Кислородсодержащие неорганические вещества.

Установите соответствие между реагирующими веществами и углеродсодержащим продуктом, который образуется при взаимодействии этих веществ: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

Запишите в таблицу номера выбранных веществ под соответствующими буквами.

Ответ: 5462

Пояснение:

А) 2CH 3 COOH + Na 2 S = 2CH 3 COONa + H 2 S

Уксусная кислота, она же этановая, имеет формулу CH 3 COOH. В результате ее взаимодействия с основными и амфотерными оксидами/гидроксидами, а также при взаимодействии с солями других более слабых кислот образуются соли уксусной кислоты. Соли, а также сложные эфиры уксусной кислоты называют ацетатами или этаноатами. В нашем случае соль CH 3 COONa может быть названа как ацетат натрия или этаноат натрия.

Б) HCOOH + NaOH = HCOONa + H 2 O

Муравьиная кислота, она же метановая, имеет формулу HCOOH. В результате ее взаимодействия с основными и амфотерными оксидами/гидроксидами, а также при взаимодействии с солями других более слабых кислот образуются соли муравьиной кислоты. Соли, а также сложные эфиры муравьиной кислоты называют формиатами или метаноатами. В нашем случае соль HCOONa может быть названа как формиат натрия или метаноат натрия.

В) Муравьиная кислота, несмотря на малые размеры своей молекулы, содержит в своем составе сразу две функциональные группы — альдегидную и карбоксильную:

В связи с этим с гидроксидом меди она может реагировать двояко: и по типу альдегида, и по типу простой карбоновой кислоты. По типу кислоты, т.е. с образованием соли, муравьиная кислота реагирует с гидроксидом меди без нагревания. При этом образуется формиат , или метаноат , меди:

2HCOOH + Cu(OH) 2 = (HCOO) 2 Cu + 2H 2 O (без нагревания)

Для того чтобы муравьиная кислота проявила в реакции с гидроксидом меди свойства альдегида, реакцию следует проводить при нагревании. В таком случае будет протекать реакция, являющаяся качественной для альдегидов. Гидроксид меди частично восстанавливается альдегидной группой, и образуется кирпично-красный осадок оксида меди (I):

HCOOH + 2Cu(OH) 2 = Cu 2 O + CO 2 + 3H 2 O

Г) Спирты способны реагировать с щелочными и щелочноземельными металлами. При этом выделяется водород и образуется соответствующий алкоголят металла. При использовании этилового спирта (этанола) и натрия соответственно образуются этилат натрия и водород:

2C 2 H 5 OH + 2Na = 2C 2 H 5 ONa + H 2

В материале рассмотрена класиификация кислородсодержащих органических веществ. Разобрны вопросы гомологии, изомерии и номенклатуры веществ. Презнтация насыщена заданиями по данным вопросам. Закрепление материала предлагается в тестового упражнения на соответствие.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Задачи урока: познакомиться с классификацией кислородсодержащих органических соединений; построение гомологических рядов веществ; выявление возможных видов изомерии; построение структурных формул изомеров веществ, номенклатура веществ.

Классификация веществ С х Н у О z карбоновые кислоты альдегиды кетоны эфиры спирты фенолы одно- атомные -много R – OH R–(OH) n простые сложные OH = R – C - O OH = R – C - O H - овая кислота -аль R – C – R || O -он R – O – R = R – C - O O – R - ол - n ол

Гомологический ряд СН 3 – ОН С 2 Н 5 – ОН С 3 Н 7 – ОН С 4 Н 9 – ОН С 5 Н 11 – ОН метан ол этан ол пропан ол-1 бутан ол-1 пентан ол-1 Спирты С n H 2n+2 O

Карбоновые кислоты = Н – C - O OH = СН 3 – C - O OH = СН 3 – СН 2 – C - O OH метан овая кислота (муравьиная) этан овая кислота (уксусная) пропан овая кислота (пропионовая) С n H 2n O 2

