Задачи с дифференциальными уравнениями. Дифференциальные уравнения для "чайников"

Часто одно лишь упоминание дифференциальных уравнений вызывает у студентов неприятное чувство. Почему так происходит? Чаще всего потому, что при изучении основ материала возникает пробел в знаниях, из-за которого дальнейшее изучение дифуров становиться просто пыткой. Ничего не понятно, что делать, как решать, с чего начать?

Однако мы постараемся вам показать, что дифуры – это не так сложно, как кажется.

Основные понятия теории дифференциальных уравнений

Со школы нам известны простейшие уравнения, в которых нужно найти неизвестную x. По сути дифференциальные уравнения лишь чуточку отличаются от них – вместо переменной х в них нужно найти функцию y(х) , которая обратит уравнение в тождество.

Дифференциальные уравнения имеют огромное прикладное значение. Это не абстрактная математика, которая не имеет отношения к окружающему нас миру. С помощью дифференциальных уравнений описываются многие реальные природные процессы. Например, колебания струны, движение гармонического осциллятора, посредством дифференциальных уравнений в задачах механики находят скорость и ускорение тела. Также ДУ находят широкое применение в биологии, химии, экономике и многих других науках.

Дифференциальное уравнение (ДУ ) – это уравнение, содержащее производные функции y(х), саму функцию, независимые переменные и иные параметры в различных комбинациях.

Существует множество видов дифференциальных уравнений: обыкновенные дифференциальные уравнения, линейные и нелинейные, однородные и неоднородные, дифференциальные уравнения первого и высших порядков, дифуры в частных производных и так далее.

Решением дифференциального уравнения является функция, которая обращает его в тождество. Существуют общие и частные решения ДУ.

Общим решением ДУ является общее множество решений, обращающих уравнение в тождество. Частным решением дифференциального уравнения называется решение, удовлетворяющее дополнительным условиям, заданным изначально.

Порядок дифференциального уравнения определяется наивысшим порядком производных, входящих в него.

Обыкновенные дифференциальные уравнения

Обыкновенные дифференциальные уравнения – это уравнения, содержащие одну независимую переменную.

Рассмотрим простейшее обыкновенное дифференциальное уравнение первого порядка. Оно имеет вид:

Решить такое уравнение можно, просто проинтегрировав его правую часть.

Примеры таких уравнений:

Уравнения с разделяющимися переменными

В общем виде этот тип уравнений выглядит так:

Приведем пример:

Решая такое уравнение, нужно разделить переменные, приведя его к виду:

После этого останется проинтегрировать обе части и получить решение.

Линейные дифференциальные уравнения первого порядка

Такие уравнения имеют вид:

Здесь p(x) и q(x) – некоторые функции независимой переменной, а y=y(x) – искомая функция. Приведем пример такого уравнения:

Решая такое уравнение, чаще всего используют метод вариации произвольной постоянной либо представляют искомую функцию в виде произведения двух других функций y(x)=u(x)v(x).

Для решения таких уравнений необходима определенная подготовка и взять их “с наскока” будет довольно сложно.

Пример решения ДУ с разделяющимися переменными

Вот мы и рассмотрели простейшие типы ДУ. Теперь разберем решение одного из них. Пусть это будет уравнение с разделяющимися переменными.

Сначала перепишем производную в более привычном виде:

Затем разделим переменные, то есть в одной части уравнения соберем все "игреки", а в другой – "иксы":

Теперь осталось проинтегрировать обе части:

Интегрируем и получаем общее решение данного уравнения:

Конечно, решение дифференциальных уравнений – своего рода искусство. Нужно уметь понимать, к какому типу относится уравнение, а также научиться видеть, какие преобразования нужно с ним совершить, чтобы привести к тому или иному виду, не говоря уже просто об умении дифференцировать и интегрировать. И чтобы преуспеть в решении ДУ, нужна практика (как и во всем). А если у Вас в данный момент нет времени разбираться с тем, как решаются дифференциальные уравнения или задача Коши встала как кость в горле или вы не знаете, обратитесь к нашим авторам. В сжатые сроки мы предоставим Вам готовое и подробное решение, разобраться в подробностях которого Вы сможете в любое удобное для Вас время. А пока предлагаем посмотреть видео на тему "Как решать дифференциальные уравнения":

Все связные (названные) в задачах величины, выражаются через аргумент x, функцию y и её производную: .

1.Принципы составления дифференциальных уравнений.

Для составления и интегрирования дифференциальных уравнений приводят различные задачи физики, биологии, химии и т.д.

