Эксперимент в физике. Физический практикум

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Исследование зависимости давления твердых тел от силы давления и от площади поверхности, на которую действует сила давления

В 7 классе мы выполняли задание по расчету давления, которое производит ученик, стоя на полу. Задание интересное, познавательное и имеет большое практическое значение в жизни человека. Мы решили изучить этот вопрос.

Цель: исследовать зависимость давления от силы и площади поверхности, на которую действует тело Оборудование: весы; обувь с разной площадью подошвы; бумага в клетку; фотоаппарат.

Для того чтобы вычислить давление нам необходимо знать площадь и силу Р= F/S P- давление (Па) F- сила (Н) S- площадь (м кв.)

ЭКСПЕРИМЕНТ-1 З ависимость давления от площади, при неизменной силе Цель: определить зависимость давления твердого тела от площади опоры. Методика вычисления площади тел неправильной формы такова: - подсчитываем количество квадратов целых, - подсчитываем количество квадратов известной площади не целых и делим пополам, -суммируем площади целых и нецелых квадратов Для этого я мы должны с помощью карандаша обвести края подметки и каблука; посчитать число полных (В) и неполных клеток (С) и определить площадь одной клетки (S к); S 1 = (В + С/2) · S к Ответ получим в см кв., которые нужно перевести в м кв. 1см кв.=0,0001 м кв.

Для того чтобы вычислить силу нам понадобиться масса исследуемого тела F=m*g F – сила тяжести m - масса тела g – ускорение свободно падения

Данные для нахождения давления № опыта Обувь с разной S S (м кв.) F (Н) P (Па) 1 Туфли на шпильке 2 Туфли на платформе 3 Туфли на плоской подошве

Давление, оказываемое на поверхность Туфли на шпильке р= Туфли на платформе р= Туфли на плоской подошве р= Вывод: давление твёрдого тела на опору с увеличением площади уменьшается

Какую обувь носить? - Учёные выяснили, что давление, оказываемое одной шпилькой приблизительно равно давлению, которое оказывают 137 гусеничных тракторов. - Слон давит на 1 квадратный сантиметр поверхности в 25 раз с меньшим весом, чем женщина на 13 сантиметровом каблуке. Каблуки – главнейшая причина возникновения плоскостопии у женщин

ЭКСПЕРИМЕНТ-2 Зависимость давления от массы, при неизменной площади Цель: определить зависимость давления твердого тела от его массы.

Как зависит давление от массы? Масса ученика m= Р= Масса ученика с ранцем на спине m= Р=


По теме: методические разработки, презентации и конспекты

Организация опытно-экспериментальной работы по внедрению системы мониторинга качества обучения в практику работы учителя-предметника

Мониторинг в образовании не заменяет и не ломает традиционную систему внутришкольного управления и контроля, а способствует обеспечению ее стабильности, долгосрочности и надежности. Он проводится там,...

1. Пояснительная записка к экспериментальной работе по теме «Формирование грамматической компетенции у дошкольников в условиях логопункта".2. Календарно-тематический план логопедических занятий...

Программа даёт чёткую систему изучения творчества Ф.И. Тютчева в 10 классе....

)

преподаватель физики
ГАОУ НПО Профессиональное училище №3 г.Бузулук

Pedsovet.su – тысячи материалов для ежедневной работы учителя

Опытно-экспериментальная работа по развитию умения учащихся профессиональных училищ решать задачи по физике.

Решение задач является одним из основных способов развития мышления учащихся, а также закрепления их знаний. Поэтому проанализировав сложившуюся ситуацию, когда некоторые учащиеся не могли решить даже элементарную задачу, не только из-за проблем с физикой, но и с математикой. Моя задача состояла из математической стороны и физической.

В своей работе по преодолению математических затруднений учащихся я использовала опыт учителей Н.И. Одинцовой (г.Москва, Московский педагогический государственный университет) и Е.Е. Яковец(г.Москва, средняя школа №873) с коррекционными карточками. Карточки составлены по образцу карточек, используемых в курсе математики, но ориентированы на курс физики. Карточки сделаны по всем вопросам курса математики, вызывающим трудности у учащихся на уроках физики(«Перевод единиц измерения», «Использование свойств степени с целым показателем», «Выражение величины из формулы» и др.)

Коррекционные карточки имеют сходные структуры:

    правило→ образец→ задание

    определение, действия→ образец→ задание

    действия → образец→ задание

Коррекционные карточки применяются в следующих случаях:

    Для подготовки к контрольной работе и как материал для самостоятельных занятий.

Учащиеся на уроке или дополнительном занятии по физике перед контрольной работой, зная свои пробелы по математике, могут получить конкретную карточку по слабо усвоенному математическому вопросу, позаниматься и устранить пробел.

    Для работы над математическими ошибками, допущенными в контрольной.

После проверки контрольной работы педагог анализирует математические затруднения учащихся и обращает их внимание на допущенные ошибки, которые они ликвидируют на уроке либо на дополнительном занятии.

    Для работы с учащимися по подготовке к ЕГЭ и различным олимпиадам.