Альдегиды = Н – C - O H = СН 3 – C - O H = СН 3 – СН 2 – C - O H метан аль муравьиный альдегид (формальдегид) этан аль уксусный альдегид (ацетальдегид) пропан аль пропионовый альдегид С n H 2n O

Кетоны СН 3 – C – СН 3 || O СН 3 – СН 2 – C – СН 3 || O СН 3 – СН 2 – СН 2 – C – СН 3 || O пропан он (ацетон) бутан он пентан он-2 С n H 2n O

Простые эфиры СН 3 – О –СН 3 С 2 Н 5 – О –СН 3 С 2 Н 5 – О –С 2 Н 5 С 3 Н 7 – О –С 2 Н 5 С 3 Н 7 – О –С 3 Н 7 диметил овый эфир метиэтил овый эфир диэтил овый эфир этилпропил овый эфир дипропил овый эфир С n H 2n+2 O Вывод: простые эфиры – производные предельных одноатомных спиртов.

Сложные эфиры = Н – C - O O – СН 3 = СН 3 – C - O O – С Н 3 = СН 3 – СН 2 – C - O O – СН 3 метиловый эфир муравьиной кислоты (метил формиат) метиловый эфир уксусной кислоты (метил ацетат) метиловый эфир пропионовой кислоты С n H 2n O 2 Вывод: сложные эфиры – производные карбоновых кислот и спиртов.

спирты эфиры кетоны альдегиды карбоновые кислоты Изомерия и номенклатура изомерия углеродного скелета межклассовая (сложные эфиры) углеродного скелета межклассовая (кетоны) углеродного скелета положения f- группы (-С =О) межклассовая (альдегиды) углеродного скелета положения f- группы (-ОН) межклассовая (простые эфиры) углеродного скелета межклассовая

Составление формул изомеров. Номенклатура веществ. Задание: составьте структурные формулы возможных изомеров для веществ состава С 4 Н 10 О; С 4 Н 8 О 2 ; С 4 Н 8 О. К каким классам они принадлежат? Назовите все вещества по систематической номенклатуре. С 4 Н 10 О С 4 Н 8 О 2 С 4 Н 8 О С n H 2n+2 O С n H 2n O 2 С n H 2n O спирты и простые эфиры карбоновые кислоты и сложные эфиры альдегиды и кетоны

СН 3 – СН 2 – СН – СН 3 | ОН СН 3 | СН 3 – С – СН 3 | ОН СН 3 – О – СН 2 – СН 2 – СН 3 СН 3 – СН 2 – О – СН 2 – СН 3 бутанол-1 2-метилпропанол-1 бутанол-2 2-метилпропанол-2 метилпропиловый эфир диэтиловый эфир I спирты II спирт III спирт

СН 3 – СН 2 – СН 2 – C - O OH = СН 3 – СН – C - O OH | СН3 = СН 3 – СН 2 – C - O O – СН 3 = СН 3 – C - O O – СН 2 – СН 3 бутановая кислота 2-метилпропановая кислота метиловый эфир пропионовой к-ты этиловый эфир уксусной кислоты

СН 3 – СН 2 – СН 2 – C - O H = СН 3 – СН – C - O H | СН3 СН 3 – СН 2 – C – СН 3 || O бутаналь 2-метилпропаналь бутанон-2

Проверь себя! 1. Установите соответствие: общая формула класс вещество R – COOH R – O – R R – COH R – OH R – COOR 1 R – C – R || O сл. эфиры спирты карб. к-ты кетоны альдегиды пр. эфиры а) С 5 Н 11 –ОН б) С 6 Н 13 –СОН в) С 4 Н 9 –О–СН 3 г) С 5 Н 11 –СООН д) СН 3 –СО–СН 3 е) СН 3 –СООС 2 Н 5 2. Назовите вещества по систематической номенклатуре.

Проверь себя! I II III IV V VI 3 6 5 2 1 4 Г В Б А Е Д

Домашнее задание Параграф (17-21) – 1 и 2 части упр. 1,2,4,5 стр. 153-154 2 стр. 174 Урок окончен!


Цель: формировать умения проводить наблюдения и делать выводы, записывать уравнения соответствующих реакций в молекулярном и ионном видах.

