Система подавления боли локальный контроль боли. Антиноцицептивная система человека для снижения болевых ощущений

В практике врача встречаются случаи, когда люди страдают врожденным отсутствием чув­ства боли (врожденная аналгия) при полном сохранении проводящих ноцицептивных путей. Кроме того, имеют место клинические наблюдения спонтанных болевых ощущений у людей при отсутствии внешних повреждений или заболеваний. Объяснение этих и подобных факторов стало возможным с появлением в 70-х годах XX в. представления о существовании в организме не только ноци-цептивной, но и антиноцицептивной, антиболевой, или обезболивающей, эндогенной системы. Существование антиноцицептив­ной системы было подтверждено экспериментами, когда электростимуляция некоторых точек ЦНС приводила к отсутствию специфических реакций на болевые раздражения. При этом животные оставались в бодрствующем состоянии и адекватно реагировали на сенсорные стимулы. Следовательно, можно было заключить, что электростимуляция в таких экспериментах приводила к формированию состояния аналгезии, подобно врожденной аналгии у людей.

Структурно - функциональная характеристика. Антиноцицептивная система выполняет функцию «ограничителя» болевого возбуждения. Эта функция заключается в контроле за активностью ноцицептивных систем и предотвращении их перевозбуждения. Проявляется ограничительная функция в увеличении тормозного влияния антиноцицептивной системы в ответ на нарастающий по силе ноцицептивный стимул. Однако это ограничение имеет предел и при сверхсильных болевых воздействиях на организм, когда антиноцицептивная система не в состоянии выполнить функцию ограничителя, может развиваться болевой шок . Кроме того, при снижении тормозных влияний антиноцицептивной системы перевозбуждение ноцицептивной системы может приводить к возникнове­нию спонтанных психогенных болей, часто проецирующихся в нормально функционирующие органы (сердце, зубы и др.). Следует учесть, что активность антиноцицептивной системы имеет генетическую обусловленность.

Антиноцицептивная система представляет собой совокупность структур, расположенных на разных уровнях ЦНС, имеющих соб­ственные нейрохимические механизмы.



Первый уровень представлен комплексом структур среднего, продолговатого и спинного мозга, к которым относятся серое околоводопроводное вещество, ядра шва и ретикулярной формации, а также желатинозная субстанция спинного мозга. Возбуждение этих структур по нисходящим путям оказывает тормозное влияние на «ворота боли» спинного мозга, угнетая тем самым восходящий ноцицептивный поток. Структуры, реализующие данное торможение, в настоящее время объединяют в морфофункциональную «систему нисходящего тормозного контро­ля», медиаторами которой являются серотонин, а также опиоиды.

Второй уровень представлен в основном гипоталамусом , который: 1) оказывает нис­ходящее тормозное влияние на ноцицептивные нейроны спинного мозга; 2) активирует «систему нисходящего тормозного контроля», т.е. первый уровень антиноцицептивной системы; 3) тормозит таламические ноцицептивные нейроны. Гипоталамус опосредует свое действие через адренергический и опиоидный нейрохимические механизмы.

Третьим уровнем является кора большого мозга, а именно II соматосенсорная зона. Этому уровню отводится ведущая роль в фор­мировании активности других структур антиноцицептивной системы и адекватных реакций на повреждающие факторы.

Психогенная регуляция болевого ощущения. Это корковая регуляция и эмоциональные состояния переживаемые человеком, в результате которых изменяются пороги болевой чувствительности. Известны случаи снижения болевой чувствительности. Когда человек заранее предупрежденный о воздействии болевого раздражителя, как бы настраивается на возникновение боли и легче ее переносят.

Механизм - кортикофугальных влияний (и прежде всего поля соматосенсорной области активируют эндогенные - опиоидные и серотонинергические механизмы антиноцицептивной системы мозга. Эмоциональное переживания как положительные, так и отрицательные характера изменяют у людей болевую чувствительность. Имеется эндогенный самостоятельный адренергический механизм антиноцицепции связанный с активацией отрицательных эмоциогенных зон мозга. Приспособительное значение - он позволяет организму в стрессовых ситуациях пренебрегать воздействием ноцицептивных раздражителей, т.к. все силы отдает на борьбу за сохранение жизни (при эмоциях страха спасается бегством, при эмоциях гнева - агрессией).

Механизмы деятельности антиноцицеп­тивной системы.

1973 г. Тель-Аррениус -выделил из ткани мозга вещества, которые обладали очень сильным обезболивающим эффектом-морфин (антогонист-налоксон).

При изучении нейрохимических механизмов действия эндогенной антиноцицептивной системы были описаны так называемые опиатные рецепторы, посредством которых организм воспринимает мор­фин и другие опиоиды. Они были обнаружены во многих тканях организма, но главным образом - на разных уровнях переключения афферентной импульсации по всей ЦНС. Они могут связывать опий и морфин экзогеннного происхождения и блокируют проведение ноцицетивной импульсации.

Эндогенные механизмы регуляции болевого ощущения .

Их несколько:

Механизм обезбаливающего эффекта

Опиоидная с-ма действует как нейромедиаторы, возникает ТПСП на ноцицепторах . Вызывает выработку ГАМК- ТПСП торможение., т.е. является нейромодулятором.

Эндерфины(d b y) и энкефалины(метионин и лейцин-энкефалин ). Эндогенные опиоиды на уровне переферических ноцицептеров. угнетают действие веществ, вызывающих боль. Они также способны уменьшить активность С-волокон, угнетать спонтанную и вызванную активность нейронов на ноцицептивную импульсацию, формируя у людей состояние анальгезии. Одновременно эндорфины активизируют антиноцицептивную систему. НАЛОКСОН- блокирует действие опиатной системы.

В настоящее время известно четыре типа опиатных рецепторов : мю-, дельта-, каппа- и сигма. В организме вырабатываются собственные эндогенные опиоидные вещества в виде олигопептидов, получивших название эндорфинов (эндоморфинов), энкефалинов и динорфинов . Эти вещества связываются с опиатными рецепторами и приводят к возникнове­нию пре- и постсинаптического торможения в ноцицептивной системе , следствием чего являются состояния аналгезии или гипалгезии. Такая гетерогенность опиатных рецепто­ров и соответственно избирательная к ним чувствительность (аффинитет) опиоидных пептидов отражает различные механизмы болей разного происхождения.

Кроме пептидов эндогенной антиноцицептивной природы, установлены и непептидные вещества , участ­вующие в купировании определенных видов боли, например серотонин, катехоламины . Возможно, что существуют и другие нейро­химические вещества антиноцицептивной эндогенной системы организма, которые предстоит открыть.

II. Нейротензины. Помимо механизмов антиноцицепции связанных с опиоидами, известен механизм имеющий отношение к функциям других пептидов - нейротензина, окситоцина, ангиотензина. Установлено н-р, что интерцистернальное введение нейротензина вызывает снижение болевой чувствительности в 100-1000 раз сильнее, чем у энкефалинов.

III. Серотонинергическая регуляция болевого ощущения. Электростимуляция нейронов шва, большинство которых является серотонинергическими, вызывает состояние аналгезии. При стимуляции ядер происходит выделение серотонина в терминалях волокон, направляющихся к нейронам заднего рога спинного мозга. Аналгезия, вызванная активацией серотонина, не блокируется антагонистом опиатных рецепторов - налоксоном. Это позволяет сделать заключение о самостоятельном, отличном от опиоидного, серотонинергическом механизме болевой чувствительности, связанном с функциями ядер шва ствола мозга.

IY. Норадренергическая система (главная роль принадлежит Голубому пятну) Включается при отрицательных стенических реакциях (ярость, гнев- при драке)

Y. ГАМК-ергическая - может работать самостоятельно и в синергизме с опиоидной системой (является нейромодулятором- т.к. ГАМК вызывает ТПСП).

Т.о. в механизме регуляции болевой чувствительности участвуют и неопиоидные пептиды - нейротензин, ангиотензин II, кальцитонин, бомбезин, холецистокинин, которые также оказывают тормозной эффект на проведение ноцицептивной импульсации. Эти вещества образуются в различных областях ЦНС и имеют соответствующие рецепторы на «станциях переключения» ноцицептивной импульсации. Их аналгетический эффект зависит от генеза болевого раздражения. Так, нейротензин блокирует висцеральную боль , а холецистокинин оказывает сильное анальгетическое действие при боли, вызванной тер­мическим раздражителем .

В деятельности антиноцицептивной системы различают несколько механизмов, отличающихся друг от друга по длительности действия и по нейрохимической природе ме­диаторов.

Срочный механизм активируется непосредственно действием болевых стимулов и реализуется с участием структур нисходящего тормозного контроля. Этот механизм осуществляется через активацию серотонин – и опиоидергических нейронов , входящих в состав серого околоводопроводного вещества и ядер шва, а также адренергических нейронов ретикулярной формации. Благодаря срочному механизму обеспечивается функция ограничения афферентного ноцицептивного потока на уровне нейронов задних рогов спинного мозга и каудальных отделов ядер тригеминального комплекса. За счет срочного механизма реализуется конкурентная аналгезия, т.е. подавление болевой реакции на стимул в том случае, когда одновременно действует другой, более сильный стимул на другую рецептивную зону.

Короткодействующий механизм активиру­ется при кратковременном действии на организм ноцицептивных факторов. Центр этого механизма локализуется в гипоталамусе, пре­имущественно в вентромедиальном ядре . По нейрохимической природе этот механизм адренергический . Он вовлекает в активный процесс систему нисходящего тормозного контроля (I уровень антиноцицептивной системы) с его серотонин - и опиоидергическими нейронами. Данный механизм выполняет функцию ограничения восходящего ноци­цептивного потока, как на уровне спинного мозга, так и на супраспинальном уровне. Этот механизм включается также при сочетании действия ноцицептивного и стрессогенного факторов и так же, как срочный меха­низм, не имеет периода последействия.

Длительно действующий механизм активируется при длительном действии на организм ноцигенных факторов. Центром его являются латеральное и супраоптическое ядра гипоталамуса. По нейрохимической природе этот механизм опиоидный. При этом вовлекаются системы нисходящего тормозного контроля, поскольку между этими структурами и гипо­таламусом имеются хорошо выраженные двусторонние связи. Длительно действующий механизм имеет хорошо выраженный эффект последействия. Функции этого механизма заключаются в ограничении восходящего ноцицептивного потока на всех уровнях ноци-цептивной системы и регуляции активности системы нисходящего тормозного контроля. Данный механизм обеспечивает также выде­ление ноцицептивной афферентации из общего потока афферентных возбуждений, их оценку и эмоциональную окраску.

Тонический механизм поддерживает постоянную активность антиноцицептивной системы. Центры расположены в орбитальной и фронтальной областях коры большого мозга, а также в гипоталамусе. Основными нейрохимическими механизмами являются опиоидные и пептидергические. Его функция заключается в постоянном тормозном влиянии на активность ноцицептивной системы на всех уровнях ЦНС даже в отсутствие ноци-цептивных воздействий.

Боль - это неприятное ощущение и эмоциональное переживание, возникающее в связи с настоящей или потенциальной угрозой повреждения тканей или описываемое в терминах такого повреждения (определение боли, данное Международной Ассоциацией по изучению боли).

