они работают при слабой освещенности, имеют очень высокую чувствительность, но не различают цвета и дают не резкое изображение, содержат пигмент родопсин («зрительный пурпур»).

Эти два типа фоторецепторов расположены в рецепторном слое сетчатки глаза перпендикулярно к направлению светового луча (столбиками). Причём они, можно сказать, неприлично развёрнуты к свету тылом.Но относительно недавно в сетчатке были обнаружены фоторецепторы третьего типа:

3. Меланопсинсодержащие ганглиозные клетки сетчатки (МГКС), или же intrinsically photosensitive retinal ganglion cells (ipRGCs) : их всего 2% среди ганглиозных клеток сетчатки, они реагируют на освещённость, но не дают зрительных образов, содержат пигмент меланопсин , который сильно отличается от родопсина палочек и йодопсина колбочек. Нервные пути от этих ганглиозных (ганглионарных) клеток ведут световое возбуждение от сетчатки к гипоталамусу тремя разными путями (смотри подробнее тут: Эпифиз).

В палочках и колбочках содержатся светочувствительные пигменты. Оба пигмента имеют в своей основе видоизмененный витамин А. Если не хватает витамина А, то страдает зрительное восприятие, т.к. не хватает «заготовок» для производства зрительного пигмента.

Палочки имеют максимум поглощения света в области 500 нм.

Колбочки же, в отличие от палочек, бывают трех типов:

    «Синие» (коротковолновые - S) - 430-470 нм. Их 2% от общего числа колбочек.

    «Зелёные» (средневолновые - M) – 500-530 нм. Их 32%.

    «Красные» (длинноволновые - L) – 620-760 нм. Их 64%.

В каждом виде фоторецепторов используется свой тип зрительного пигмента. Интересно, что в 2000-е годы была обнаружена огромная вариабельность в соотношении красных и зелёных колбочек у разных людей. Стандартное соотношение, приведённое выше, составляет 1:2, но оно может достигать и 1:40, если сравнивать между собой разных людей. И тем не менее мозг компенсирует эти различия, и люди с разным соотношением красных и зелёных колбочек могут одинаково называть цвет с одной длиной волны.

Фотохимические процессы в глазу идут экономно: даже на ярком свету распадается только малая часть пигмента. В палочках это всего 0,006%. В темноте пигменты восстанавливаются.

Родопсин – пигмент палочек.

Йодопсин – пигмент красных колбочек. Йодопсин восстанавливается быстрее родопсина в 530 раз, поэтому при недостатке витамина А, в первую очередь страдает зрение палочек, или сумеречное зрение.

Слой фоторецепторов лежит на слое пигментных клеток, которые содержат пигмент фуксин. Он поглощает свет и обеспечивает чёткость зрительного восприятия.

Отличительная черта фоторецепторов – это не деполяризация, а гиперполяризация в ответ на раздражение.

Можно сказать, что действие света как бы «повреждает» фоторецептор, разрушает его белок, и он перестает нормально работать, впадает в заторможенное состояние. Образно говоря, от воздействия света палочки и колбочки "падают в обморок"!

Фотохимическая «хрупкость» фоторецепторных клеток сетчатки и клеток пигментного эпителия к фотоповреждению связана со следующими факторами:
1) присутствием в них эффективно поглощающих свет фотосенсибилизаторов,
2) достаточно высоким парциальным давлением кислорода,
3) наличием легко окисляющихся субстратов, в первую очередь полиненасыщенных жирных кислот в составе фосфолипидов.
Именно поэтому в ходе эволюции органов зрения позвоночных и беспозвоночных сформировалась достаточно надежная система защиты от опасности фотоповреждения (Островский, Федорович, 1987). Эта система включает постоянное обновление светочувствительных наружных сегментов зрительных клеток, набор антиоксидантов и оптические среды глаза как светофильтры, где ключевую роль играет хрусталик.

Можно к этому добавить, что фоторецепторные клетки как бы "прячутся" от света, располагаясь как можно дальше от зрачка на периферии глазного яблока и сетчатки, да к тому же разворачиваются к свету не фоточувствительной, а, наоборот, своей тыльной стороной.

Видео: Световые иллюзии