Обеспеченность занятия

1. Сборник методических указаний для студентов по выполнению практических занятий и лабораторных работ по учебной дисциплине «Химия».

2. Раствор гидроксида натрия, карбонат натрия, карбонат кальция, оксид меди (II), уксусная кислота, лакмус синий, цинк; штатив с пробир­ками, водяная баня, прибор для нагревания, спички, держатель для пробирок.

Теоретический материал

Карбоновые кислоты - органические соединения, в молекулах которых содержатся одна или несколько карбоксильных групп, соединённых с углеводородным радикалом или атомом водорода.

Получение: В лаборатории карбоновые кислоты можно получить из их солей, действуя на них серной кислотой при нагревании, например:

2СН 3 – СООNa + H 2 SO 4 ® 2СН 3 – СООН + Na 2 SO 4
В промышленности получают окислением углеводородов, спиртов и альдегидов.

Химические свойства:
1. Из-за смещения электронной плотности от гидроксильной группы O–H к сильно

поляризованной карбонильной группе C=O молекулы карбоновых кислот способны к

электролитической диссоциации: R–COOH → R–COO - + H +

2.Карбоновые кислоты обладают свойствами, характерными для минеральных кислот. Они реагируют с активными металлами, основными оксидами, основаниями, солями слабых кислот. 2СH 3 COOH + Mg → (CH 3 COO) 2 Mg + H 2 ­

2СH 3 COOH + СaO → (CH 3 COO) 2 Ca + H 2 O

H–COOH + NaOH → H–COONa + H 2 O

2СH 3 CH 2 COOH + Na 2 CO 3 → 2CH 3 CH 2 COONa + H 2 O + CO 2 ­

СH 3 CH 2 COOH + NaHCO 3 → CH 3 CH 2 COONa + H 2 O + CO 2 ­

Карбоновые кислоты слабее многих сильных минеральных кислот

СH 3 COONa + H 2 SO 4 (конц.) →CH 3 COOH + NaHSO 4

3. Образование функциональных производных:

a) при взаимодействии со спиртами (в присутствии концентрированной H 2 SO 4) образуются сложные эфиры.

Образование сложных эфиров при взаимодействии кислоты и спирта в присутствии минеральных кислот называется реакцией этерификации. CH 3 – –OH + HO–CH 3 D CH 3 – –OCH 3 + H 2 O

уксусная кислота метиловый метиловый эфир

спирт уксусной кислоты

Общая формула сложных эфиров R– –OR’ где R и R" – углеводородные радикалы: в сложных эфирах муравьиной кислоты – формиатах –R=H.

Обратной реакцией является гидролиз (омыление) сложного эфира:

CH 3 – –OCH 3 + HO–H DCH 3 – –OH + CH 3 OH.

Глицери́н (1,2,3-тригидроксипропан; 1,2,3-пропантриол) (гликос - сладкий) химическое соединение с формулой HOCH2CH(OH)-CH2OH или C3H5(OH)3. Простейший представитель трёхатомных спиртов. Представляет собой вязкую прозрачную жидкость.

Глицерин - бесцветная, вязкая, гигроскопичная жидкость, неограниченно растворимая в воде. Сладкий на вкус(гликос - сладкий). Хорошо растворяет многие вещества.

Глицерин этерефицируется карбоновыми и минеральными кислотами.

Эфиры глицерина и высших карбоновых кислот - жиры.

Жиры - это смеси сложных эфиров, образованных трехатомным спиртом глицерином и высшими жирными кислотами. Общая формула жиров, где R - радикалы высших жирных кислот:

Чаще всего в состав жиров входят предельные кислоты: пальмитиновая С15Н31СООН и стеариновая С17Н35СООН, и непредельные кислоты: олеиновая С17Н33СООН и линолевая С17Н31СООН.

Общее название соединений карбоновых кислот с глицерином - триглицериды.