В данном определении очень интересна та ее часть, которая содержит следующее: «…или потенциальной угрозой повреждения тканей…». Видимо авторы внесли это нагруженное большим смыслом словосочетание, имея большое количество примеров из клинической практики, когда пациенты не имея явного или скрытого повреждения тканей в настоящий момент или в прошлом - испытывают боль (которая чаще всего имеет дефиницию «психогенная боль»). Экстраполируя данное определение на практическую деятельность можно сделать следующие рекомендации – пациент может испытывать психогенную хроническую боль, если он находится в состоянии хронического ожидания возможной «катастрофы» в его телесной и/или социальной сферах. Иными словами, если пациент предвидит неизбежное повреждение его тканей или социума, которое в любом случае скажется на его телесном благополучии – он «заблаговременно» начинает испытывать боль. Вероятно в этой реализации имеет большое значение личность и психическая организация индивида, ибо только обладая определенными специфическими чертами психической организаии, возможно реализовать болевой феномен, причина которого еще находится в сфере воображаемого.

Рассмотрим в общих чертах нейрофизиологию и нейроанатомию ноцицептивной и антиноцицептивной систем.

Болевые рецепторы

Болевые раздражения могут возникать в коже, глубоких тканях и внутренних органах. Эти раздражения воспринимаются ноцицепторами, расположенными по всему телу, за исключением головного мозга.

Анатомически выделяют два типа ноцицепторов:
1.Свободные нервные окончания , разветвлённые в виде дерева (миелиновые волокна). Они представляют собой быстрые А-дельта волокна, проводящие раздражение со скоростью 6 - 30 м\с. Эти волокна возбуждаются высокоинтенсивными механическими (булавочный укол) и, иногда, термическими раздражениями кожи. А - дельта ноцицепторы располагаются, преимущественно, в коже, включая оба конца пищеварительного тракта. Находятся они также и в суставах.
2.Плотные некапсулированные гломерулярные тельца (немиелиновые С-волокна, проводящие раздражение со скоростью 0,5 - 2 м\с). Эти афферентные волокна представлены полимодальными ноцицепторами, поэтому реагируют как на механические,так на температурные и химические раздражения. Они активируются химическими веществами, возникающими при повреждении тканей, являясь одновременно и хеморецепторами, и считаются со своей эволюционной примитивностью оптимальными тканеповреждающими рецепторами. С - волокна распределяются по всем тканям за исключением центральной нервной системы. Однако они присутствуют в периферических нервах, как nervi nervorum. Волокна, имеющие рецепторы, воспринимающие повреждения тканей, содержат субстанцию Р, выступающую в качестве трансмиттера. Такой тип ноцицепторов также содержит calcitonin ген - связанный пептид, а волокна из внутренних органов - вазоактивный интестинальный пептид.

Задние рога спинного мозга

Большинство «болевых волокон» достигают спинного мозга через спинномозговые нервы (в случае, если они отходят от шеи, туловища и конечностей) или входят в продолговатый мозг в составе тройничного нерва.
Проксимально от спиномозгового ганглия перед вхождением в спинной мозг задний корешок разделяется на медиальную, содержащую толстые миелиновые волокна, и латеральную части, в состав которой входят тонкие миелиновые (А-дельта) и немиелиновые (С) волокна. Примерно 30% С-волокон после выхода из спинномозгового ганглия возвращаются обратно к месту совместного хода чувствительных и двигательных корешков (канатик) и входят в спинной мозг через передние корешки. Этот феномен, вероятно, объясняет причину неэффективности попыток дорзальной ризотомии, предпринимаемой для облегчения боли. При вхождении ноцицептивных волокон в спинной мозг, они разделяются на восходящие и нисходящие ветви. Перед своим окончанием в сером веществе задних рогов эти волокна могут направляться к нескольким сегментам спинного мозга. Разветвляясь, они формируют связи с другими многочисленными нервными клетками. Таким образом, термин «заднероговой комплекс» используется для обозначения данной нейроанатомической структуры.

Ноцицептивной информацией прямо или косвенно активируются два основных класса релейных заднероговых клеток:
"ноцицептивные специфические» нейроны, активируемые только ноцицептивными стимулами
«конвергентные» (wide dynamic range) нейроны, активируемые также и не ноцицептивными стимулами

На уровне задних рогов спинного мозга большое число первичных афферентных раздражений передаются через интернейроны или ассоциативные нейроны, чьи синапсы облегчают, либо препятствуют передаче импульсов. Периферический и центральный контроль локализуется в желатинозной субстанции, примыкающей к клеточному слою.

Восходящие пути боли

Восходящие «болевые пути» находятся в составе переднебоковых канатиков белого вещества спинного мозга и идут контрлатерально стороне вхождения болевых стимулов. Часть волокон спиноталамического и спиноретикулярного трактов, проводящих болевое раздражение, присутствует в заднебоковом канатике.

Спиноталамический тракт может быть, разделён на две части:
Неоспиноталамический тракт - быстрое проведение, моносинаптическая передача, хорошо локализованная (эпикритическая) боль, А - волокна. Этот тракт направляется к специфическим латеральным ядрам таламуса (вентрозаднелатеральное и вентрозаднемедиальное ядра).
Палеоспиноталамическая система - полисинаптическая передача, медленное проведение, плохо локализованная (протопатическая) боль, С - волокна. Данные пути восходят к неспецифическим медиальным таламическим ядрам (медиальное ядро, интраламинарное ядро, срединный центр). На своём пути к медиальным ядрам таламуса тракт направляет часть волокон к ретикулярной формации.

Существует баланс между медиальным (в основном nucl.centralis lateralis) и латеральным (nucl. ventroposterior) ядрами таламуса, нарушение которого ведёт к сверхторможению их обоих ретикулярным таламическим ядром, а затем к парадоксальной активации корковых полей, связанных с болевым ощущением.

Импульсы входящие через неоспиноталамическую систему
переключаются на волокна, передающие сигналы через заднее бедро внутренней капсулы
проецируются на первой соматосенсорной зоне коры, постцентральной извилине и второй соматосенсорной зоне (operculum parietal)

Высокая степень топической организации внутри латерального ядра таламуса делает возможным пространственную локализацию боли. Изучения тысяч корковых поражений в обеих мировых войнах демонстрируют, что повреждения постцентральной извилины никогда не вызывает потери болевой чувствительности, хотя ведут к потере соматотопически организованной низкопороговой механорецептивной чувствительности, также как и ощущения укола иглой.

Импульсы, входящие через палеоспиноталамический тракт
переключаются на медиальное ядро таламуса
проецируются на неокортекс диффузным способом

Проекция в лобной области отражает аффективные компоненты боли. Повреждающие стимулы активируют нейроны цингулярной извилины и орбитальной фронтальной коры.
Таким образом, в головном мозге нет «болевого центра», а восприятие и реакция на боль являются функцией ЦНС в целом.

Модуляция и нисходящий контроль боли

Воротный контроль - внутренний спинальный механизм антиноцицептивной системы.
Импульсы, проходящие по тонким «болевым» периферическим волокнам открывают «ворота» в нервную систему, чтобы достичь её центральных отделов.

Два обстоятельства могут закрыть ворота:
1.импульсы , проходящие по толстым «тактильным» волокнам
2.импульсы , нисходящие из высших отделов нервной системы

Механизм действия толстых периферических волокон, закрывающих ворота , заключается в том, что боль, возникающая в глубоких тканях, таких как мышцы и суставы, уменьшается контрраздражением, - механическим растиранием поверхности кожи или использованием раздражающих мазей. Эти свойства имеют терапевтическое применение, например использование высокочастотного, низко интенсивного электрического раздражения толстых кожных волокон, известного, как чрезкожная электронейростимуляция (ЧЭНС), или вибрационной стимуляции.

Второй механизм (закрытие ворот изнутри) вступает в действие в случае активации нисходящих тормозных волокон из ствола мозга, либо их прямой стимуляцией, либо гетеросегментарной акупунктурой (низкочастотная высокоинтенсивная периферическая стимуляция). В этом случае нисходящие волокна активируют интернейроны, расположенные в поверхностных слоях задних рогов, постсинаптически ингибирующих желатинозные клетки, предотвращая тем самым передачу информации выше.

Опиоидные рецепторы и механизмы

Клиническое значение имеют три класса опиоидных рецепторов: мю-, каппа- и дельта- рецепторы. Их распределение внутри ЦНС очень вариабильно. Плотное размещение рецепторов обнаружено в задних рогах спинного мозга, в среднем мозге и таламусе. Иммуноцитохимические исследования показали наибольшую концентрацию спинальных опиоидных рецепторов в поверхностных слоях задних рогов спинного мозга. Эндогенные опиоидные пептиды (энкефалин, эндорфин, динорфин) взаимодействуют с опиоидными рецепторами всякий раз, когда в результате преодоления болевого порога возникают болевые раздражения. Факт расположения множества опиоидных рецепторов в поверхностных слоях спинного мозга означает, что опиаты могут легко проникать в него из окружающей спинномозговой жидкости.

Вся система нисходящего контроля боли представляется следующим образом.

Аксоны группы клеток, использующих В-эндорфин в качестве трансмиттера, расположенные в области nucl.arcuatus гипоталамуса (который сам находится под контролем префронтальной и островковой зон коры головного мозга) пересекают перивентрикулярное серое вещество в стенке третьего желудочка, оканчиваясь в периакведуктальном сером веществе (PAG). Здесь они ингибируют местные интернейроны, освобождая, таким образом, от их тормозного влияния клетки, чьи аксоны проходят вниз к области nucleus raphe magnum в середине ретикулярной формации продолговатого мозга. Аксоны нейронов этого ядра, преимущественно серотонинергических (трансмиттер - 5 - гидрокситриптамин), направляются вниз по дорсолатеральному канатику спинного мозга, заканчиваясь в поверхностных слоях заднего рога. Некоторая часть raphe - спинальных аксонов и значительное число аксонов из ретикулярной формации являются норадренергическими. Таким образом, как серотонинергические, так и норадренергические нейроны ствола мозга выступают как структуры, блокирующие ноцицептивную информацию в спинном мозге.

Теперь перейдем к феноменологии боли.

Выделяют следующие виды боли.

Два вида болевой чувствительности с эволюционной точки зрения:
Протопатическая - возникает под действием любого неповреждающего фактора (прикосновение, температура). Это сильная боль тянущего характера, не имеет точной локализации не вызывает адаптации (т. е. к ней нельзя привыкнуть). Это наиболее примитивный вид болевой чувствительности.
Эпикритическая болевая чувствительность - возникает только под действием повреждающего фактора: носят острый режущий характер, обладают точной локализацией, но к ней можно приспособиться (явление адаптации). Это более новый путь болевой чувствительности.

По причине возникновения болевых ощущений:
физиологическая - возникает как адекватная ответная реакция на действия повреждающего фактора
патологическая - возникает при поражении нервной системы или на действие неповреждающего фактора (каузалгия)

По времени возникновения и продолжительности болевых ощущений:
острая - кратковременная, в виде приступов
хроническая - более длительная

По локализации болевых ощущений:
местная - в месте действия повреждающего фактора
проэкционная - возникает в зоне иннервации повреждённого волокна
иррадиирующая – возникает при распространение болевого сигнала с одной ветви данного нерва на другую
отраженная – формируется с участием сегментарных структур спинного мозга

По месту возникновения болевого ощущуения (если это нейропатическая боль):
центральная (если очаг болевой ирритации находится в пределах спинного или головного мозга)
периферическая (если источник возникновения боли находится в пределах периферического отдела нервной системы)

По виду раздражаемых рецепторов:
интероцентивная
экстроцентивная
проприоцентивная

Выделяют боль соматическую и висцеральную.
Соматическая боль подразделяется на:
поверхностную - возникает при поражении кожи и слизистых оболочек, подкожной жировой клетчатки - от экстерорецепторов - характеризуется свойствами эпикритической болевой чувствительности
глубокую - возникает при поражении мышц, суставов, суставных сумок, других глубоко расположенных образований - от проприорецепторов - характеризуется всеми свойствами протопатической болевой чувствительности
Висцеральная боль возникает при поражении внутренних органов - от интерорецепторов. При максимальном растяжении полых органов, действии химических веществ, нарушения гемодинамики. Характеризуется свойствами протопатической болевой чувствительности.