При изучении очередного физического закона, и в конце изучения небольшой главы или раздела предлагаю учащимся первый раз совместно, а затем самостоятельно(домашнее задание) заполнить таблицу№2. При этом даю пояснение, что такие таблицы помогут нам при решении задач.

Таблица № 2

Наименование

физической величины

С этой целью на первом уроке по решению задач показываю учащимся на конкретном примере как пользоваться этой таблицей. И предлагаю алгоритм решения элементарных физических задач.

    Установить, какая величина неизвестна в задаче.

    Пользуясь таблице №1, выяснить обозначение, единицы измерения величины, а также математический закон, связывающий неизвестную величину и заданные в задаче величины.

    Проверить полноту данных, необходимых для решения задачи. При их недостатке, использовать соответствующие значения из справочной таблицы.

    Оформить краткую запись, аналитическое решение и численный ответ задачи в общепринятых обозначениях.

Обращаю внимание учащихся, что алгоритм достаточно прост и универсален. Он может применяться к решению элементарной задачи практически из любого раздела школьной физики. Позднее элементарные задачи будут входить как вспомогательные в задачи более высокого уровня.

Таких алгоритмов решения задач по конкретным темам достаточно много, но запомнить их все практически невозможно, поэтому целесообразнее научить учащихся не методам решения отдельных задач, а методу поиска их решения.

Процесс решения задачи заключается в постепенном соотнесении условия задачи с её требованием. Начиная изучать физику, учащиеся не имеют опыта решения физических задач, но некоторые элементы процесса решения задач по математике могут быть перенесены на решение задач по физике. Процесс обучения учащихся умению решать физические задачи основывается на сознательном формировании у них знаний о средствах решения.

С этой целью на первом уроке по решению задач следует познакомить учащихся с физической задачей: представить им условие задачи как конкретную сюжетную ситуацию, в которой происходит некоторое физическое явление.

Разумеется, что процесс формирования у учащихся умения самостоятельно решать задачи начинается с выработки у них умения выполнять простейшие операции. В первую очередь учащихся следует научить правильно и полно записывать краткую запись («Дано»). Для этого им предлагается выделить из текста нескольких задач структурные элементы явления: материальный объект, его начальное и конечное состояния, воздействующий объект и условия их взаимодействия. По этой схеме сначала учитель, а затем каждый из учеников самостоятельно анализируют условия полученных задач.

Проиллюстрируем сказанное примерами анализа условия следующих физических задач (таблица№3):

    Эбонитовый шарик, заряженный отрицательно, подвешен на шёлковой нити. Изменится ли сила её натяжения, если второй такой же, но положительно заряженный шарик поместить в точке подвеса?

    Если заряженный проводник покрыт пылью, то он быстро теряет свой заряд. Почему?

    Между двумя пластинами, расположенными горизонтально в вакууме на расстояние 4,8 мм друг от друга, находятся в равновесии отрицательно заряженная капелька масла массой 10 нг. Сколько «избыточных» электронов имеет капля, если на пластины подано напряжение 1кВ?

Таблица № 3

Структурные элементы явления

Безошибочное нахождение структурных элементов явления в тексте задачи всеми учащимися (после анализа 5-6 задач) позволяет перейти к следующей части урока, имеющей целью усвоение учащимися последовательности выполнения операций. Таким образом, в общей сложности учащиеся анализируют около 14 задач (не доводя решения до конца), что оказывается достаточным для обучения выполнению действия «выделение структурных элементов явления».

Таблица №4

Карточка – предписание

Задание: выразите структурные элементы явления в

физических понятиях и величинах

Ориентировочные признаки

    Замените указанный в задаче материальный объект соответствующим идеализированным объектом Выразите характеристики начального объекта с помощью физических величин. Замените указанный в задаче воздействующий объект соответствующим идеализированным объектом. Выразите характеристики воздействующего объекта с помощью физических величин. Выразите характеристики условий взаимодействия с помощью физических величин. Выразите характеристики конечного состояния материального объекта с помощью физических величин.

Далее учащиеся обучаются выражению структурных элементов рассматриваемого явления и их характеристик на языке физической науки, что чрезвычайно важно, поскольку все физические законы сформулированы для определённых моделей, и для реального явления, описанного в задаче, должна быть построена соответствующая модель. Например: «маленький заряженный шарик» - точечный заряд; «тонкая нить» - пренебрежимо мала масса нити; «шёлковая нить» - нет утёчки заряда и т.п.

Процесс формирования этого действия аналогичен предыдущему: сначала преподаватель в беседе с учащимися показывает на 2-3 примерах, как нужно его выполнять, затем учащиеся производят операции самостоятельно.

Действие «составление плана решения задачи» формируется у учащихся сразу, так как составляющие операции уже известны учащимся и освоены ими. После показа образца выполнения действия каждому учащемуся для самостоятельной работы выдаётся карточка – предписание «Составление плана решения задачи». Формирование этого действия проводится до тех пор, пока оно не будет выполняться безошибочно всеми учащимися.