б) при воздействии водоотнимающих реагентов в результате межмолекулярной

дегидратации образуются ангидриды

CH 3 – –OH + HO– –CH 3 →CH 3 – –O– –CH 3 + H 2 O

Галогенирование. При действии галогенов (в присутствии красного фосфора) образуются α-галогензамещённые кислоты:

Применение:в пищевой и химической промышленности (производство ацетилцеллюлозы, из которой получают ацетатное волокно, органическое стекло, киноплёнку; для синтеза красителей, медикаментов и сложных эфиров).

Вопросы для закрепления теоретического материала

1 Какие органические соединения относятся к карбоновым кислотам?

2 Почему среди карбоновых кислот нет газообразных веществ?

3 Чем обусловлены кислотные свойства карбоновых кислот?

4 Почему изменяется цвет индикаторов в растворе уксусной кислоты?

5 Какие химические свойства для глюкозы и глицерина являются общими, и чем эти вещества отличаются друг от друга? Напишите уравнения соответствующих реакций.

Задание

1. Повторить теоретический материал по теме практического занятия.

2. Ответить на вопросы для закрепления теоретического материала.

3. Исследовать свойства кислородсодержащих органических соединений.

4. Оформить отчет.

Инструкция по выполнению

1. Ознакомьтесь с правилами по технике безопасности при работе в химической лаборатории и распишитесь в журнале по ТБ.

2. Выполните опыты.

3. Результаты внесите в таблицу.

Опыт № 1 Испытание раствора уксусной кислоты лакмусом

Разбавьте полученную уксусную кислоту небольшим количеством воды и прибавьте несколько капель синего лакмуса или опустите в пробирку индикаторную бумажку.

Опыт №2 Взаимодействие уксусной кислоты с карбонатом кальция

В пробирку насыпьте немного мела (карбоната кальция) и прилейте раствор уксусной

Опыт № 3 Свойства глюкозы и сахарозы

а) В пробирку внесите 5 капель раствора глюкозы, каплю раствора соли меди (II) и при взбалтывании несколько капель раствора гидроксида натрия до образования светло - синего раствора. Такой опыт проделывали с глицерином.

б) Полученные растворы нагрейте. Что наблюдаете?

Опыт № 4 Качественная реакция на крахмал

К 5-6 каплям крахмального клейстера в пробирке прибавьте каплю спиртового раствора йода.

Образец отчёта

Лабораторная работа № 9 Химические свойства кислородсодержащих органических соединений.

Цель:формировать умения проводить наблюдения и делать выводы, записывать уравнения соответствующих реакций в молекулярном и ионном видах.

Вывод делать в соответствии с целью работы

Литература 0-2 с. 94-98

Лабораторная работа № 10

    Органические вещества класс соединений, в состав которых входит углерод (за исключением карбидов, карбонатов, оксидов углерода и цианидов). Название «органические соединения» появилось на ранней стадии развития химии и говорит само за себя ученые … Википедия

    Один из важнейших типов органических соединений. В их состав входит азот. Они содержат в молекуле связь углерод водород и азот углерод. В нефти содержится азотсодержащий гетероцикл пиридин. Азот входит в состав белков,нуклеиновых кислот и… … Википедия

    Германийорганические соединения металлоорганические соединения содержащие связь «германий углерод». Иногда ими называются любые органические соединения, содержащие германий. Первое германоорганическое соединение тетраэтилгерман, было… … Википедия

    Кремнийорганические соединения соединения, в молекулах которых имеется непосредственная связь кремний углерод. Кремнийорганические соединения иногда называют силиконами, от латинского названия кремния силициум. Кремнийорганические соединения… … Википедия

    Органические соединения, органические вещества класс химических соединений, в состав которых входит углерод (за исключением карбидов, угольной кислоты, карбонатов, оксидов углерода и цианидов). Содержание 1 История 2 Класси … Википедия

    Металлорганические соединения (МОС) органические соединения, в молекулах которых существует связь атома металла с атомом/атомами углерода. Содержание 1 Типы металлоорганических соединений 2 … Википедия