По морфологическму субстрату боли:
Тканевая боль:
Кожная
Фасциальная
Фасциально-капсулярная
Мышечная
Миофасциальная
Лигаментная
Надкостничная (периостальная)
Висцеральная
Гематогенная (химическая)

Суставная (артрогенная) боль:
Синовиальная (воспалительная либо склеротическая)

Внутрикостная (интраоссальная) боль:
Трабекулярная
Костномозговая (остеомедуллярная)

Сосудистая ("ишемическая") боль:
Черепно-лицевая
Церебральная
Органная (сердца и других органов)
Сегментарная (при нарушении кровообращения в конечностях)

Ангионевротическая – ангиосклеротическая боль

Нейрогенная боль:
Невральная
Плекситная
Ганглионарная
Ганглионарно-невральная
Ганглионарно-радикулярная
Радикулярная
Спинальная
Интракраниальная

Наиболее полезной может быть следующая классификация боли (так как является отправной точкой для первоначальной терапии):
Ноцицептивная
Нейропатическая
Психогенная

Ноцицептивная боль

Когда при раздражении кожных ноцицепторов, ноцицепторов глубоких тканей или внутренних органов тела, возникающие импульсы, следуя по классическим анатомическим путям, достигают высших отделов нервной системы и отображаются сознанием, формируется ощущение боли. Боль от внутренних органов возникает вследствие быстрого сокращения, спазма или растяжения гладких мышц, поскольку сами гладкие мышцы нечувствительны к жару, холоду или рассечению. Боль от внутренних органов, особенно имеющих симпатическую иннервацию, может ощущаться в определённых зонах на поверхности тела. Такая боль называется отражённой.

Нейропатическая боль

Этот тип боли может быть, определён, как боль вследствие повреждения периферической или центральной нервной системы и не объясняется раздражением ноцицепторов.

Такая боль имеет ряд особенностей , отличающих её, как клинически, так и патофизиологически от ноцицептивной боли:
Нейрогенная боль имеет характер дизестезии. Хотя дескрипторы: тупая, пульсирующая или давящая являются наиболее частыми для подобной боли, патогномоничными характеристиками для неё считаются определения: обжигающая и стреляющая.
В огромном большинстве случаев нейрогенной боли отмечается частичная потеря чувствительности.
Характерны вегетативные расстройства, такие как снижение кровотока, гипергидроз и гипогидроз в болевой области. Боль часто усиливает или сама вызывает эмоционально-стрессовые нарушения.
Обычно отмечается аллодиния - болевое ощущение в ответ на низко интенсивные, в нормальных условиях не вызывающие боли раздражители.
Необъяснимой характерной чертой даже резкой нейрогенной боли является то, что она не мешает засыпанию пациента. Однако если даже больной засыпает, он внезапно просыпается от сильной боли.
Нейрогенная боль невосприимчива к морфину и другим опиатам в обычных анальгетических дозах. Это демонстрирует то, что механизм нейрогенной боли отличен от опиоид-чувствительной ноцигенной боли.

Нейрогенная боль имеет много клинических форм. К ним можно отнести некоторые поражения периферической нервной системы, такие как постгерпетическая невралгия, диабетическая невропатия, неполное повреждение периферического нерва, особенно срединного и локтевого (рефлекторная симпатическая дистрофия), отрыв ветвей плечевого сплетения. Нейрогенная боль вследствие поражения центральной нервной системы обычно бывает обусловлена цереброваскулярной катастрофой. Это то, что известно под классическим названием “таламического синдрома”, хотя недавние исследования показывают, что в большинстве случаев очаги поражения расположены в иных областях, чем таламус.

Многие боли клинически проявляются смешанными - ноцигенными и нейрогенными элементами. Например, опухоли вызывают повреждение тканей и компрессию нервов; при диабете ноцигенная боль возникает вследствие поражения периферических сосудов, нейрогенная - вследствие нейропатии; при грыжах межпозвонкового диска, компримирующих нервный корешок, болевой синдром включает жгучий и стреляющий нейрогенный элемент.

Невропатическая боль при поражении периферической нервной системы может быть подразделена на два типа:
дизестезическую
трункальную

Поверхностная дизестезическая или деафферентационная боль описывается пациентами, как жгучая, саднящая, вызывающая ощущение ожога, зуда, ползания мурашек, стянутости, прохождения электрического тока различной длительности (перемежающиеся, колющие, пронзающие или стреляющие).

Дизестезические боли обычно наблюдаются у пациентов с преимущественным вовлечением малых С–волокон (вызывающие поражение поверхностной болевой и температурной чувствительности и вегетативную дисфункцию).

Невропатическая дизестезическая боль представлена двумя основными компонентами:
спонтанной (стимулонезависимой) болью
вызванной (стимулозависимой) гипералгезией

В свою очередь, спонтанная боль подразделяется на:
симпатически независимую боль - как правило, стреляющая, дёргающая, подобная чувству прохождения электрического тока – возникает за счёт генерации эктопических разрядов С–афферентами при активации тетродотоксин–нечувствительных натриевых каналов
симпатически поддерживаемую боль - как правило носит стреляющий, ланцирующий характер, жгучая, сопровождающаяся трофическими изменениями, нарушением терморегуляции и потоотделения – возникает за счёт накопления a–адренорецепторов на мембранах С–афферентов и прорастания симпатических волокон в узел заднего корешка.

Глубокая трункальная боль характеризуется , как ноющая, временами режущая, ломящая. К этому же типу можно отнести и мышечную боль, проявляющуюся судорогами, тянуще–давящими ощущениями и болезненностью мышц при пальпации. Она обычно протекает длительно, может менять интенсивность.

Трункальная боль встречается при компрессии спинномозговых корешков, туннельных невропатиях и связана, по–видимому, с дисфункцией Аd–волокон.

Оба типа невропатической боли редко встречаются в чистом виде, при большинстве болевых форм периферических невропатий имеются признаки как дизестетической, так и трункальной боли.

Психогенная боль

Утверждение что боль может быть исключительно психогенного происхождения, является дискуссионным. Широко известно, что личность пациента формирует болевое ощущение. Оно усилено у истерических личностей, и более точно отражает реальность у пациентов неистероидного типа.Люди различных этнических групп отличаются по восприятию послеоперационной боли. Пациенты европейского происхождения отмечают менее интенсивную боль, чем американские негры или латиноамериканцы. У них также отмечается низкая интенсивность боли по сравнению с азиатами, хотя эти отличия не очень значительны.

Основными супрасегментарными системами эндогенного контроля боли являются опиатная, норадренергическая и серотонинерги- ческая системы (рис. 5).

Рисунок 5.

Церебральные системы контроля боли

Опиатные рецепторы обнаружены в терминалях тонких А-дельта и С-афферентов, в нейронах задних рогов спинного мозга, в ретикулярных ядрах ствола головного мозга, таламусе, лимбической системе. Идентифицированы нейропептиды (эндорфины, энкефалины), обладающие (морфиноподобным) специфическим действием на данные рецепторы. Считается, что эти эндогенные опиаты вызывают анальгетический эффект, освобождаясь из депозитов и присоединяясь к специфическим рецепторам нейронов, вовлеченных в передачу болевых импульсов. Их освобождение может быть стимулировано как периферическими ноцицептивными, так и нисходящими, контролирующими боль системами. Например, анальгезия, вызванная экспериментально при электрической стимуляции определенных стволовых ядер, вызывается благодаря освобождению и действию эндогенных опиоидов в задних рогах спинного мозга. Как указывалось выше, при активации тонких А-дельта и С-волокон субстанция P выделяется из их терминалей и участвует в трансмиссии болевых сигналов в заднем роге спинного мозга. При этом эндорфины и энкефалины ингибируют действие субстанции P, уменьшая болевые проявления.

Важнейшим медиатором стволовых AC является норадреналин, который опосредует ингибиторные эффекты нейронов LC, большого ядра шва, некоторых ретикулярных ядер. Ha этом основано применение в лечении боли антидепрессантов, способных наряду с ингибированием обратного захвата серс^гонина ингибировать также обратный захват норадреналина (венлафаксин, дулоксетин, милнаципран, aмитриптилин). Показано, что противоболевой эффект этих препаратов независим от их антидепрессивного эффекта.

Другой важнейшей системой контроля боли является серото- нинергическая система. Большое количество серотонинергиче- ских нейронов сосредоточено в OCB, большом, центральном и дорсальном ядрах шва. Снижение содержания серотонина приводит к ослаблению анальгетического эффекта, понижению болевых порогов. Полагают, что анальгетическое действие серотонина может опосредоваться эндогенными опиоидами, поскольку серотонин способствует высвобождению бета-эндорфинов из клеток передней доли гипофиза. Однако по сравнению с норадренергической роль серотонинергической системы в контроле боли является более слабой. Это, возможно, объясняет слабую эффективность в лечении хронической боли селективных ингибиторов обратного захвата серотонина.

Таким образом, супрасегментарные системы мозга являются ключевыми механизмами формирования боли и изменения реакций на нее. Очевидна их широкая представленность в головном мозге и включение в различные нейротрансмиттерные механизмы. Эти системы работают не изолированно. Взаимодействуя между собой и с другими системами, они регулируют не только болевую чувствительность, но и сопряженные с болью вегетативные, моторные, нейроэндокринные, эмоциональные и поведенческие проявления боли. Другими словами, имеется тесное их взаимодействие с интегративными неспецифическими церебральными системами, что в итоге определяет не только характеристики болевого ощущения, но и его многообразные психофизиологические и поведенческие корреляты.

ния репродуктивного потенциала (обзор литературы)// Сибирский медицинский журнал. - 2010. - Том 25, № 4, Выпуск 2. - С.9-14.

9. Баранов А.А., Шарков С.М., Яцык С.П. Репродуктивное здоровье детей Российской Федерации: проблемы и пути их решения // Рос. педиатр. журнал. - 2010. - №1. - С. 4-7.

10. Радзинский В.Е. Акушерская агрессия. - М.: Изд-во журнала Status Praesens, 2011.-С 34-37.

11. Зоркин С. Н., Катосова Л.К., Музыченко З.Н.. Лечение инфекции мочевыводящих путей у детей // Медицинский совет. - 2009 - №4- C.45-49.

12. Raz R. Urinary tract infections in children - present and future // Harefuah. - 2003 .- Vol. 142, № 4.- P.269 - 271.

13. Wald E.R. Urinary tract infections in infants and children: a comprehensive overview// Curr. Opin. Pediatr. - 2004. - Vol. 16, № 1.- P.85 - 88.

14. Чеботарева Ю.Ю. Клинические особенности синдрома формирующихся поликистозных яичников // Медицинский вестник Юга России. - 2011 - №2. - С. 109-113.