Таблица №5

Карточка – предписание

«Составление плана решения задачи»

Выполняемые операции

    Определите, какие характеристики материального объекта изменились в результате взаимодействия. Выясните причину, обусловливающую данное изменение состояния объекта. Запишите причинно-следственную связь между воздействием при данных условиях и изменением состояния объекта в виде уравнения. Выразите каждый член уравнения через физические величины, характеризующие состояния объекта и условия взаимодействия. Выделите искомую физическую величину. Выразите искомую физическую величину через другие известные.

Четвёртый и пятый этапы решения задач проводятся традиционно. После освоения всех действий, составляющих содержание метода поиска решения физической задачи, полный их перечень выписывается на карточку, которая служит учащимся ориентиром при самостоятельном решении задач в течение нескольких уроков.

Для меня этот метод ценен тем, что усвоенный учащимися при изучении одного из разделов физики (когда он становится стилем мышления), успешно применяется при решении задач любого раздела.

В ходе эксперимента возникла необходимость напечатать алгоритмы решения задач на отдельных листах для работы учащимися не только на уроке и после урока, но и дома. В результате работы по развитию предметной компетентности по решению задач была скомплектована папка дидактический материал для решения задач, которым мог воспользоваться любой учащийся. Затем совместно с учащимися было сделано несколько копий таких папок, на каждый стол.

Использование индивидуального подхода помогало формировать у учащихся важнейших компонентов учебной деятельности - самооценки и самоконтроля. Правильность хода решения задачи проверялась учителем и учащимися - консультантами, а затем всё больше учащихся все чаще стали помогать друг другу, непроизвольно втягиваясь в процесс решения задач.

Значение и виды самостоятельного эксперимента учащихся по физике. При обучении физике в средней школе экспериментальные умения формируются при выполнении самостоятельных лабораторных работ.

Обучение физике нельзя представить только в виде теоретических занятий, даже если учащимся на занятиях показываются демонстрационные физические опыты. Ко всем видам чувственного восприятия надо обязательно добавить на занятиях “работу руками”. Это достигается при выполнении учащимися лабораторного физического эксперимента, когда они сами собирают установки, проводят измерения физических величин, выполняют опыты. Лабораторные занятия вызывают у учащихся очень большой интерес, что вполне естественно, так как при этом происходит познание учеником окружающего мира на основе собственного опыта и собственных ощущений.

Значение лабораторных занятий по физике заключается в том, что у учащихся формируются представления о роли и месте эксперимента в познании. При выполнении опытов у учащихся формируются экспериментальные умения, которые включают в себя как интеллектуальные умения, так и практические. К первой группе относятся умения: определять цель эксперимента, выдвигать гипотезы, подбирать приборы, планировать эксперимент, вычислять погрешности, анализировать результаты, оформлять отчет о проделанной работе. Ко второй группе относятся умения: собирать экспериментальную установку, наблюдать, измерять, экспериментировать.

Кроме того, значение лабораторного эксперимента заключается в том, что при его выполнении у учащихся вырабатываются такие важные личностные качества, как аккуратность в работе приборами; соблюдение чистоты и порядка на рабочем месте, в записях, которые делаются во время эксперимента, организованность, настойчивость в получении результата. У них формируется определенная культура умственного и физического труда.

В практике обучения физике в школе сложились три вида лабораторных занятий:

Фронтальные лабораторные работы по физике;

Физический практикум;

Домашние экспериментальные работы по физике.

Фронтальные лабораторные работы - это такой вид практических работ, когда все учащиеся класса одновременно выполняют однотипный эксперимент, используя одинаковое оборудование. Фронтальные лабораторные работы выполняются чаще всего группой учащихся, состоящей из двух человек, иногда имеется возможность организовать индивидуальную работу. Соответственно в кабинете должно быть 15-20 комплектов приборов для фронтальных лабораторных работ. Общее количество таких приборов будет составлять около тысячи штук. Названия фронтальных лабораторных работ приводятся в учебных программах. Их достаточно много, они предусмотрены практически по каждой теме курса физики. Перед проведением работы учитель выявляет подготовленность учащихся к сознательному выполнению работы, определяет вместе с ними ее цель, обсуждает ход выполнения работы, правила работы с приборами, методы вычисления погрешностей измерений. Фронтальные лабораторные работы не очень сложны по содержанию, тесно связаны хронологически с изучаемым материалом и рассчитаны, как правило, на один урок. Описания лабораторных работ можно найти в школьных учебниках по физике.