    Галогенорганические соединения органические вещества, содержащие хотя бы одну связь C Hal углерод галоген. Галогенорганические соединения, в зависимости от природы галогена, подразделяют на: Фторорганические соединения;… … Википедия

    Металлоорганические соединения(МОС) органические соединения, в молекулах которых существует связь атома металла с атомом/атомами углерода. Содержание 1 Типы металлоорганических соединений 2 Способы получения … Википедия

    Органические соединения, в которых присутствует связь олово углерод, могут содержать как двухвалентное, итак и четырёхвалентное олово. Содержание 1 Методы синтеза 2 Типы 3 … Википедия

    - (гетероциклы) органические соединения, содержащие циклы, в состав которых наряду с углеродом входят и атомы других элементов. Могут рассматриваться как карбоциклические соединения с гетерозаместителями (гетероатомами) в цикле. Наиболее… … Википедия

Кислород придает органическим веществам целый комплекс характерных свойств.

Кислород двухвалентен, имеет две валентные электронные пары и характеризуется высокой электроотрицателыюстью (х = 3,5). Между атомами углерода и кислорода образуются прочные химические связи, что видно уже на примере молекул С0 2 . Одинарная связь С-0 (£ св = 344 кДж/моль) почти так же прочна, как связь С-С (Е са = 348 кДж/моль), а двойная связь С=0 (Е св = 708 кДж/моль) существенно прочнее, чем связь С=С (Е св = = 620 кДж/моль). Поэтому в молекулах органических веществ обычны превращения, ведущие к образованию двойных связей С=0. По этой же причине неустойчива угольная кислота:

Гидроксогруппа, находящаяся при двойной связи, превращается в окси- группу (см. выше).

Кислород придаст полярность молекулам органических веществ. Между молекулами усиливается притяжение, значительно повышаются температуры плавления и кипения. При обычных условиях среди кислородсодержащих веществ очень мачо газов - только эфир СН 3 ОСН 3 , формальдегид СН 2 0 и оксид этилена СН 2 СН 2 0.

Кислород способствует образованию водородных связей и как донор, и как акцептор водорода. Водородные связи усиливают притяжение молекул, а в случае достаточно сложных молекул придают им определенную пространственную структуру. Влияние полярности и водородных связей на свойства вещества видно на примере углеводорода, кетона и спирта

Полярностью и образованием водородных связей обусловлена хорошая растворимость кислородсодержащих органических веществ в воде.

Кислород в той или иной мере придает органическим веществам кислотные свойства. Кроме класса кислот, свойства которых очевидны из названия, кислотные свойства проявляют фенолы и спирты.

Еще одно общее свойство кислородсодержащих веществ заключается в легкой окисляемости атома углерода, связанного одновременно с кислородом и водородом. Это очевидно из следующих цепочек реакций, которые обрываются при потере углеводом последнего атома водовода:

содержит оксигруппу и считается гетерофункциональной кислотой.

Спирты и простые эфиры

Название целого класса органических веществ спирты (от лат. "spiritus" - дух) происходит от "действующего начала" смеси, получающейся при сбраживании плодовых соков и других систем, содержащих сахар. Это действующее начало - винный спирт, этанол С2Н5ОН, отделяется от воды и нелетучих растворенных веществ при перегонке смеси. Другое название спирта - алкоголь - арабского происхождения.

Спиртами называются органические соединения, в которых имеется гидроксогруппа, связанная с $р 3 -атомом углерода углеводородного радикала.

Спирты можно также рассматривать как продукты замещения одного атома водорода в воде на углеводородный радикал. Спирты образуют гомологические ряды (табл. 22.5), различающиеся по природе радикалов и числу гидроксогрупп.

Таблица 22.5

Некоторые гомологические ряды спиртов

"Тликолями и глицеринами называются полифункциональные спирты с ОН-группами у соседних атомов углерода.

Гидроксогруппа при ненасыщенных атомах углерода неустойчива, так как превращается в карбонильную группу. Виниловый спирт находится в ничтожном количестве в равновесии с альдегидом:

Есть вещества, в которых гидроксогруппа связана с я/г-атомом углерода ароматического кольца, по они рассматриваются в качестве особого класса соединений - фенолов.