15. Чеботарева Ю.Ю. Механизмы формирования синдрома поликистозных яичников в периоде полового созревания, клиническое течение, профилактика и лечение //Международный эндокринологический журнал. - 2011. - №6 (38). -С.105-115

16. Маковецкая Г.А. К вопросу о хронических болезнях почек у детей // Педиатрия. - 2008. - №3. - С. 134-136.

17. Лощенко М.А., Учакина Р.В., Козлов В.К. Структура соматической патологии подростков с хроническими заболеваниями почек // Якутский медицинский журнал. - 2012. -№ 4 (40). - С. 7-9.

18. Кривоносова Е.П., Летифов Г.М. Характер адаптационных реакций организма и физико-химические свойства мочи при пиелонефрите у детей// Педиатрия. - 2010. - Т.89, №6. -С.159-160.

19. Хорунжий Г.В., Летифов Г.М., Кривоносова Е.П. Роль процессов свободно-радикального окисления и антиоксидант-ной защиты в оценке адаптационных реакций организма при пиелонефрите у детей// Электронный журнал «Современные проблемы науки и образования». - 2012. - №4. URL: http: //www.science-education.ru (Дата обращения: 27.12.2013)

20. Fructuoso M., Castro R., Oliveira L.,Prata C., Morgado T. Quality of Life in Chronic Kidney Disease // Nefrologia. - 2011. - Vol. 31, № 1. - P. 91-96.

21. Тимофеева Е.П. Репродуктивное здоровье подростков с вторичным хроническим пиелонефритом// Вестник Новосибирского государственного университета. - 2012. - том 10, №2.- С.192-197.

22. Quamme GA. Control of magnesium transport in the thick ascending limb //Am J Physiol. -1989. - V. 256. - P. F197_F210

23. Quamme GA, De Rouffignac C. Renal magnesium handling. In: Seldin DW, Giebisch G, eds. The Kidney: Physiology and Pathophysiology, Third Edition. - New York: Raven Press, 2000. -375 p.

24. Zaloga GP, Chernow B, Pock A et al. Hypomagnesemia is common complication of aminoglycoside therapy //Surg GynecObstet -1984. - V. 158(6). - P. 561-565

25. Гаркави Л.Х., Е.Б. Квакина, Т.С. Кузьменко. Антистрессор-ные реакции и активационная терапия. Реакция активации как путь к здоровью через процессы самоорганизации - М.: «ИМЕДИС», 1998. - 656 с.

26. Покровский В.М., Коротько Г.Ф., Кобрин В.И. и др. Физиология человека: Учебник/ В двух томах. Т.1/ Под редакцией Покровского В.М., Коротько Г.Ф.- М.: Медицина, 2001. - 448 с.

27. Вейн А.М., Соловьева А.Д., Колосова О.А. Вегетососудистая дистония. - М.: Медицина, 1981. - 318 с.

28. Вейн А.М. Заболевания вегетативной нервной системы. -М.: Медицина, 1991. - С. 40-41..

ПОСТУПИЛА 07.01.2014

УДК 616-009.77

В.Г. Овсянников, А.Е. Бойченко, В.В. Алексеев, А.В. Каплиев, Н.С. Алексеева,

И.М. Котиева, А.Е. Шумарин

АНТИНОЦИЦЕПТИВНАЯ СИСТЕМА

Ростовский государственный медицинский университет Кафедра патологической физиологии Россия, 344022, г. Ростов-на-Дону, пер. Нахичеванский, 29. E-mail: [email protected]

Известно, что до тех пор, пока антиноцицептивная система функционирует в достаточной мере, боль может не развиваться даже при наличии повреждения. Один из важнейших механизмов антиноцицепции - гуморальный, т.е. образование веществ, блокирующих передачу болевых импульсов и, таким образом, формирование болевого ощущения. К гуморальными механизмам обезболивания относятся - опиоидные, моноаминергические (норадреналин, дофамин, серотонин), холин- и ГАМК-ергические, канабиноидные и орексиновые системы. Поступление болевых импульсов по болевым путям стимулирует образование и выделение многих химических веществ, при действии которых и формируется эффект обезболивания на различных уровнях болевой системы.

Ключевые слова: антиноцицептивная система, обезболивание, боль, гуморальные механизмы.

V.G. Ovsyannikov, A.E. Boychenko, V.V. Alekseev, A.V. Kapliev, N.S. Alekseeva,

I.M. Kotieva, A.E. Shumarin

ANTINOCICEPTIVE SYSTEM

Rostov State Medical University Department of pathological physiology Russia, 344022, Rostov on Don, Nakhichevansky str., 29. E-mail: [email protected]

It is known that as long as antinociceptive system functions adequately pain can develop as a component of different injuries. One of the most important mechanisms of antinociception - humoral that means production of substances that block pain transmission and formation of pain feeling. Humoral mechanism includes: opioid, monoaminergic (norepinephrine, dopamine, serotonin), cholinergic, GABAergic, cannabinoid and orexin systems. Inflow of pain impulses induces production and excretion of different chemical substances which forms analgesia in different levels of pain system.

Key words: antinociceptive system, analgesia, pain, humoral mechanisms.

Хорошо известно, что регуляция различных функций в организме осуществляется системами, обладающими противоположными эффектами, благодаря чему и возможно поддержание функции на определенном уровне. Так, регуляция уровня сахара обеспечивается взаимодействием между эффектами инсулина и контринсулярными гормонами, уровень кальция и фосфора - влиянием кальцитонина и паратгормона, поддержание крови в жидком состоянии - свертывающей и противосвертывающей системами и т.д. Под общефилософскую категорию двуединства объективно подпадает ощущение боли, являющееся результатом взаимодействия больформирующих и больлимитирующих механизмов.

Обращая внимание на исключительно большую роль антиноцицептивной системы в формировании болевого ощущения, можно сделать заключение, что до тех пор, пока антиноцицептивная система функционирует в достаточной мере, боль может не развиваться даже при наличии повреждения. Существует мнение, что возникновение боли обусловлено недостаточностью антиноци-цептивной системы .

Активация противоболевой системы происходит под влиянием болевых импульсов и это объясняет, почему и само возникновение боли является и причиной ее нивелирования и исчезновения .

По мнению Л.В. Калюжного и Е.В.Голанова , возникновение боли или, наоборот, включение антиноцицеп-тивной системы определяется не характером действующего на организм раздражителя, а его биологической значимостью. Следовательно, если антиноцицептивная система находится в состоянии постоянной активации, боль у человека и животного на неопасное воздействие факторов внешней и внутренней среды не возникает. В процессе эволюции животного мира для выживания организма сформировались механизмы, обеспечивающие возникновение боли только на опасный (т.е. биологически чрезмерный для организма) раздражитель.

Те же авторы, анализируя последовательность формирования антиноцицептивной системы, приходят к выводу, что в филогенезе контроль болевой чувствительности начал осуществляться, прежде всего, гуморальными факторами, особенно опиатами, нервные же механизмы регуляции боли появились на поздних этапах эволюции. Система «центральное серое околоводопроводное вещество - ядро шва» предопределила создание на уровне бульбарно-мезэнцефалического отдела самостоятельного механизма контроля болевой чувствительности с помощью серотонина и катехоламинов, а с развитием эмоций появился гипоталамический уровень контроля болевой чувствительности . Развитие коры головного мозга способствовало формированию коркового уровня контроля болевой чувствительности, необходимого для условно-рефлекторной и поведенческой деятельности человека.

В настоящее время можно выделить три важнейших механизма антиноцицепции:

1. Поступление афферентной информации в задние рога спинного мозга по толстым миелинизированным волокнам от тактильных, температурных и рецепторов глубокой чувствительности.

2. Нисходящие тормозные влияния из центральной нервной системы (ЦНС) на уровне задних рогов спинного мозга (энкефалин -, серотони -, адренергические).

3. Гуморальные механизмы антиноцицепции (образование веществ, блокирующих передачу болевых импульсов и, таким образом, формирование болевого ощущения).

Антиноцицептивная система имеет свое морфологическое строение, физиологические и биохимические (гуморальные) механизмы контроля. Для нормального ее функционирования необходим постоянный приток афферентной информации, при ее дефиците функция антиноцицептивной системы снижается. Антиноцицеп-тивная система формируется на различных уровнях ЦНС и представлена сегментарным и центральным уровнями

контроля, а также гуморальными механизмами - опиоид-ной, моноаминергической (норадреналин, дофамин, се-ротонин), холин- и ГАМК-ергическими, канабиноидной и орексиновой системам).

Согласно современным данным, химические вещества участвуют в модуляции боли на уровне рецепторов, проведения импульсов в ЦНС и нисходящего контроля интенсивности боли.

Данная статья посвящена гуморальным механизмам антиноцицепции.

Опиатные механизмы обезболивания

Впервые в 1973 году было установлено избирательное накопление веществ, выделенных из опия, например морфина или его аналогов, в структурах мозга у экспериментальных животных обнаружены опиатные рецепторы. Наибольшее их количество находится в отделах мозга, передающих ноцицептивную информацию. В частности, наибольшее количество опиатных рецепторов сосредоточено в таких местах передачи болевой информации, как желатинозная субстанция задних рогов спинного мозга, ретикулярная формация ствола мозга, центральное серое околоводопроводное вещество, гипоталамус, таламус, лимбические структуры и кора мозга. Кроме ЦНС, опи-атные рецепторы обнаружены в вегетативных ганглиях, на нервных терминалях, иннервирующих внутренние органы, надпочечниках, гладких мышцах желудка.

Опиатные рецепторы обнаружены у живых существ, начиная от рыб и заканчивая человеком. Морфин или его синтетические аналоги, а также аналогичные вещества, образующиеся в самом организме (эндогенные опиаты - энкефалины и эндорфины) связываются с опиатными рецепторами. Пресинаптическая активация опиоидных рецепторов на терминали первого нейрона подавляет высвобождение таких нейротрансмиттеров, как субстанция Р и глютамат, обеспечивающих передачу болевых импульсов в ЦНС и формирование боли. Постсинаптическое возбуждение опиатных рецепторов вызывает подавление функции нейрона за счет гиперполяризации мембраны и, в конечном итоге, ингибирует болевое ощущение .

В настоящее время известна гетерогенность ряда рецепторов (адренергических (а1, а2, 01, 02), дофаминер-гических (Д1 и Д2), холинергических (М и Н) и гистами-нергических (Н1 и Н2)) к химическим веществам.

В последние годы доказана неоднородность и опиат-ных рецепторов. Уже сейчас обнаружены пять групп опиатных рецепторов ц-, 5-, к-, £-, £-опиатные рецепторы . М-рецепторы - главная мишень опиатов, включая морфин и эндогенные опиаты. Много опиатных рецепторов обнаружено в центральном сером околоводопроводном веществе головного мозга и задних рогах спинного мозга, особенно в желатинозной субстанции. Считают, что высокие концентрации ц-рецепторов находятся в тех же областях, которые ответственны за формирование боли, а 5-рецепторы в областях, принимающих участие в регуляции поведения и эмоций .

В различных структурах мозга количество опиатных рецепторов неодинаково. Отдельные структуры по плотности присутствия рецепторов разнятся в 40 раз. Очень много их содержится в миндалевидном теле, центральном сером околоводопроводном веществе, гипоталамусе, медиальном таламусе, стволе мозга (ядро солитарного трак-

та и тройнично-сенсорные ядра), I и III пластинах задних рогов спинного мозга .