Например, при решении задач искомая кривая представляется как график некоторой функции, как y=y(x)

Все связные (названные) в задачах величины, выражаются через аргумент x, функцию y и её производную: .

Полученное при таком условии соотношение и представляет собой дифференциальное уравнение.

Уравнение (1) является искомым уравнением для нахождения неизвестной функции у.

При решении физических задач процесс составления дифф. Уравнения разбивается на 3 этапа:

1)одну из величин выбираем в качестве независимой переменной 2-го в качестве зависимой переменной. Чаще всего в качестве независимой переменной выбираются время t, а в качестве искомых функций пространственные координаты x,y,z.

2)находим на сколько измениться искомая функция Х, если независимая переменная t получит достаточно малое приращение

, то есть пытаемся оценить разность ч/з величины, данные в задачи.

3)делим полученное неравенство на и переходим кlim, когда в результате предельного перехода получаем дифф. Уравнение из которого можно найти искомую функцию.

3 Теорема существования решения задачи Коши дифф ур первого порядка.

Условие (2) называется начальным условием или условиями Коши .(2)

Под задачей Коши будем понимать задачу об отыскании решения уравнения (1) удовлетв.данным (2)

Геометрически это означает, что из всего множества интегральных кривых нужно выделить ту интегральную кривую, которая проходит ч/з .

Естественно встаёт вопрос, есть ли вообще решение у уравнение (1), а если и есть, то сколько таких, удовл.условию (2).

Теорема 1.(теорема существования единственности решения) – если функция f и её частная производная непрерывна в областиD, то решения дифф.уравнения (1), удовлетв.начальным условиям (2) существенно и единственно.

Рассмотрим конкретный пример.

Скорость распада радия пропорциональна его имеющемуся количеству R . Найти закон распада радия, если известно, что через 1600 лет останется половина первоначального количества. Какой процент радия окажется распавшимся через 100 лет?

Решение . Пусть R - количество радия в момент времени t , а R 0 - его первоначальное количество. Тогда скорость распада радия равна и является отрицательной величиной, т.к. R с течением времени убывает. Согласно условию задачи имеем: , где k >0 - коэффициент пропорциональности, подлежащий определению. Интегрируем полученное уравнение:

Осталось найти k и C . Для определения произвольной постоянной С воспользуемся начальным условием: R=R 0 в начальный момент времени t =0. Тогда R 0 =С . Итак, закон распада радия имеет вид

Для нахождения k воспользуемся следующим условием: при t=1600. Отсюда

Таким образом, окончательно получаем

При t=100 имеем

Следовательно, через 100 лет распадается 4,2% первоначального запаса радия.

Решить задачи.

6.26. Тело за 10 мин охлаждается от 100 до 60°С . Температура окружающего воздуха равна 20°С . Считая скорость остывания тела пропорциональной разности температур тела и окружающего его воздуха, определить, за какое время тело остынет до 30°С . Указание . Пусть Т - температура тела в момент времени t . Тогда дифференциальный закон охлаждения тела имеет вид

.

6.27. Моторная лодка движется в спокойной воде со скоростью 1,5 м/с. Через 4с после выключения мотора ее скорость уменьшилась до 1 м/с. Считая, что сопротивление воды пропорционально скорости движения лодки, найти ее скорость через 50с после остановки мотора. Указание . Пусть V - скорость лодки после выключения мотора в момент времени t . Тогда зависимость между V и t имеет вид , где m- масса лодки.

6.28. Поглощение светового потока тонким слоем воды пропорционально толщине слоя и потоку, падающему на его поверхность. При прохождении через слой толщиной 2м поглощается 1/3 первоначального светового потока. Определить, какой процент первоначального светового потока дойдет до глубины 4м. Указание . Пусть Q - световой поток, падающий на поверхность на глубине h . Тогда dQ = - kQdh .

6.29. Скорость тела V , брошенного вниз с начальной скоростью V 0, определяется равенством V =V 0 +gt . Найти уравнение движения данного тела.

6.30. Скорость размножения некоторых бактерий пропорциональна начальному количеству бактерий. Найти зависимость изменения количества бактерий от времени.

6.31. Найти закон роста клеток с течением времени, если для пальчиковых клеток скорость роста пропорциональна длине клетки l в данный момент. Указание . Пусть , где a,b- постоянные, характеризующие процессы синтеза и распада.

6.32. По какому закону происходит разрушение клеток в звуковом поле, если скорость их разрушения пропорциональна начальному количеству N .