В спиртах возможна изомерия углеродного скелета и положения функциональной группы. У непредельных спиртов возникает также изомерия положения кратной связи и пространственная изомерия. Изомерны спиртам соединения класса простых эфиров. Среди спиртов различают разновидности, называемые первичными, вторичными и третичными спиртами. Это связано с характером углеродного атома, при котором находится функциональная группа.

Пример 22.12. Напишите формулы первичного, вторичного и третичного спиртов с четырьмя атомами углерода.

Решение.

Рассмотрим подробнее гомологический ряд предельных спиртов. Первые 12 членов этого ряда представляют собой жидкости. Метанол, этанол и пропанол смешиваются с водой в любых соотношениях вследствие структурного сходства с водой. Далее по гомологическому ряду растворимость спиртов уменьшается, так как большие (по числу атомов) углеводородные радикалы все сильнее вытесняются из водной среды, подобно углеводородам. Это свойство называют гидрофобностъю. В противоположность радикалу гидроксогруппа притягивается к воде, образуя водородную связь с водой, т.е. проявляет гидрофильность. У высших спиртов (пять и более атомов углерода) проявляется свойство поверхностной активности - способность концентрироваться у поверхности воды за счет выталкивания гидрофобного радикала (рис. 22.3).

Рис. 22.3.

Поверхностно-активные вещества обволакивают капли жидкостей и способствуют образованию устойчивых эмульсий. На этом основано действие моющих средств. Поверхностную активность могут проявлять не только спирты, но и вещества других классов.

Большинство растворимых в воде спиртов ядовиты. К наименее ядовитым относятся этанол и глицерин. Но, как известно, этанол опасен тем, что вызывает привыкание человека к его употреблению. Простейший из спиртов метанол похож на этанол по запаху, но крайне ядовит. Известно множество случаев отравления людей в результате ошибочного приема внутрь

метанола вместо этанола. Этому способствует и огромный объем промышленного применения метанола. Простейший двухатомный спирт этиленгликоль С 2 Н 4 (ОН) 2 в большом количестве используется для производства полимерных волокон. Раствор его применяется в качестве антифриза для охлаждения автомобильных двигателей.

Получение спиртов. Рассмотрим несколько общих способов.

1. Гидролиз галогенпроизводных углеводородов. Реакции проводят в щелочной среде:

Пример 22.13. Напишите реакции получения этиленгликоля методом гидролиза галогенпроизводных, взяв исходное вещество этилен.

2. Присоединение воды к алкенам. Наибольшее значение имеет реакция присоединения воды к этилену с образованием этанола. Реакция достаточно быстро идет при высокой температуре, но при этом равновесие сильно смещается влево и понижается выход спирта. Поэтому необходимо создание высокого давления и применение катализатора, позволяющего достичь той же скорости процесса при более низкой температуре (подобно условиям синтеза аммиака). Этанол получают гидратацией этилена при -300°С и давлении 60-70 атм:

Катализатором служит фосфорная кислота, нанесенная на оксид алюминия.

3. Имеются особые способы получения этанола и метанола. Первый получается широко известным биохимическим способом сбраживания углеводов, которые сначала расщепляются до глюкозы:

Метанол получают синтетическим путем из неорганических веществ:

Реакцию проводят при 200-300°С и давлении 40- 150 атм с применением сложного катализатора Си0/2п0/А1 2 0 3 /Сг 2 0 3 . Важность этого промышленного процесса понятна из того, что ежегодно производится более 14 млн т метанола. Он используется главным образом в органическом синтезе для метилирования органических веществ. Приблизительно в таком же количестве производится и этанол.

Химические свойства спиртов. Спирты могут горсть и окисляться. Смесь этилового спирта с углеводородами иногда используется в качестве горючего для автомобильных двигателей. Окисление спиртов без нарушения углеродной структуры сводится к потере водорода и присоединению атомов кислорода. В промышленных процессах пары спиртов окисляются кислородом. В растворах спирты окисляются перманганатом калия, дихроматом калия и другими окислителями. Из первичного спирта при окислении получается альдегид:

При избытке окислителя альдегид сразу же окисляется до органической кислоты:

Вторичные спирты окисляются до кетонов:

Третичные спирты могут окисляться только в жестких условиях с частичной деструкцией углеродного скелета.