Опиатные пептиды регулируют передачу болевых импульсов на уровне спинного мозга, возбуждают нейроны ядер шва, гигантоклеточного ядра, центрального серого околоводопроводного вещества, т.е. важнейших анти-ноцицептивных структур мозга, выполняющих важную роль нисходящего тормозного контроля боли на уровне задних рогов спинного мозга.

Анализируя роль опиатных пептидов в регуляции гемодинамики, Ю.Д.Игнатов с соавт. считают, что усиление симпатической активности и ноцицептивных вазомоторных рефлексов реализуется через 6-опиатные рецепторы разных уровней мозга. Угнетение гипертен-зивных реакций опосредуется через ц-опиатные рецепторы мозга. Учитывая это, авторы предлагают осуществлять коррекцию сердечно-сосудистых реакций при боли созданием и введением антагонистов с избирательным ц-рецепторным действием.

По данным Е.О.Брагина , для мозга характерна гетерогенность распределения опиатных рецепторов: от минимальных концентраций в области первичных анализаторов (S1 и 82-соматосенсорные зоны коры, височная, затылочная) до максимальных - во фронтальных и лим-бических структурах.

Выяснено, что в крови и спинномозговой жидкости человека и животных имеются вещества, обладающие способностью соединяться с опиатными рецепторами. Они выделены из мозга животных, имеют структуру оли-гопептидов и получили название энкефалинов (мет- и лейэнкефалины). В мозге предшественниками опиоид-ных пептидов являются проопиомеланокортин, проэнке-фалин А, проэнкефалин В .

Из гипоталамуса и гипофиза были получены вещества с еще большей молекулярной массой, имеющие в своем составе молекулы энкефалина и названные большими эндорфинами. Эти соединения образуются при расщеплении ß-липотропина, а учитывая, что он выделяется с гормонами гипофиза, можно объяснить гормональное происхождение эндогенных опиоидов. ß-эндорфин в 1833 раза активнее морфина, и при постоянном введении его крысам у них, как и у человека, возникает привыкание. Энкефалины и эндорфины, образующиеся в организме, получили название эндогенных опиатов.

Эндогенные опиаты типа энкефалина и больших эн-дорфинов в наибольших концентрациях обнаружены в местах локализации опиатных рецепторов. ß-эндорфины и содержащие их клетки располагаются в гипоталамусе, лимбических структурах, медиальном таламусе, центральном сером околоводопроводном веществе. Часть клеток образуют непрерывную линию, пересекающую дно 3-го желудочка мозга. Энкефалинсодержащие волокна обнаруживаются на всех уровнях ЦНС, особенно в аркуатном ядре, пери- и паравентрикулярных ядрах гипоталамуса.

Эндогенные опиоиды (эндорфины) образуются и в нейронах спинального ганглия и заднего рога спинного мозга и транспортируются к периферическим ноцицеп-торам. Периферические опиоиды снижают возбудимость ноцицепторов, образование и выделение возбуждающих нейротрансмиттеров .

В лаборатории Г.Н.Крыжановского при болевом синдроме, вызванном генератором патологически усиленного возбуждения, обнаружено накопление веществ

пептидной природы с анальгетическими свойствами. Причем выраженными аналгетическими свойствами обладают экстракты спинного мозга, полученные из области генератора патологически усиленного возбуждения. Обнаружена прямая зависимость между анальгетическими свойствами выявленных пептидов и интенсивностью и продолжительностью болевого синдрома. Обеспечение аналгезии является самым важным свойством эндогенных опиатов, и это подтверждается экспериментальным путем при введении их в мозг животных.

Различные области ЦНС имеют неодинаковую чувствительность к эндорфинам и энкефалинам. Клетки головного мозга более чувствительны к энкефалинам, чем к эндорфинам. Клетки гипофиза же в 40 раз чувствительнее к эндорфинам. Обнаруженные в настоящее время суточные колебания опиоидных пептидов обусловливают, вероятно, суточные изменения порога болевой чувствительности человека. Опиатные рецепторы обратимо соединяются с наркотическими аналгетиками и последние могут быть вытеснены их антагонистами с восстановлением болевой чувствительности, например, введением налаксона. В настоящее время полагают, что в стресс-вызванной аналгезии участвуют и опиатные, и адренер-гические механизмы.

Исследования показали, что кроме экзо- и эндогенных опиатов в регуляции болевой чувствительности важное значение принадлежит антагонисту опиатов - налаксону. Искусственное введение налаксона на фоне обезболивания опиатами не только восстанавливает болевую чувствительность, но и усиливает ее, т.к. этот препарат полностью блокирует ц-опиатные рецепторы. Обнаружено преимущественное сродство налаксона к ц-рецепторам, оно в 10 раз меньше к 5- и в 30 раз к к-рецепторам. Анестезия, вызванная стрессом, не устраняется налаксоном даже при введении очень высоких доз (20 мг/кг).

Исследования последнего времени позволили выделить, в зависимости от эффектов налаксона, две разновидности аналгезии: налаксон-чувствительную, которая может быть получена в условиях длительных ноцицеп-тивных раздражений, и налаксон-нечувствительную, которая возникает при острых болевых воздействиях. Различие эффектов налаксона объясняется включением разных механизмов антиноцицепции, т.к. при длительных и перемежающихся ноцицептивных воздействиях включается в первую очередь опиоидный и меньше адре-нергический механизм. При острых же болях первостепенное значение принадлежит адренергическому механизму, нежели опиоидному.

Таким образом, как экзогенные, так и эндогенные опиаты регулируют болевую чувствительность на уровне пре- и постсинаптических образований. При соединении с рецепторами пресинаптической мембраны блокируется выделение важнейших нейротрансмиттеров - глутама-та и субстанции Р. В результате этого передача импульса невозможна. При взаимодействии с опиатными рецепторами постсинаптической мембраны возникает ее гиперполяризация и передача болевого импульса также невозможна.

Адренергические механизмы обезболивания

Значение моноаминов исключительно велико в механизме формирования боли. Истощение моноаминов в ЦНС усиливает восприятие боли за счет уменьшения

эффективности эндогенной антиноцицептивной системы .

Кроме того, показано, что введение предшественника норадреналина (L-DOPS) вызывает антиноцицептив-ный эффект за счет увеличения в ЦНС уровня норадреналина, который, по мнению H.Takagi и A.Harima , угнетает проведение импульсов на уровне задних рогов спинного мозга и супраспинально. Известно, что нора-дреналин тормозит проведение ноцицептивных импульсов как на сегментарном (спинной мозг), так и стволовом уровнях. Этот эффект связывают с взаимодействием его с а2-адренорецепторами, т.к. норадреналин не обнаруживается при предварительном введении а-адреноблокаторов, например, фентоламина. Причем, а1- и а2-адренорецепторы существуют как постсинапти-ческие образования.

Опиатные и адренергические рецепторы в спинном мозге опосредуют реакции животных на сильные стимулы, т.е. только определенные типы соматической стимуляции будут увеличивать выделение моноаминов и опи-атных веществ в спинном мозге. В то же время на уровне ствола мозга обнаружена активация тормозных нейронов норадреналином, особенно гигантоклеточного ядра, ядер большого шва, голубого пятна и мезэнцефалической ретикулярной формации.

Норадренергические нейроны сосредоточены в латеральном отделе ствола и промежуточном мозге, особенно ими богата ретикулярная формация мозга. Часть их аксонов идет к коре мозга, а другая - к образованиям переднего мозга. Если активировать центральные адренергические структуры, формируется аналгезия с подавлением эмоционально-поведенческих реакций и гемодинамических проявлений боли. Причем адре-нергические механизмы супрасегментарного уровня регулируют гемодинамические реакции с участием а2-адренорецепторов , а сегментарного - поведенческие проявления, реализуемые через а1-адренорецепторы. По мнению А.А. Зайцева , сохранение на фоне опиатов реакции системы кровообращения на боль говорит о том, что резкие гемодинамические сдвиги при боли (в том числе и увеличение АД) включают болеутоляющие механизмы за счет прямого и барорецепторного влияния. Кроме того, показано, что при действии агонистов на центральные а2-адренорецепторы, осуществляющие регуляцию системы кровообращения, обеспечивается устранение прессорных реакций и одновременно повышается аналгезия, вызываемая как наркотическими, так и ненаркотическими аналгетическими средствами . При сильном болевом воздействии активируются эмоци-огенные зоны гипоталамуса и возбуждается адренерги-ческий механизм, отчего и происходит блокада болевой импульсации с последующим вовлечением и опиатного механизма. Е.О.Брагин считает, что периферическая катехоламиновая система подавляет, а центральная - активирует механизм антиноцицепции.

Трансплантация хромаффинных клеток в спинальное субарахноидальное пространство ослабляет проявления острой и хронической боли в эксперименте, что лишний раз подтверждает роль катехоламинов (адреналина и норадреналина) в антиноцицепции . Истощение депо моноаминергических соединений введением резерпина, тетрабензамина блокирует аналгезию, а восстановление уровня катехоламинов нормализует ее . В настоящее время доказано сопряженное участие опиоидергических

и адренергических механизмов в регуляции болевой чувствительности. Отсюда, по мнению В.А.Михайловича и Ю.Д.Игнатова , вытекает его прикладное значение, заключающееся в том, что появляется возможность уменьшения дозировки наркотических аналгетиков при сочетанном применении опиатных и адренопозитивных веществ. По данным вышеуказанных авторов, существует общий механизм пресинаптической регуляции норадре-нергической передачи возбуждения в ЦНС, в который вовлечены а2-адренорецепторы и опиатные рецепторы. Поэтому адренопозитивные средства и опиаты через независимые места связывания запускают общий механизм, обусловливающий коррекцию повышенного оборота норадреналина при отмене опиатов. Кроме того, у пациентов с толерантностью к опиатам и опиоидам удается пролонгировать медикаментозное обезболивание адренопозитивными веществами.

Дофамин в головном мозге принимает участие в формировании удовольствия, мотивации, двигательной функции.

Дофамин принимает участие и в регуляции боли, обеспечивая ее модуляцию. Последние исследования показывают, что при стимуляции дофаминергических структур мозга (corpus striatum, nucleus accumbens, передняя область покрышки) или введение блокаторов обратного захвата дофамина в дофаминергических синапсах мозга увеличивает активность дофаминергической системы, что ослабляет проявления боли. Наоборот, снижение дофамина в дофаминергических структурах сопровождается повышением болевой чувствительности (гипералге-зия).

Выяснено, что при болевом воздействии и стрессе резко активируется симпато-адреналовая система, мобилизуются тропные гормоны, в-липотропин, в-эндорфин и энкефалины - мощные анальгетические полипептиды гипофиза. Попадая в спинномозговую жидкость, они влияют на нейроны таламуса, центрального серого околоводопроводного вещества мозга, задние рога спинного мозга, тормозя образование медиатора боли - субстанции Р и обеспечивая таким образом глубокую аналгезию. Одновременно с этим усиливается, вероятно, образование серотонина в большом ядре шва, который также тормозит реализацию субстанции Р. Эти же механизмы обезболивания включаются при акупунктурной стимуляции неболевых нервных волокон.

О важной роли возбуждения центральных а2-адренорецепторов в функционировании антиноцицеп-ции свидетельствует высокая эффективность использования агонистов а2-адренорецепторов (клофелин, сирдалуд) при лечении боли.