Физический практикум проводится с целью повторения, углубления, расширения и обобщения полученных знаний из разных тем курса физики; развития и совершенствования у учащихся экспериментальных умений путем использования более сложного оборудования, более сложного эксперимента; формирования у них самостоятельности при решении задач, связанных с экспериментом. Физический практикум не связан по времени с изучаемым материалом, он проводится, как правило, в конце учебного года, иногда - в конце первого и второго полугодий и включает серию опытов по той или иной теме. Работы физического практикума учащиеся выполняют в группе из 2-4 человек на различном оборудовании; на следующих занятиях происходит смена работ, что делается по специально составленному графику. Составляя график, учитывают число учащихся в классе, число работ практикума, наличие оборудования. На каждую работу физического практикума отводятся два учебных часа, что требует введения в расписание сдвоенных уроков по физике. Это представляет затруднения. По этой причине и из-за недостатка необходимого оборудования практикуют одночасовые работы физического практикума. Следует отметить, что предпочтительными являются двухчасовые работы, поскольку работы практикума сложнее, чем фронтальные лабораторные работы, выполняются они на более сложном оборудовании, причем доля самостоятельного участия учеников значительно больше, чем в случае фронтальных лабораторных работ. Физические практикумы предусмотрены в основном программами 9-11 классов. В каждом классе на практикум отводится примерно 10 часов учебного времени. К каждой работе учитель должен составить инструкцию, которая должна содержать: название, цель, список приборов и оборудования, краткую теорию, описание неизвестных учащимся приборов, план выполнения работы. После проведения работы учащиеся должны сдать отчет, который должен содержать: название работы, цель работы, список приборов, схему или рисунок установки, план выполнения работы, таблицу результатов, формулы, по которым вычислялись значения величин, вычисления погрешностей измерений, выводы. При оценке работы учащихся в практикуме следует учитывать их подготовку к работе, отчет о работе, уровень сформированности умений, понимание теоретического материала, используемых методов экспериментального исследования.

Домашние экспериментальные работы. Домашние лабораторные работы - простейший самостоятельный эксперимент, который выполняется учащимися дома, вне школы, без непосредственного контроля со стороны учителя за ходом работы.

Главные задачи экспериментальных работ этого вида:

Формирование умения наблюдать физические явления в природе и в быту;

Формирование умения выполнять измерения с помощью измерительных средств, использующихся в быту;

Формирование интереса к эксперименту и к изучению физики;

Формирование самостоятельности и активности.

Домашние лабораторные работы могут быть классифицированы в зависимости от используемого при их выполнении оборудования:

Работы, в которых используются предметы домашнего обихода и подручные материалы (мерный стакан, рулетка, бытовые весы и т.п.);

Работы, в которых используются самодельные приборы (рычажные весы, электроскоп и др.);

Работы, выполняемые на приборах, выпускаемых промышленностью.

Классификация взята из .

В своей книге С.Ф. Покровский показал, что домашние опыты и наблюдения по физике, проводимые самими учащимися: 1)дают возможность нашей школе расширить область связи теории с практикой; 2)развивают у учащихся интерес к физике и технике; 3)будят творческую мысль и развивают способность к изобретательству; 4)приучают учащихся к самостоятельной исследовательской работе; 5)вырабатывают у них ценные качества: наблюдательность, внимание, настойчивость и аккуратность; 6)дополняют классные лабораторные работы тем материалом, который никак не может быть выполнен в классе (ряд длительных наблюдений, наблюдение природных явлений и прочее), и 7)приучают учащихся к сознательному, целесообразному труду.

Домашние опыты и наблюдения по физике имеют свои характерные особенности, являясь чрезвычайно полезным дополнением к классным и вообще школьным практическим работам.

Уже достаточно давно рекомендовано учащимся иметь домашнюю лабораторию. в нее включались в первую очередь линейки, мензурка, воронка, весы, разновесы, динамометр, трибометр, магнит, часы с секундной стрелкой, железные опилки, трубки, провода, батарейка, лампочка. Однако, несмотря на то, что в набор включены весьма простые приборы, это предложение не получило распространения.

Для организации домашней экспериментальной работы учащихся можно использовать так называемую мини-лабораторию, предложенную учителем-методистом Е.С. Объедковым, в которую входят многие предметы домашнего обихода (бутылочки от пенициллина, резинки, пипетки, линейки и т.п.) что доступно практически каждому школьнику. Е.С. Объедков разработал весьма большое число интересных и полезных опытов с этим оборудованием.

Появилась также возможность использовать ЭВМ для проведения в домашних условиях модельного эксперимента. Понятно, что соответствующие задания могут быть предложены только тем учащимся, у которых дома есть компьютер и програмно-педагогические средства.

Чтобы ученики хотели учиться, необходимо чтобы процесс обучения был интересен для них. Что же интересно ученикам? Для получения ответа на этот вопрос обратимся к выдержкам из статьи И.В. Литовко, МОС(П)Ш №1 г. Свободного “Домашние экспериментальные задания как элемент творчества учащихся”, опубликованной в интернете. Вот что пишет И.В. Литовко:

“Одна из важнейших задач школы - научить учащихся учиться, укрепить их способность к саморазвитию в процессе образования, для чего необходимо сформировать у школьников соответствующие устойчивые желания, интересы, умения. Большую роль в этом играют экспериментальные задания по физике, представляющие по своему содержанию кратковременные наблюдения, измерения и опыты, тесно связанные с темой урока. Чем больше наблюдений физических явлений, опытов проделает учащийся, тем лучше он усвоит изучаемый материал.

Для изучения мотивации учащихся им были предложены следующие вопросы и получены результаты:

Что вам нравится при изучении физике ?

а)решение задач -19%;

б)демонстрация опытов -21%;

Эксперимент в физике. Физический практикум. Шутов В.И., Сухов В.Г., Подлесный Д.В.

М.: Физматлит, 2005. - 184с.

Описаны экспериментальные работы, входящие в программу физико-математических лицеев в рамках физического практикума. Пособие представляет собой попытку создания единого руководства для проведения практических занятий в классах и школах с углубленным изучением физики, а также для подготовки к экспериментальным турам олимпиад высокого уровня.