6.33. Скорость укорочения мышц описывается уравнением , где х 0 - полное укорочение, х - укорочение в заданный момент. Найти закон сокращения мышц, если при t =0 величина укорочения была равна нулю.

Конец работы -

Эта тема принадлежит разделу:

По высшей математике

Высшего профессионального образования.. пермская государственная медицинская академия.. имени академика е а вагнера..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Дифференциальные уравнения
§1.Основные понятия. Уравнение, связывающее независимую переменную, неизвестную функцию и ее производные или дифференциалы различных порядков, называется дифференциальн

Однородные дифференциальные уравнения
Уравнения вида называется однородным уравнением. Однородное уравнение приводится к уравнению с раздел

Вероятность случайного события – это количественная оценка объективной возможности появления данного события
В математической статистике вероятностью случайного события называют предел, к которому стремится относительная частота события

Случайных величин
Обычно для описания распределения случайной величины бывает достаточно определить несколько числовых характеристик (параметров). Наиболее распространенные из них: математическое ожидание (среднее з

Оценка параметров генеральной совокупности по ее выборке
Генеральной совокупностью случайной величины называют совокупность всех значений данной величины, которая подлежит изучению. Однако в реальных условиях эксперимента невозможно изучить всю со

Интервальная оценка. Интервальная оценка
при малой выборке. Распределение Стьюдента Точечная оценка, особенно при малой выборке, может значительно отличаться от истинных параметров генеральной совокупност

Проверка гипотез. Критерии значимости
Очень часто перед исследователем встает задача, выяснить, являются ли различия между средними арифметическими двух выборок

Характер взаимосвязи между признаками
Все многообразие связей между отдельными признаками, свойствами явлений или параметрами функционирующего объекта можно разделить на две основные группы: функциональные и статистические. За

С помощью коэффициента парной корреляции
Допустим, проводится независимое измерение различных параметров у одного типа объектов. Из этих данных можно получить качественно новую информацию – о взаимосвязи этих параметров. Например

Элементы регрессионного анализа
После того, как установлено наличие корреляционной связи между двумя изучаемыми признаками (явлениями), можно попытаться установить закономерность зависимости одного признака

Статистическая обработка данных измерения роста
В работе статистически обрабатываются данные измерения роста определенной группы населения. Необходимо построить гистограмму, вычислить среднее арифметическое

Правила округления
Хотя правила округления считаются известными, следует напомнить, что: 1. Если первая отбрасываемая цифра больше пяти, то последняя сохраняемая цифра увеличивается на единицу, если отбрасыв

Вычисления с приближенными числами
Точность результата математических операций с приближенными числами определяется количеством значащих цифр в этих числах. Значащими цифрами числа называется число надежно установленных циф

Медицинских вузов
Авторы- составители: Кирко Г.Е., Кустова Я.Р., Афанасьев А.Л., Корякина А.Г., Смирнова З.А., Зернина Н.В., Сазонова Н.К., Черемных М.Р. Редактор Н

Задачи с дифференциальными уравнениями

Решение : должен предупредить, что здесь опять возникают «накладки» с обозначениями, и я буду придерживаться собственной версии оформления, которая показалась мне наиболее удобной. Сначала рассмотрим некоторую конкретную точку , принадлежащую искомой линии, и соответствующую касательную. Выполним схематический чертёж. Из условия задачи следует, что точка пересечения касательной с осью лежит строго между точек и . Это принципиальный момент ! – так бывает далеко не всегда. И, конечно, нужно постараться, чтобы отрезок был примерно в 2 раза длиннее отрезка :

Первое, что приходит в голову – это найти длины отрезков и составить уравнение по формуле . Так решать можно,… но лучше не нужно. Вспоминаем школу: треугольники и подобны по двум углам (обозначены красными и зелёными дугами) , а значит, соответствующие стороны этих треугольников пропорциональны:

Грубо говоря, нижний треугольник в 2 раза больше, чем верхний.

В чём фишка? Фишка состоит в том, что длины отрезков найти значительно проще! Тем более, точки уже известны, и по существу, осталось найти «иксовую» координату точки . Находим:

Энтузиасты могут прорешать эту, более простую задачу по трафарету. И, конечно, в ней тоже не надо находить длины отрезков и – намного выгоднее снова рассмотреть подобные треугольники (которые расположены один над другим и так оказалось, что вообще равны) . Интересно, что в ходе решения опять появятся два диффура, из которых потребуется выбрать «правильный».

Для самостоятельного решения также предлагаю ещё одно задание:

Задача 5

Найти линию, проходящую через точку и обладающую тем свойством, что в любой её точке нормальный вектор с концом на оси имеет длину, равную , и отрезок образует острый угол с положительным направлением оси .