В нашей лаборатории нейрогуморальной регуляции боли были исследованы изменения уровня биогенных моноаминов в ноци- и антиноцицептивных структурах мозга крыс при острой соматической боли. Установлено, в частности, что в острый период развития болевого синдрома перестройка ноци- и антиноцицептивного взаимодействия в ЦНС проявляется гетеротопными изменениями адренергического фона с акцентом на разные функциональные элементы. В центральном звене анти-ноцицептивной системы - центральном сером околоводопроводном веществе выявлен значительный рост всех фракций катехоламинов (адреналина, норадреналина и, особенно, дофамина). В центре ноцицепции - таламусе,

формируется диаметрально противоположная тенденция к ослаблению катехоламинергической активности. В неспецифических ноци- и антиноцицептивных структурах мозга, участвующих в процессах модуляции болевой и противоболевой активности, так же как и в центральном сером околоводопроводном веществе, возрастает общая концентрация катехоламинов, но эта реакция дифференцирована. В соматосенсорной зоне коры резко повышается уровень дофамина, тогда как в гипоталамусе дофами-нергическая доминанта сменяется норадренергической. На сегментарном уровне проведения ноцицептивной им-пульсации в острый период соматической боли на фоне снижения концентраций адреналина и дофамина формируется тенденция к росту фракции норадреналина.

Важно отметить, что в этот период во всех исследованных структурах головного и спинном мозге регистрируется усиление метаболизма серотонина, который, как известно, является мощным модулятором катехолами-нергических эффектов в ЦНС, реализуемых на уровне а1-и а2-адренорецепторов.

Полученные в наших исследованиях экспериментальные данные свидетельствуют о том, что центральные катехоламинергические механизмы являются необходимыми компонентами сложных процессов ноци- и анти-ноцицепции и их важнейших составляющих: перцепции, трансмиссии и модуляции ноцицептивного потока на сегментарном и супрасегментарном уровнях.

Серотонинергические механизмы обезболивания

Анализ изменения уровня серотонина в плазме крови при головной боли напряжения свидетельствует о снижении его содержания и, наоборот, лечение антидепрессантами, ингибирующих его обратный захват, повышает его уровень в крови с одновременным исчезновением симптомов головной боли .

По данным В.А.Михайловича и Ю.Д.Игнатова , морфин вызывает изменение метаболизма серотонина в головном мозге и увеличение уровня его метаболита -5-оксииндолуксусной кислоты. Полагают, что морфин, с одной стороны, непосредственно активирует серотони-нергические нейроны, в результате чего усиливается его выход и метаболизм, а с другой стороны, под влиянием морфина этот эффект, возможно, связан с увеличением уровня триптофана.

Таким образом, делается вывод о том, что серотонин необходим для проявления центрального действия морфина, поскольку изменение серотонинергической медиации влияет на его анальгетический, локомоторный, эйфо-рический и гипотермический эффекты.

Исследования содержания серотонина и активности моноаминоксидазы в плазме крови больных, страдающих хроническими головными болями в области головы, шеи и лица показали увеличение содержания серотонина в плазме крови и снижение активности моноаминоксидазы .

Имеется интересное экспериментальное наблюдение, когда при раздражении ядер шва, голубого пятна, центрального серого околоводопроводного вещества развивается глубокая аналгезия, вследствие накопления в спинномозговой жидкости серотонина и норадреналина. Серотонин и вещества, стимулирующие его синтез, усиливают опиатную аналгезию, снижение же серотонина

(введение парахлорамфетамина, парахлорфенилалани-на, фенфлюрамина) уменьшает морфиновую аналгезию. По данным А.Б.Данилова и О.С.Давыдова , снижение содержания серотонина в ЦСОВ, большом ядре, и ядрах шва уменьшают аналгезию, так как серотонин способствует высвобождению в-эндорфинов из клеток адено-гипофиза, поэтому полагают, что эффекты серотонина опосредуются эндогенными опиоидами.

Как показали исследования ¡.Иаге , оральный прием предшественника серотонина Ь-триптофана, а также прием лекарств, повышающих уровень серотонина или блокирующих его обратный захват, увеличивают порог боли и уменьшают перцепцию боли. Кроме снижения перцепции боли, увеличение серотонина в мозге, например при акупунктуре, оказывает и антидепрессивный эффект .

По мнению Я.Майе"тсг и В.8ап^е%г 1985) , избыток серотонина, особенно в медиальном таламусе, инги-бирует клетки этой зоны, реагирующие на боль. В зоне большого шва, являющегося важнейшей областью нисходящих анальгетических путей, нейротрансмиттером служит серотонин, которому принадлежит исключительная роль в генезе, например, головной боли. Установлено, что перед приступом головной боли содержание серотонина резко повышается в плазме крови с развитием вазокон-стрикции. Это ведет к усилению выведения серотонина в неизменном виде с мочой, распаду его под влиянием моноаминооксидазы, а, следовательно, к уменьшению содержания этого моноамина в плазме, мозговых структурах антиноцицептивной системы и появлению боли.

В наших исследованиях, посвященных проблеме мо-ноаминергической регуляции боли, были изучены, в частности, особенности обмена серотонина в ЦНС у крыс с острой соматической болью . Установлено, что в начальный период развития острого болевого синдрома у животных повышается содержание серотонина и его метаболита - 5-оксииндолуксусной кислоты в структурах головного мозга (коре, гиппокампе, таламусе, гипоталамусе, центральном сером околоводопроводном веществе, продолговатом мозге) и спинном мозге. При этом наиболее значительный подъем концентрации моноамина и 5-оксииндолуксусной кислоты отмечается в структурах, ответственных за проведение (спинной мозг), трансмиссию (ретикулярная формация) и перцепцию (кора мозга) ноцицептивных импульсов.

Факт накопления серотонина в таламусе в острый период болевого стресса, на наш взгляд, косвенно подтверждает мнение Я.Майе"тсг и В.8ап^е%г о модулирующем влиянии этого моноамина на чувствительность специфических нейронов, воспринимающих и трансформирующих ноцицептивный сигнал. В то же время отмеченный в этот период в центральном сером околоводопроводном веществе и гипоталамусе сдвиг метаболизма серотонина в сторону его усиленной утилизации и превращения в 5-оксииндолуксусную кислоту свидетельствует о преимущественной активации серотонинергиче-ской медиации в этих антиноцицептивных структурах.

Анализ полученных в этих исследованиях данных позволил прийти к заключению о полифункциональной роли серотонина в системе боли и как мощного модулятора ноцицептивной информации в ЦНС, и как ведущего медиатора антиноцицептивных реакций.

Синтез серотонина в мозге женщин на 50 % меньше, чем у мужчин. Это объясняет более высокую чувствительность женщин к боли и более частое ее возникновение по сравнению с мужчинами. В связи с этим в последнее время для лечения хронических головных болей напряжения используются ингибиторы обратного захвата серотонина в пресинаптической мембране. Для этой цели используют флуоксетин, пароксетин, серталин.

Таким образом, не вызывает сомнения, что серотони-нергический механизм регуляции является необходимым компонентом сложного аппарата управления процессами ноцицепции и антиноцицепции. Регулирующие эффекты серотонина проявляются на всех уровнях функциональной системы боли, включая процессы возникновения, проведения, перцепции, модуляции ноцицептивного потока и формирования антиноцицептивной составляющей в общей реакции организма на боль.

Холинергические механизмы обезболивания

В последние годы широко и интенсивно изучается роль холинергических механизмов в формировании боли. Известно, что холинергические вещества возбуждают гиппокамп, введение морфина с холинергическими препаратами резко усиливает аналгезию. Обнаружено , что у интактных крыс активация холинергической системы и накопление ацетилхолина способствует аналгезии.

Введение холиномиметика - прозерина, а также М-холинергических веществ в зону центрального серого околоводопроводного вещества усиливает обезболивающий эффект, что является результатом вовлечения аце-тилхолина в реакцию обезболивания на уровне среднего мозга . Активация холинергической системы усиливает, а блокада ее ослабляет морфиновую анестезию. Высказывается предположение , что связывание ацетил-холина с определенными центральными мускариновыми рецепторами стимулирует высвобождение опиоидных пептидов, вовлеченных в стресс-аналгезию.

В последнее время появились исследования, которые показывают, что при применении ботулинического токсина типа А (ВТХ-А) ослабляется интенсивность мышечной боли . Полагают, что такой аналгетический эффект обусловлен влиянием на нейромышечный синапс, где тормозится выделение ацетилхолина и в результате формируется мышечная релаксация. Кроме уменьшения гипервозбудимости мышц ботулинический токсин также оказывает прямое антиноцицептивное действие за счет снижения нейронной активности, уменьшения выделения нейропептидов и периферической чувствительности. Отмечено также, что влияние на интенсивность боли при введении ботулинического токсина начинается через 3 дня и достигает максимума через 4 недели. Продолжительность его аналгетического действия до 6 месяцев.

ГАМК-ергические механизмы обезболивания

Гамма-аминомасляная кислота (ГАМК) регулирует болевую чувствительность, подавляя эмоционально-поведенческие реакции на боль. В ЦНС превалируют два нейротрансмиттера, принимающих участие как в формировании боли, так и ее модуляции. Это глютамат и ГАМК. На их долю приходится 90% всех нейротрансмит-

теров и обнаруживаются во всех областях ЦНС, только на различных нейронах. ГАМК образуется из глутамата за счет активации фермента декарбоксилазы глутамата. Обнаружены три группы ГАМК: а, б, с. ГАМК-а локализована главным образом в головном мозге, а ГАМК-б в задних рогах спинного мозга. ГАМК-а увеличивает проницаемость мембраны нервной клетки для ионов хлора. ГАМК-б увеличивает проницаемость клеточной мембраны для ионов калия, способствуя ее гиперполяризации и невозможности передачи болевого импульса.

ГАМК освобождается при боли в задних рогах спинного мозга одновременно с глутаматом. На пресинап-тических ноцицептивных терминалях ГАМК подавляет избыточное высвобождение глютамата и субстанции Р, блокируя, таким образом, поступление болевых импульсов в ЦНС. В ЦНС ГАМК подавляет возбуждение нейронов при боли, хроническом стрессе, депрессии и страхе.

ГАМК подавляет формирование первичной или локализованной боли, вторичную или плохо локализованную боль и таким образом предотвращает гипералгезию и ал-лодинию (боль на неболевое воздействие).

Ноцицептивное воздействие сопровождается повышением уровня ГАМК и угнетением ее ферментативной инактивации в структурах переднего мозга . Снижение в мозге активности фермента ГАМК-трансферазы и уменьшение в результате этого инактивации рассматривается как защитный механизм, направленный на усиление процессов торможения. Боль, активируя ГАМК и ГАМК-ергическую передачу, обеспечивает адаптацию к болевому стрессу.

При острой и хронической боли первоначально обнаружена активация синтеза и катаболизма ГАМК, последующее снижение ее ферментативного разрушения и, как следствие, увеличение концентрации ГАМК в различных структурах мозга. Введение экспериментальным животным ГАМК-агонистов и ингибиторов ГАМК-трансаминазы при острой и хронической боли уменьшают нарушения поведения и соматического статуса животных. Обнаружена зависимость ГАМК-ергического болеутоляющего эффекта от функциональной активности других гуморальных антиноцицептивных механизмов - опиоид-, адрен-, холин- и серотонинергических.