Вводный материал традиционно посвящен методам обработки экспериментальных данных. Описание каждой экспериментальной работы начинается с теоретического введения. В экспериментальной части приводятся описания экспериментальных установок и задания, регламентирующие последовательность работы учащихся при проведении измерений. Приводятся образцы рабочих таблиц для записи результатов измерений, рекомендации по методам обработки и представления результатов и требования к оформлению отчетов. В конце описаний предлагаются контрольные вопросы, ответы на которые учащиеся должны подготовить к защите работ.

Для школ и классов с углубленным изучением физики.

Формат: djvu / zip

Размер: 2 ,6 Мб

/ Download файл

ВВЕДЕНИЕ

Физический практикум является неотъемлемой частью курса физики. Ясное и глубокое усвоение основных законов физики и ее методов невозможно без работы в физической лаборатории, без самостоятельных практических занятий. В физической лаборатории учащиеся не только проверяют известные законы физики, но и обучаются работе с физическими приборами, овладевают навыками экспериментальной исследовательской деятельности, учатся грамотной обработке результатов измерений и критическому отношению к ним.

Данное пособие представляет собой попытку создания единого руководства по экспериментальной физике для ведения занятий в физических лабораториях профильных физико-математических школ и лицеев. Оно рассчитано на учащихся, не обладающих опытом самостоятельной работы в физической лаборатории. Поэтому описания работ выполнены подробно и обстоятельно. Особое внимание уделено теоретическому обоснованию применяемых экспериментальных методов, вопросам обработки результатов измерений и оценки их погрешностей.

Описание каждой экспериментальной работы начинается с теоретического введения. В экспериментальной части каждой работы приводятся описания экспериментальных установок и задания, регламентирующие последовательность работы учащихся при проведении измерений, образцы рабочих таблиц для записи результатов измерений и рекомендации по методам обработки и представления результатов. В конце описаний предлагаются контрольные вопросы, ответы на которые учащиеся должны подготовить к защите работ.

В среднем за учебный год каждый учащийся должен выполнить 10–12 экспериментальных работ в соответствии с учебным планом.

Учащийся заранее готовится к выполнению каждой работы. Он должен изучить описание работы, знать теорию в объеме, указанном в описании, порядок выполнения работы, иметь предварительно подготовленный лабораторный журнал с конспектом теории и таблицами, а также, если это необходимо, иметь миллиметровую бумагу для выполнения прикидочного графика.

Перед началом выполнения работы учащийся получает допуск к работе.

Примерный перечень вопросов для получения допуска:

1. Цель работы.

2. Основные физические законы, изучаемые в работе.

3. Схема установки и принцип ее действия.

4. Измеряемые величины и расчетные формулы.

5. Порядок выполнения работы.

Учащиеся, допущенные к выполнению работы, обязаны следовать порядку выполнения строго в соответствии с описанием.

Работа в лаборатории заканчивается выполнением предварительных расчетов и обсуждением их с преподавателем.

К следующему занятию учащийся самостоятельно заканчивает обработку полученных экспериментальных данных, построение графиков и оформление отчета.

На защите работы учащийся должен уметь ответить на все вопросы по теории в полном объеме программы, обосновать принятую методику измерений и обработки данных, вывести самостоятельно расчетные формулы. Выполнение работы на этом завершается, выставляется окончательная итоговая оценка за работу.

Семестровая и годовая оценки выставляются при успешном выполнении всех работ в соответствии с учебным планом.

Курс "Экспериментальная физика" практически реализован на комплексном лабораторном оборудовании, разработанном Учебно-методической лабораторией Московского физико-технического института, включающем в себя лабораторные комплексы по механике материальной точки, механике твердого тела, молекулярной физике, электродинамике, геометрической и физической оптике. Такое оборудование имеется во многих специализированных физико-математических школах и лицеях России.

Введение.

Погрешности физических величин. Обработка результатов измерений.

Практическая работа 1. Измерение объема тел правильной формы.

Практическая работа 2. Исследование прямолинейного движения тел в поле земного тяготения на машине Атвуда.

Практическая работа 3. Сухое трение. Определение коэффициента трения скольжения.

Теоретическое введение к работам по колебаниям.

Практическая работа 4. Изучение колебаний пружинного маятника.

Практическая работа 5. Изучение колебаний математического маятника. Определение ускорения свободного падения.

Практическая работа 6. Изучение колебаний физического маятника.

Практическая работа 7. Определение моментов инерции тел правильной формы методом крутильных колебаний.

Практическая работа 8. Изучение законов вращения твердого тела на крестообразном маятнике Обербека.

Практическая работа 9. Определение отношения молярных теплоемкостей воздуха.

Практическая работа 10. Стоячие волны. Измерение скорости волны в упругой струне.

Практическая работа 11. Определение отношения ср/с ι? для воздуха в стоячей звуковой волне.

Практическая работа 12. Изучение работы электронного осциллографа.

Практическая работа 13. Измерение частоты колебаний путем исследования фигур Лиссажу.

Практическая работа 14. Определение удельного сопротивления нихромовой проволоки.