Систематизируем схему решения:

1) Во избежание неразберихи с «иксом» и «игреком» рассматриваем некоторую конкретную точку , принадлежащую искомой прямой. Вообще говоря, можно сразу работать с произвольной точкой , но тогда «глобальные» переменные придётся обозначить как-нибудь по-другому, например, через .

2) Составляем уравнение нормали , проходящей через точку .

3) Находим координаты точки пересечения нормали с осью ординат.

4) Находим длину вектора . А вот здесь уже без корня обойтись трудно.

5) Теперь переходим к рассмотрению произвольной точки , т.е. выполняем замены . Этот шаг можно выполнить и чуть раньше (до нахождения длины вектора).

6) Составляем и решаем дифференциальное уравнение. В ходе решения используем информацию о том, что отрезок образует острый угол с положительным направлением оси .

Однако здесь существует и более короткое решение, которым поделилась одна из читательниц сайта. В своё время (когда создавалась статья) из моего поле зрения выпала эта элементарная возможность, и поэтому в конце урока я, конечно же, добавил 2-й способ. Постарайтесь его увидеть! И спасибо за ваши письма – они действительно помогают улучшить учебные материалы.

Я не сторонник различного рода справочников, но для решения практических задач могут пригодиться следующие готовые формулы:


Длина отрезка касательной:
Подкасательная:
Длина отрезка нормали:
Поднормаль:

Но всё же старайтесь их выводить по ходу решения той или иной задачи.

Поскольку сайт посвящен математике, то бОльшую часть урока заняла математика =), но, разумеется, я не могу обойти стороной многочисленные прикладные задачи, которые рассматриваются даже в школе. Их часто (и может быть даже корректнее) называют задачами, которые ПРИВОДЯТ к понятию дифференциального уравнения . Отличительной особенностью этих задач (как правило) является тот факт, что условие опирается на сам СМЫСЛ производной , то есть речь в нём идёт о скорости изменения некоторого показателя.

Физика, химия,… да чего тут занудничать – биология:

Задача 6

Требуется составить дифференциальное уравнение динамики развития некоторого биологического вида и найти решение этого уравнения.

Состояние популяции можно охарактеризовать массой этой популяции (весом всего стада), причем масса является функцией времени . Считая, что скорость роста биомассы пропорциональна биомассе популяции с коэффициентом пропорциональности , найти массу стада в момент времени , если известно её значение при .

…надо сказать, автор задачи не стал мучить студентов-зоотехников и расписал всё подробнейшим образом. Давайте, тем не менее, остановимся на характерных признаках, позволяющих определить, что тут замешано дифференциальное уравнение:

– во-первых, нам явно придётся отыскать функцию массы стада, зависящую от времени;

– и, во-вторых, в условии прямо сказано о скорости роста этой самой массы.

А за скорость роста у нас отвечает производная функция , в данном случае функция

На самом деле решение очень простое и напоминает оно 1-ю задачу урока. По условию, скорость изменения массы стада пропорциональна этой массе:

В большинстве практических задач коэффициент пропорциональности равен константе, но вот здесь он представляет собой функцию: . Впрочем, это не имеет особого значения:

Разделяем и властвуем:

Общее решение:

По условию, в момент времени биомасса составляет . Решим задачу Коши:

Таким образом, закон изменения массы популяции:

Шустрая, однако, популяция – прямо какое-то стадо кроликов… или даже саранчи. …Хотя в задаче ничего не сказано о размерности величин. И поэтому, кстати, здесь будет корректно говорить о единицах времени и единицах массы .

Найдём то, что требовалось найти:
– масса стада в момент времени

Ответ :

…Наверное, вы ждёте - не дождетесь задач по физике…. Спешу обнадёжить вас принципом «антиРабиновича»: Дождётесь! =) Но перед этим примем йаду таблеточку:

Задача 7

Таблетка массой 0,5 г брошена в стакан воды. Скорость растворения таблетки пропорциональна массе таблетки. Через какое время растворится 99% вещества, если известно, что через 10 минут растворилось 80%?

Это очень простая… и не простая задача;) Постарайтесь самым тщательным образом разобраться в решении , задач в подобном техническом исполнении намного больше стакана – их пруд пруди. И кто позабыл – свойства степеней и логарифмов в помощь.

К сожалению, нельзя объять необъятное, и около 10 готовых задач по физике я загрузил в библиотеку, в основном, там задачи по механике. Физика не является моим профильным предметом, но вроде получилось неплохо….