Известно, что центральное серое околоводопроводное вещество оказывает тормозное ГАМК-ергическое влияние на нейроны ретикулярной формации и ядер шва ствола мозга, которые принимают участие в нисходящем контроле болевого потока на спинальном (сегментарном) уровне.

Интересны взаимоотношения между ГАМК, опиатами и опиоидами. Экспериментально показано, что под влиянием последних увеличивается выход ГАМК в центральном сером околоводопроводном веществе и дорсальном ядре шва у крыс.

ГАМК в больших дозах ускоряет и увеличивает длительность морфиновой анестезии. Наоборот, блокаторы ГАМК-рецепторов уменьшают интенсивность морфи-новой аналгезии и эффекты энкефалинов. По данным В.А.Михайловича и Ю.Д.Игнатова , активация ГАМК В и опиатных рецепторов относительно независимы, в то время как аналгезия и толерантность к болеутоляющему эффекту ГАМК-агонистов реализуется с вовлечением опиоидергической системы. На сегментарном уровне

опиоид- и адренергические механизмы принимают участие в формировании толерантности к аналгетическому действию ГАМК-позитивных веществ.

Введение ГАМК-позитивных препаратов вызывает аналгезию. Например, введение агонистов ГАМК-рецепторов (баклофен, депакин) уменьшает хроническую боль у животных и нормализует их поведение. Учитывая это, считают целесообразным при хронической боли назначать ГАМК-позитивные средства (баклофен, депакин) с наркотическим аналгетиком типа промедола .

Каннабиноидная система обезболивания

В последние годы важное значение в антиноцицеп-ции придается эндогенным каннабиноидам . Кан-набиноиды это вещества, содержащиеся в конопле или синтетические их аналоги. Реализация их эффектов осуществляется через взаимодействие с каннабиноидными СВ1 и СВ2 рецепторами. Наиболее высокая концентрация СВ1-рецепторов в ЦНС, особенно в фронтально-лимби-ческих структурах мозга . Они обнаруживаются и в периферических отделах нервной системы, в гипофизе, надпочечниках, сердце, легких, ЖКТ, мочевом пузыре, репродуктивных органах, клетках иммунитета. Возбуждение СВ1-рецепторов на нервных окончаниях ЦНС и периферии модулируют высвобождение возбуждающих и тормозных медиаторов, тормозя или облегчая передачу сигналов. Показано, что при возбуждении СВ1-каннабиноидных рецепторов ингибируется выделение глутамата и, как следствие, уменьшается передача болевого импульса. Такой эффект особенно важен в условиях гипералгезии или аллодинии. СВ2-рецепторы обнаружены на иммунокомпетентных клетках, их возбуждение вызывает подавление иммунитета. Использование дельта-9-тетрагидроканнабинола у людей с вызванной болью сопровождается снижением неприятных эффектов, но не влияет на ее интенсивность и гипералгезию. Отмечается уменьшение функциональной связи между миндалиной и первичной соматосенсорной корой . Роль эндогенных каннабиноидов в последнее время интенсивно изучается. Так, на 6 конгрессе Европейской федерации международной ассоциации по изучению боли специальный семинар был посвящен эндогенной каннабиноидной системе и ее роли в механизмах анти- и ноцицепции. Установлено, что при хронической боли в спинном и головном мозге уровень эндогенных каннабиноидов увеличивается .

Роль орексинов в обезболивании

Важная роль в антиноцицепции принадлежит орекси-нам. Они являются нейропептидами нейронов латеральной гипоталамической области, которая тесно связана с большинством моноаминергических ядер: норадренерги-ческий tocus roeruleus, вентральной дофаминергической покрышки и гистаминергических туберомаммилярных ядер. Таким образом, орексин-содержащие нейроны латерального гипоталамуса иннервируют почти все области мозга, включая зрительный бугор, лимбическую систему, tocus raeruleus, ядра шва, аркуатное ядро, туберомамми-лярное ядро и латеральное маммилярное ядро.

Орексины состоят из двух структурно связанных пептидов: орексин А и орексин В. Антиноцицепция, вызван-

ная орексином, модулируется путем стимуляции гиста-минергических рецепторов на супраспинальном уровне. Экспериментальные исследования на мышах показали, что введение орексина А и В значительно снижает болевые поведенческие реакции при действии термических и механических факторов. Эти же исследователи показали тесную связь между орексиновой и гистаминовой системой спинального и супраспинального уровня в формировании болевой чувствительности.

Таким образом, поступление болевых импульсов по болевым путям стимулирует образование и выделение многих химических веществ, при действии которых и формируется эффект обезболивания на различных уровнях болевой системы, т.е. в самом формировании боли заложены механизмы ее исчезновения.

ЛИТЕРАТУРА

1. Крыжановский Г.Н., Графова В.Н., Данилова Е.З., Игонь-кина С.Н., Сахарова О.П. Болевой синдром спинально-го происхождения // Бюлл. экспер. биол. и мед. - 1973. -№9. - С.31-35.

2. Крыжановский Г.Н., Графова В.Н., Данилова Е.З., Игонь-кина С.Н. Исследование болевого синдрома спинального происхождения (к концепции генераторного механизма болевого синдрома) // Бюлл. экспер. биол. и мед. - 1974. -№ 7. - С. 15-20.

3. Калюжный Л.В., Голанов Е.В. Центральные механизмы контроля болевой чувствительности // Успехи физиол. наук. - 1980. - № 3. - С. 85 - 115.

4. Овсянников В.Г. Боль (этиология, патогенез, принципы и механизмы лечения). - Ростов н/Д., 1990. - 80 с.

5. Овсянников В.Г. Боль // Общая патология. - Ростов-н/Д.: Цветная печать, 1997. - С. 223-236.

6. Овсянников В.Г. Боль как феномен патологии // III научная сессия РГМУ - Ростов-н/Д., 2000. - С. 102-103.

7. Овсянников В.Г. Онтогенетические особенности центральных аминергических механизмов в норме и при острой соматической боли. - Ростов-н/Д.: Учебная типография Рост-ГМУ, 2012. - 116 с.

8. Bingel U., Schoell E., Herken W., Buchel C., May A. Habituation to painfull stimulation involves the antinociceptive system // Pain. - 2007. - Vol. 131, issue 1-2. - Р. 21-30.

9. Овсянников В.Г. Очерки патофизиологии боли. Учебное пособие для студентов и врачей. - Ростов-на-Дону: РГМУ, 2003. - 148 с.

10. Daroff R.B., Fenichel G.M., Jankovic J., Mazziotta J.C. Principles of Pain Management // Bradley"s Neurology in Clinical Practice. -2012. - Sixth Edition, Chapter 44. - Р. 783-801.

11. Basbaum A., Moss M., Glazer E. Opiate and stimulation produced analgesia: the contribution of the mono-amines // Advances in Pain Research and Therapy. V. 5. Eds Bonica J., Lindblom U., Iggo A.N.Y.: Raven Press, 1983. - P. 323-329.

12. Лиманский Ю.П. Физиология боли. - Киев, 1986. - 93 с.

13. Игнатов Ю.Д., Зайцев А.А., Богданов Е.Г. Роль опиатных пептидов в регуляции ноцицептивных гемодинамических реакций // Матер. симпоз. «Физиология пептидов». -Л. 1988. - С. 80 - 81.

14. Брагин Е.О. Нейрохимические механизмы регуляции болевой чувствительности // Успехи физиол. наук. - 1985. -Т. 16, № 1. - С. 21-42.

15. Terenins L. The endogenous opioids and other central peptides // Textbook of Pain. - Edinburgh: Churchill and Livingstone. -1985. - P. 133-141.

16. Slipman C.W., Derby R., Simione F.A., Mayer T.G., Chou L.H., Lenrow D.A., Addi Salahadin, Chin K.R. Central influence on Pain. Interventional Spine: An Algorithmic Approach, First Edition. - 2008. - Chapter 5. - P. 39-52.

17. Крыжановский Т.Н., Данилова Е.И., Графова В.Н., Решет-няк В.К. Особенности развития болевых синдромов при взаимодействии генераторов патологически усиленного возбуждения // Бюлл. экспер. биол. и мед. - 1994. - Т. 118, № 10. - С. 364-367.

18. Goadsby P., Lance I. Physiopathologie de la migraine // Revne du Praticien. 1990. - Vol. 40, № 5. - P. 389-393.

19. Takagi H., Harima A. Analgesic effect of L-threo-3,4-dihydroxyphenilserine (L-DOPS) in patients with chronic pain // European Neuro-psychopharmacology. - 1996. - Vol. 6, № 1. - P. 43-47.

20. Wei H., Petrovaara A. Peripheral administered alfa-2-adrenoreceptor agonist in modulation of chronic allodynia induced by spinal nerve ligation in the rat // Anesthesia and Analgesia. - 1997. - Vol. 85, № 5. - P. 1122-1127.

21. Зайцев А.А. Фармакологический анализ опиоид- и адренер-гических механизмов регуляции гемодинамических ноци-цептивных реакций // Нейрофармакологическая регуляция болевой чувствительности. - Л., 1984. - С. 53-74.

22. Зайцев А.А. Особенности и механизмы болеутоляющего действия клофелина // Актуальные проблемы лекарственного обезболивания. - Л., 1989. - С. 62-65.

23. Gordon N., Heller P., Levin I. Enhancement of pentazocine -analgesia by clonidine // Pain. - 1992. - Vol. 48. - P. 167-170.

24. Брагин Е.О. Избирательные и динамические механизмы нейрохимической регуляции болевой чувствительности: Автореф. дисс. ... докт. мед. наук. - М., 1985. - 38 с.

25. Sagan I. Chromaffin cell transplants for alleviation of chronic pain // ASSAIO Journal. - 1992. - Vol. 38, № 1.- P. 24-28.

26. Decosterd I., Buchser E., Gilliard N. et al. Intrathecal implants of bovine chromaffin cells alleviate mechanical allodynia in a rat model of neuropathic Pain // Pain. - 1998. - Vol. 76, № 1-2. -P. 159-166.

27. Михайлович В.А., Игнатов Ю.Д. Болевой синдром. - Л.: Медицина, 1990. - 336 с.

28. McMahon S.B., Koltzenburg Martin, Tracey Irene, Dennis C. Turk. Representation of pain in the Brain // Wall and Melzack, Textbook of Pain. - 2013. - Sixth edition, Chapter 7. - P. 111128.

29. Каракулова Ю.В. О патогенетических механизмах формирования головных болей напряжения // Журнал неврологии и психиатрии им. С.С.Корсакова. - 2006. - т.106, 7б. -С. 52-56.

30. Ушакова С.А. Клинико-диагностическая оценка состояния серотонинергической системы и активности сукцинатдеги-дрогеназы у больных с болевыми синдромами: Автореф.... дисс. канд. мед. наук. - 1998, Саратов. - 27 стр.

31. Данилов А.Б., Давыдов О.С. // Нейропатическая боль. -М, 2007. -191 стр.

32. Haze I. Toward an understanding of the rationale for the use of dietary supplementation for chronic pain management: serotonin model // Cranio. - 1991. - Vol. 9, №4. - P. 339-343.

33. Chen A. An introduction to segmental electric acupuncture in the treatment of stress related physical and mental disorders // Acupuncture and Electro-Therapeutics Research. - 1992. -Vol. 17, № 4. - P. 273-283.

34. Maciewicz R., Sandrew B. Physiology of Pain // In Book: Evaluation and Treatment of Chronic Pain. - Urban. Schwarzenberg. Baltimore-Munchen. - 1985. - P. 17-33.