Практическая работа 15. Определение сопротивления проводников компенсационным методом Уитстона.

Практическая работа 16. Переходные процессы в конденсаторе. Определение емкости.

Практическая работа 17. Определение напряженности электрического поля в цилиндрическом проводнике с током.

Практическая работа 18. Исследование работы источника в цепи постоянного тока.

Практическая работа 19. Изучение законов отражения и преломления света.

Практическая работа 20. Определение фокусных расстояний собирающей и рассеивающей линз.

Практическая работа 21. Явление электромагнитной индукции. Исследование магнитного поля соленоида.

Практическая работа 22. Исследование затухающих колебаний.

Практическая работа 23. Изучение явления резонанса в цепи переменного тока.

Практическая работа 24. Дифракция Фраунгофера на щели. Измерение ширины щели «волновым методом».

Практическая работа 25. Дифракция Фраунгофера. Дифракционная решетка как оптический прибор.

Практическая работа 26. Определение показателя преломления стекла «волновым» методом.

Практическая работа 27. Определение радиуса кривизны линзы в эксперименте с кольцами Ньютона.

Практическая работа 28. Исследование поляризованного света.

Физике»

У читель физики :

Горшенёва Наталья Ивановна

2011 г
Роль эксперимента в обучении физике.

Уже в определении физики как науки заложено сочетание в ней как теоретической, так и практической частей. Очень важно, чтобы в процессе обучения физике учитель смог как можно полнее продемонстрировать своим ученикам взаимосвязь этих частей. Ведь когда учащиеся почувствуют эту взаимосвязь, то они смогут многим процессам, происходящим вокруг них в быту, в природе, дать верное теоретическое объяснение.

Без эксперимента нет, и не может быть рационального обучения физике; одно словесное обучение физике неизбежно приводит к формализму и механическому заучиванию. Первые мысли учителя должны быть направлены на то, чтобы учащийся видел опыт и проделывал его сам, видел прибор в руках преподавателя и держал его в своих собственных руках.

Учебный эксперимент - это средство обучения в виде специально организованных и проводимых учителем и учеником опытов.


Цели учебного эксперимента:

  • Решение основных учебно – воспитательных задач;

  • Формирование и развитие познавательной и мыслительной деятельности;

  • Политехническая подготовка;

  • Формирование мировоззрения учащихся.
Функции эксперимента:

  • Познавательная (осваиваются основы наук на практике);

  • Воспитывающая (формирование научного мировоззрения);

  • Развивающая (развивает мышление и навыки).

Виды физических экспериментов .

Какие формы обучения практического характера можно предложить в дополнение к рассказу преподавателя? В первую очередь , конечно, это наблюдение учениками за демонстрацией опытов, проводимых учителем в классе при объяснении нового материала или при повторении пройденного, так же можно предложить опыты, проводимые самими учащимися в классе во время уроков в процессе фронтальной лабораторной работы под непосредственным наблюдением учителя. Еще можно предложить: 1)опыты, проводимые самими учащимися в классе во время физического практикума; 2)опыты-демонстрации, проводимые учащимися при ответах; 3)опыты, проводимые учащимися вне школы по домашним заданиям учителя; 4)наблюдения кратковременных и длительных явлений природы, техники и быта, проводимые учащимися на дому по особым заданиям учителя.

Что можно сказать о приведенных выше формах обучения?

Демонстрационный эксперимент является одной из составляющих учебного физического эксперимента и представляет собой воспроизведение физических явлений учителем на демонстрационном столе с помощью специальных приборов. Он относится к иллюстративным эмпирическим методам обучения. Роль демонстрационного эксперимента в обучении определяется той ролью, которую эксперимент играет в физике-науке как источник знаний и критерий их истинности, и его возможностями для организации учебно-познавательной деятельности учащихся.

Значение демонстрационного физического эксперимента заключается в том, что:

Учащиеся знакомятся с экспериментальным методом познания в физике, с ролью эксперимента в физических исследованиях (в итоге у них формируется научное мировоззрение);

У учащихся формируются некоторые экспериментальные умения: наблюдать явления, выдвигать гипотезы, планировать эксперимент, анализировать результаты , устанавливать зависимости между величинами, делать выводы и т.п.

Демонстрационный эксперимент, являясь средством наглядности, способствует организации восприятия учащимися учебного материала, его пониманию и запоминанию; позволяет осуществить политехническое обучение учащихся; способствует повышению интереса к изучению физике и созданию мотивации учения. Но при проведении учителем демонстрационного эксперимента основную деятельность выполняют сам учитель и, в лучшем случае, один - два ученика, остальные учащиеся только пассивно наблюдают за опытом, проводимым учителем, сами при этом ничего не делают собственными руками. Следовательно, необходимо наличие самостоятельного эксперимента учащихся по физике.

Лабораторные занятия.

При обучении физике в средней школе экспериментальные умения формируются, когда они сами собирают установки, проводят измерения физических величин, выполняют опыты. Лабораторные занятия вызывают у учащихся очень большой интерес, что вполне естественно, так как при этом происходит познание учеником окружающего мира на основе собственного опыта и собственных ощущений.