Кислотные свойства. Спирты реагируют с активными металлами с выделением водорода и образованием производных с общим названием алкоксиды (метоксиды, этоксиды и т.д.):

Реакция идет более спокойно, чем аналогичная реакция с водой. Выделяющийся водород не загорается. Этим способом уничтожают остатки натрия после химических экспериментов. Реакция такого рода означает, что спирты проявляют кислотные свойства. Это следствие полярности связи О-Н. Однако спирт практически не реагирует со щелочью. Данный факт позволяет уточнить силу кислотных свойств спиртов: это более слабые кислоты, чем вода. Этоксид натрия практически полностью гидролизуется с образованием раствора спирта и щелочи. Несколько сильнее кислотные свойства гликолей и глицеринов вследствие взаимного индуктивного эффекта ОН-групп.

Многоатомные спирты образуют комплексные соединения с ионами некоторых ^/-элементов. В щелочной среде ион меди замещает сразу два иона водорода в молекуле глицерина с образованием комплекса синего цвета:

При повышении концентрации ионов Н + (для этого добавляют кислоту) равновесие смещается влево и окраска исчезает.

Реакции нуклеофильного замещения гидроксогруппы. Спирты реагируют с хлороводородом и другими галогеноводородами:

Реакция катализируется ионом водорода. Сначала Н + присоединяется к кислороду, акцептируя его электронную пару. В этом проявляются основные свойства спирта:

Образующийся ион неустойчив. Он не может быть выделен из раствора в составе твердой соли подобно иону аммония. Присоединение Н + вызывает дополнительное смещение электронной пары от углерода к кислороду, что облегчает атаку нуклеофильной частицы на углерод:

Связь углерода с хлорид-ионом усиливается по мере разрыва связи углерода с кислородом. Реакция заканчивается освобождением молекулы воды. Однако реакция обратима, и при нейтрализации хлороводорода равновесие смещается влево. Происходит гидролиз.

Гидроксогруппа в спиртах замещается также в реакциях с кислородсодержащими кислотами с образованием эфиров. Глицерин с азотной кислотой образует нитроглицерин , применяемый как средство, снимающее спазмы сосудов сердца:

Из формулы понятно, что традиционное название вещества неточно, так как фактически это нитрат глицерина - эфир азотной кислоты и глицерина.

При нагревании этанола с серной кислотой одна молекула спирта выступает как нуклеофильный реагент по отношению к другой. В результате реакции образуется простой эфир этоксиэтан:

На схеме выделены некоторые атомы, чтобы легче было проследить их переход в продукты реакции. Одна молекула спирта сначала присоединяет катализатор - ион Н + , а кислородный атом другой молекулы передает электронную пару углероду. После отщепления воды и диссоциации Н 4 получается молекула простого эфира. Эту реакцию называют еще межмолекулярной дегидратацией спирта. Есть также метод получения простых эфиров с разными радикалами:

Простые эфиры более летучие вещества, чем спирты, так как между их молекулами не образуются водородные связи. Этанол кипит при 78°С, а его изомер эфир СН3ОСН3 - при -23,6°С. Простые эфиры не гидролизуются до спиртов при кипячении с растворами щелочей.

Дегидратация спиртов. Спирты могут разлагаться с отщеплением воды так же, как разлагаются галоген производные углеводородов с отщеплением гало- геноводорода. В получении спиртов из алкена и воды (см. выше) присутствует и обратная реакция элиминирования воды. Разница в условиях присоединения и отщепления воды заключается в том, что присоединение идет под давлением при избытке паров воды относительно алкена, а отщепление происходит от отдельно взятого спирта. Такая дегидратация называется внутримолекулярной. Она идет также в смеси спирта с серной кислотой при ~150°С.