35. Овсянников В.Г., Шумарин А.Е., Зайнаб А.М., Простов И.К. Изменение содержания и соотношения серотонина и гиста-мина в структурах головного мозга и спинном мозге крыс при острой соматической боли различной локализации //

Материалы V научной конференции РостГМУ - Ростов-н/Д., 2010. - С. 190-192.

36. Ярош А.К. Роль холин- и адренергических механизмов в регуляции болевой чувствительности животных в динамике постоперационного эмоционально-болевого состояния // Республиканский межведомственный сборник «Фармакология и токсикология». - Киев, 1987. - С. 63-66.

37. Вальдман А.В. Боль как эмоционально-стрессовая реакция и способы ее антиноцицептивной регуляции // Вести. АМН СССР. - 1980. - № 9. - С. 11 - 17.

38. Terman G., Levis I., Liebeskind I. Endogenous Pain Inhibitory Substrates and Mechanisms Recent Advances in the Management of Pain. - 1984. - P. 43-56.

39. Jose de Andres. Clinical experience with botulinum toxin Type A in back pain: a European Perspective // Pain Management in the 21-st Century. 2-th World Congress of the World Institute of Pain. - Istanbul, June 2001. - P. 5-7.

40. Royal M. Clinical experience with botulinum toxin Type A in back pain: a US Perspective // Pain Management in the 21-st Century. 2-th World Congress of the World Institute of Pain. -Istanbul, June 2001. - P. 7-9.

41. Игнатов Ю.Д., Андреев Б.В. ГАМК-ергические механизмы регуляции болевой чувствительности // Нейро-фармакологические аспекты боли. - Л., 1982. - С. 61-81.

42. Андреев Б.В. ГАМК-ергические механизмы боли и аналге-зии: Автореф. ... дисс. докт. мед. наук. - СПб., 1993. - 42 с.

43. Игнатов Ю.Д. Теоретические и прикладные аспекты боли // Экспериментальные и клинические формы болеутоляющих веществ. - Л., 1986. - С. 14 - 17.

44. Чурюканов М.В., Чурюканов В.В. Функциональная организация и терапевтический потенциал эндогенной каннаби-ноидной системы // Эксперим. и клиническая фармакология. - 2004. - №2 - С. 70-78.

45. Алексеев В.А. с соавт. Боль. Руководство для врачей. - М., 2009. - 303 с.

46. Lee M.C., Ploner M., Wiech K., Bin gel U., Wanigasekera V., Brooks J., Menon D.K., Tracey I. Amygdala activity contributes to the dissociative effect of cannabis on pain perception // Pain. -2013, Vol.154. - №1. - P. 124-134.

47. Чурюканов М.В., Скоробогатых К.В., Филатова Е., Алексеев А.В., Мелкумова К.А., Бранд П.Я., Разумов Д.В., Под-чуфарова Е.В. Обозрение материалов 6-го конгресса Европейской международной Ассоциации по изучению боли (9-12 сентября 2009 г.Лиссабон) // Боль. - 2009. - № 4(25). -С. 37-44.

48. Mobarakeh J.I., Yanai K., Takahashi K., Sakurada Sh. // Future medical engineering based on Bionanotechnology: Proceedings of the final Symposium of the Tohoku University 21st Century Center of Exellence Program / Sendai International Center. -Japan, 2007. - P. 771-783.

Антиноцицептивная или обезболивающая система

Определение

Антиноцицептивная система – это иерархическая совокупность нервных структур на разных уровнях ЦНС, с собственными нейрохимическими механизмами, способная тормозить деятельность болевой (ноцицептивной) системы.

В АНЦ-системе используется в основном опиатергическая система регуляции , основанная на взаимодействии лигандов-опиоидов с опиатными рецепторами.

Антиноцицептивная система подавляет боль на нескольких различных уровнях. Если бы не было такой её обезболивающей работы, то, боюсь, что ведущим чувством в нашей жизни стала бы боль. Но по счастью, после первого резкого приступа боли она отступает, давая нам возможность передохнуть. Это - результат работы антиноцицептивной системы, подавившей боль через некоторое время после её возникновения.

Антиноцицептивная система также вызывает повышенный интерес оттого, что именно она породила интерес к наркотикам. Ведь первоначально наркотики применялись именно как обезболивающие средства, помогающие антиноцицептивной системе подавлять боль, или заменяющие её в подавлении боли. И до сих пор медицинское применение наркотиков оправдано именно их обезболивающим эффектом. К сожалению, побочные эффекты наркотиков делают человека зависимым от них и со временем превращают в особое страдающее существо, а затем обеспечивают ему преждевременную смерть...

В целом, "болевой анализатор", обеспечивающий восприятие боли, дает хороший пример различия между понятиями «сенсорная система» и «анализатор». Анализатором (т.е. воспринимающим устройством) является только некоторая часть от всей ноцицептивной сенсорной системы . Вместе с антиноцицептивной системой они составляют уже не просто анализатор, а более сложную саморегулирующуюся сенсорную систему.

Встречаются, например, люди с врожденным отсутствием чувства боли, при этом болевые ноцицептивные пути у них сохранены, а это значит, что у них существует механизм подавления болевой активности.

В 70-х годах ХХ века сформировалось представление об антиноцицептивной системе. Эта система ограничивает болевое возбуждение, предотвращает перевозбуждение ноцицептивных структур. Чем сильнее болевое ноцицептивное раздражение, тем сильнее происходит тормозное влияние антиноцицептивной системы.

При сверхсильных болевых воздействиях антиноцицептивная система не справляется, и тогда возникает болевой шок. При снижении тормозного воздействия антиноцицептивной системы болевая система может перевозбуждаться и порождать ощущение спонтанных (самопроизвольных) психогенных болей даже в здоровых органах.

Структура антиноцицептивной системы (АНЦ-системы)

1. АНЦ-структуры среднего, продолговатого и спинного мозга. Главные из них: серое околоводопроводное вещество (сильвиев водопровод соединяет III и IV желудочки), ядра шва и ретикулярной формации, а также желатинозная субстанция спинного мозга.

Основные нейроны АНЦ-системы локализованы в околоводопроводном сером веществе среднего мозга. Их аксоны образуют нисходящие пути к продолговатому и спинному мозгу и восходящие пути к ретикулярной формации, таламусу, гипоталамусу, лимбической системе, базальным ганглиям и коре. Медиаторами этих нейронов являются пентапептиды: мет-энкефалин и лей-энкефалин, имеющие в качестве концевых аминокислот соответственно метионин и лейцин. Энкефалины возбуждают опиатные рецепторы. В энкефалинергических (опиатергических) синапсах опиатные рецепторы находятся на постсинаптической мембране, но эта же мембрана является пресинаптической для других синапсов - болевых, т.е. через неё должны выделяться трансмиттеры, передающие "болевое" возбуждение с одного болевого нейрона на другой.
Опиатные рецепторы являются метаботропными, они ассоциированы с аденилатциклазным биорегуляторным внутриклеточным путём и вызывают ингибирование аденилатциклазы. В результате в болевых нейронах нарушается синтез цАМФ. В итоге уменьшается вход кальция и освобождение трансмиттеров, включая медиаторы боли: субстанции P, холецистокинина, соматостатина, глутаминовой кислоты.

    АНЦ-структуры гипоталамуса.

Они оказывают различное действие на болевую ноцицептивную систему:

1) нисходящее тормозное влияние на ноцицептивные нейроны спинного мозга;

2) восходящее тормозное влияние на таламические ноцицептивные нейроны;

3) активирующее влияние на систему нисходящего тормозного контроля (т.е. АНЦ-систему предыдущего первого уровня).

3. АНЦ-структуры второй соматосенсорной зоны коры.

Эта зона активирует АНЦ-структуры предыдущего первого и второго уровня.

Механизм работы антиноцицептивной системы

Антиноцицептивная система выделяет биологически активные эндогенные опиоидные вещества – это «внутренние наркотики». Они называются эндорфины, энкефалины, динорфины . Все они по химическому строению являются короткими пептидными цепочками, как бы кусочками белковых молекул, т. е. состоят из аминокислот. Отсюда и название: нейропептиды , опиоидные пептиды . Опиоидные - т. е. подобные по действию наркотическим веществам опийного мака.

На многих нейронах болевой системы существуют специальные молекулярные рецепторы к этим веществам. Когда опиоиды связываются с этими рецепторами, то возникает пресинаптическое и/или постсинаптическое торможение в нейронах болевой системы. Болевая ноцицептивная система тормозится и слабо реагирует на боль.

На рисунке более мелкий АНЦ-нейрон (он слева) тормозит синапс болевого нейрона и мешает ему передавать болевое возбуждение дальше.

Кроме опиоидных пептидов в регуляции боли участвуют неопиоидные пептиды , например, нейротензин. Они влияют на боль, возникающую из разных источников. Кроме того боль могут подавлять серотонин и катехоламины (норадреналин, адреналин, дофамин).

Антиноцицептивная система действует несколькими путями:

    Срочный механизм.

Возбуждается действием болевых стимулов, использует систему . Он быстро ограничивает афферентное ноцицептивное возбуждение на уровне задних рогов спинного мозга . Этот механизм участвует в конкурентной аналгезии (обезболивании), т.е. болевая реакция подавляется, если одновременно действует другой болевой стимул.

    Короткодействующий механизм.

Запускается гипоталамусом , вовлекает систему нисходящего тормозного контроля среднего, продолговатого и спинного мозга . Этот механизм ограничивает болевое возбуждение не только на уровне спинного мозга, но и выше, активируется стрессогенными факторами .

    Длительнодействующий механизм.

Активируется при длительной боли. Центры его находятся в гипоталамусе . Вовлекается система нисходящего тормозного контроля . Этот механизм ограничивает восходящий поток болевого возбуждения на всех уровнях ноцицепивной системы. Этот механизм подключает эмоциональную оценку и придает эмоциональную окраску боли.

    Тонический механизм.

Поддерживает постоянную активность антиноцицептивной системы. Центры его находятся в орбитальной и фронтальной областях коры, расположенных за лбом и глазами. Обеспечивает постоянное тормозное влияние на активность ноцицептивной структуры на всех уровнях. Важно отметить, что это происходит даже при отсутствии боли . Таким образом, с помощью антиноцицептивных структур коры больших полушарий головного мозга можно заранее подготовится и затем при действии болевого раздражителя уменьшить болезненные ощущения.

Взаимодействие болевой и антиболевой систем

Итак, мы приходим к выводу, что сила и характер болевых ощущений являются результатом работы не одной системы, а двух систем : болевой (ноцицептивной) и антиболевой (антиноцицептивной). Их взаимодействие друг с другом определяет, какие именно болевые ощущения будет испытывать человек.

Гипералгезия – это повышение болевой чувствительности, достигается двумя путями: 1) повышенное возбуждение ноцицептивной системы; 2) пониженное возбуждение антиноцицептивной системы.

Гипоалгезия – понижение болевой чувствительности. Достигается противоположными эффектами: 1) пониженное возбуждение ноцицептивной системы; 2) повышенное возбуждение антиноцицептивной системы.

Полезное значение могут иметь оба этих состояния.

Порог боли – это подвижная непостоянная величина, которая зависит от взаимодействия двух систем: болевой и обезболивающей. Обе системы образуют общую систему боли и являются ее подсистемами. Эта сложная сенсорная система восприятия боли предназначена для сохранения целостности организма и его частей.