Значение лабораторных занятий по физике заключается в том, что у учащихся формируются представления о роли и месте эксперимента в познании. При выполнении опытов у учащихся формируются экспериментальные умения, которые включают в себя как интеллектуальные умения, так и практические. К первой группе относятся умения: определять цель эксперимента, выдвигать гипотезы, подбирать приборы, планировать эксперимент, вычислять погрешности, анализировать результаты, оформлять отчет о проделанной работе . Ко второй группе относятся умения: собирать экспериментальную установку, наблюдать, измерять, экспериментировать.

Кроме того, значение лабораторного эксперимента заключается в том, что при его выполнении у учащихся вырабатываются такие важные личностные качества, как аккуратность в работе приборами; соблюдение чистоты и порядка на рабочем месте, в записях, которые делаются во время эксперимента, организованность, настойчивость в получении результата. У них формируется определенная культура умственного и физического труда.

В практике обучения физике в школе сложились три вида лабораторных занятий:

Фронтальные лабораторные работы по физике;

Физический практикум;

Домашние экспериментальные работы по физике.

Выполнение самостоятельных лабораторных работ.

Фронтальные лабораторные работы - это такой вид практических работ, когда все учащиеся класса одновременно выполняют однотипный эксперимент, используя одинаковое оборудование. Фронтальные лабораторные работы выполняются чаще всего группой учащихся, состоящей из двух человек, иногда имеется возможность организовать индивидуальную работу. Тут возникает сложность: не всегда в школьном кабинете физики есть достаточное количество комплектов приборов и оборудования для проведения таких работ. Старое оборудование приходит в негодность, а, к сожалению, не все школы могут позволить себе закупку нового. Да и от ограничения по времени никуда не денешься. А если у одной из бригад что-то не получается, не работает какой-то прибор или чего-либо не хватает, тогда они начинают просить о помощи учителя , отвлекая других от выполнения лабораторной работы.

В 9-11 классах проводится физический практикум.

Физический практикум проводится с целью повторения, углубления, расширения и обобщения полученных знаний из разных тем курса физики; развития и совершенствования у учащихся экспериментальных умений путем использования более сложного оборудования, более сложного эксперимента; формирования у них самостоятельности при решении задач, связанных с экспериментом. Проводится физический практикум, как правило, в конце учебного года, иногда - в конце первого и второго полугодий и включает серию опытов по той или иной теме. Работы физического практикума учащиеся выполняют в группе из 2-4 человек на различном оборудовании; на следующих занятиях происходит смена работ, что делается по специально составленному графику. Составляя график, учитывают число учащихся в классе, число работ практикума, наличие оборудования. На каждую работу физического практикума отводятся два учебных часа, что требует введения в расписание сдвоенных уроков по физике. Это представляет затруднения. По этой причине и из-за недостатка необходимого оборудования практикуют одночасовые работы физического практикума. Следует отметить, что предпочтительными являются двухчасовые работы, поскольку работы практикума сложнее, чем фронтальные лабораторные работы, выполняются они на более сложном оборудовании, причем доля самостоятельного участия учеников значительно больше, чем в случае фронтальных лабораторных работ.

К каждой работе учитель должен составить инструкцию, которая должна содержать: название, цель, список приборов и оборудования, краткую теорию, описание неизвестных учащимся приборов, план выполнения работы. После проведения работы учащиеся должны сдать отчет, который должен содержать: название работы, цель работы, список приборов, схему или рисунок установки, план выполнения работы, таблицу результатов, формулы, по которым вычислялись значения величин, вычисления погрешностей измерений, выводы. При оценке работы учащихся в практикуме следует учитывать их подготовку к работе, отчет о работе, уровень сформированности умений, понимание теоретического материала, используемых методов экспериментального исследования.

А что будет, если учитель предложит ученикам выполнить опыт или провести наблюдение вне школы, то есть дома или на улице? опыты, задаваемые на дом, должны не требовать применения каких-либо приборов и существенных материальных затрат. Это должны быть опыты с водой, воздухом, с предметами которые есть в каждом доме. Кто-то может усомниться в научной ценности таких опытов, конечно, она там минимальна. Но разве плохо, если ребенок сам может проверить открытый за много лет до него закон или явление? Для человечества пользы никакой, но какова она для ребенка! Опыт - задание творческое, делая что-либо самостоятельно, ученик, хочет он этого или нет, а задумается: как проще провести опыт, где встречался он с подобным явлением на практике, где еще может быть полезно данное явление. Здесь надо заметить то, чтобы дети научились отличать физические опыты от всяческих фокусов, не путать одно с другим.

Домашние экспериментальные работы. Домашние лабораторные работы - простейший самостоятельный эксперимент, который выполняется учащимися дома, вне школы, без непосредственного контроля со стороны учителя за ходом работы.

Главные задачи экспериментальных работ этого вида:

Формирование умения наблюдать физические явления в природе и в быту;

Формирование умения выполнять измерения с помощью измерительных средств, использующихся в быту;

Формирование интереса к эксперименту и к изучению физики;

Формирование самостоятельности и активности.

Домашние лабораторные работы могут быть классифицированы в зависимости от используемого при их выполнении оборудования:

Работы, в которых используются предметы домашнего обихода и подручные материалы (мерный стакан, рулетка, бытовые весы и т.п.);

Работы, в которых используются самодельные приборы (рычажные весы, электроскоп и др.);

Что необходимо ребенку, чтобы провести опыт дома? В первую очередь, наверное, это достаточно подробное описание опыта, с указанием необходимых предметов, где в доступной для ребенка форме сказано, что надо делать, на что обратить внимание. Кроме того, учитель обязан провести подробный инструктаж.

Требования, предъявляемые к домашним экспериментам. Прежде всего, это, конечно, безопасность. Так как опыт проводится учеником дома самостоятельно, без непосредственного контроля учителя, то в опыте не должно быть никаких химических веществ и предметов, имеющих угрозу для здоровья ребенка и его домашнего окружения. Опыт не должен требовать от ученика каких-либо существенных материальных затрат, при проведении опыта должны использоваться предметы и вещества, которые есть практически в каждом доме: посуда, банки, бутылки, вода, соль и так далее. Выполняемый дома школьниками эксперимент должен быть простым по выполнению и оборудованию, но, в то же время, являться ценным в деле изучения и понимания физики в детском возрасте, быть интересным по содержанию. Так как учитель не имеет возможности непосредственно контролировать выполняемый учащимися дома опыт, то результаты опыта должны быть соответствующим образом оформлены (примерно так, как это делается при выполнении фронтальных лабораторных работ). Результаты опыта, проведенного учениками дома, следует обязательно обсудить и проанализировать на уроке. Работы учащихся не должны быть слепым подражанием установившимся шаблонам, они должны заключать в себе широчайшее проявление собственной инициативы, творчества, исканий нового. На основе вышесказанного кратко сформулируем предъявляемые к домашним экспериментальным заданиям требования :

Безопасность при проведении;

Минимальные материальные затраты;

Простота по выполнению;

Легкость последующего контроля учителем;

Наличие творческой окраски.
Домашний эксперимент можно задавать после прохождения темы в классе. Тогда ученики увидят собственными глазами и убедятся в справедливости изученного теоретически закона или явления. При этом полученные теоретически и проверенные на практике знания достаточно прочно отложатся в их сознании.

А можно и наоборот, задать задание на дом, а после выполнения провести объяснение явления. Таким образом, можно создать у учащихся проблемную ситуацию и перейти к проблемному обучению, которое непроизвольно рождает у учащихся познавательный интерес к изучаемому материалу, обеспечивает познавательную активность учащихся в ходе обучения, ведет к развитию творческого мышления учеников. В таком случае, даже если школьники не смогут объяснить увиденное дома на опыте явление сами, то они будут с интересом слушать рассказ преподавателя.

Этапы проведения эксперимента:


  1. Обоснование постановки эксперимента.

  2. Планирование и проведение эксперимента.

  3. Оценка полученного результата.
Любой эксперимент должен начинаться с гипотезы, а заканчиваться выводом.


  1. Формулировка и обоснование гипотезы, которую можно положить в основу эксперимента.

  2. Определение цели эксперимента.

  3. Выяснение условий, необходимых для достижения поставленной цели эксперимента.

  4. Планирование эксперимента, включающего ответ на вопросы:

    • какие наблюдение провести

    • какие величины измерить

    • приборы и материалы, необходимые для проведения опытов

    • ход опытов и последовательность их выполнения

    • выбор формы записи результатов эксперимента

  5. Отбор необходимых приборов и материалов

  6. Сбор установки.

  7. Проведение опыта, сопровождаемое наблюдениями, измерениями и записью их результатов

  8. Математическая обработка результатов измерений

  9. Анализ результатов эксперимента, формулировка выводов
Общую структуру физического эксперимента можно представить в виде:

Проводя любой эксперимент, необходимо помнить о требованиях, предъявляемых к эксперименту.

Требования к эксперименту:


  • Наглядность;

  • Кратковременность;

  • Убедительность, доступность, достоверность;

  • Безопасность.

Кроме вышеперечисленных видов экспериментов, существуют мысленные, виртуальные эксперименты (см. Приложение), которые проводятся в виртуальных лабораториях и имеют большое значение в случае отсутствия оборудования.


Психологи отмечают, что сложный зрительный материал запоминается лучше, чем его описание. Поэтому демонстрация опытов запечатлевается лучше, чем рассказ учителя о физическом опыте.

Школа -это самая удивительная лаборатория, потому что в ней создается будущее! И какое оно будет, зависит от нас, учителей!

Я считаю, что если учитель в преподавании физики пользуется экспериментальным методом, при котором учащиеся систематически включаются в поиски путей решения вопросов и задач, то можно ожидать, что результатом обучения будет развитие разностороннего, оригинального, не скованного узкими рамками мышления. А - это путь к развитию высокой интеллектуальной активности обучаемых.

Приложение.
Классификация видов экспериментов .
Полевой

(экскурсии)


Домашний

Школьный


Мысленный

Реальный

Виртуальный

В зависимости от количества и размеров


Лаборатор
Практичес
демонстрационные

По месту проведения

По способу проведения

В зависимости от субъекта

Эксперимент