Трисомия по 12 хромосоме. Влияние хромосомных мутаций (кариотипа) на течение и прогноз хронического лимфолейкоза (ХЛЛ)

Человеческий организм – это совершенный, четко работающий, слаженный биологический механизм. Каждая клеточная структура, ткань, система органов и метаболиты необходимы для определенных целей и в конкретном количестве.

К продуцируемым нашим телом соединениям относят биологические вещества, которые выполняют массу важных функций: защитных и регуляторных. Выделяемый объем, состав, цвет и другие характеристики могут подсказать, здоров человек или стоит задуматься о визите к врачу. Наиболее значимыми эссенциями считают грудное молоко, молозиво, кровь, сперму, слюну, мочу, вагинальные выделения, а также ликвор, о котором сегодня пойдет речь.

Что такое ликвор, определение ликвора

Спинномозговая, или цереброспинальная жидкость (СМЖ, или ЦСЖ) – это жидкая среда, которая заполняет пространство в желудочках головного мозга, течет по ликворопроводящему пути, циркулирует в субарахноидальном сегменте. Альтернативное название – ликвор .

Синтез и выделение вещества обусловлено процессом фильтрации плазмы (жидкой части крови) через капиллярную стенку и последующей секрецией веществ в экссудат из эпендимных и секреторных клеточных структур.

Если присутствует какое-либо патологическое состояние с нарушением целостности и строения костной и мягкой ткани черепной коробки, то возникает ликворея – выделение спинномозговой жидкости из ушей, носа или дефектных, поврежденных мест черепа и позвоночника. Вероятные причины:

    черепно-мозговая травма;

    грыжевые новообразования или опухоли;

    неаккуратность врачебных манипуляций;

    послеоперационная слабость швов.

Любое отклонение от нормы в функционировании системы органов сказывается на густоте, прозрачности и количестве выделяемой субстанции, поэтому по ее состоянию можно определить некоторые патологии.

Функции ликвора

Как и каждая субстанция в человеческом теле, СМЖ выполняет массу жизненно важных функций:

    Механическая защита. Обеспечение амортизирующего эффекта при резких движениях или ударах головой – выравнивая внутричерепное давление, спинномозговая жидкость предохраняет мозг от повреждений, обеспечивая его целостность и нормальную работу даже в травмоопасных ситуациях.

    Экскреция метаболитов. Некоторые вещества могут скапливаться в мозговом пространстве, что будет негативно сказываться не его функционировании – ликвор отвечает за их выделение (экскрецию) и отток.

    Транспорт необходимых соединений. Гормоны, биологически активные субстанции и метаболиты, которые отвечают за центральную работоспособность, переносятся к серому веществу именно с помощью цереброспинальной субстанции.

    Дыхание (выполнение респираторной функции). Нейрональные скопления, которые отвечают за дыхательную функцию организма, расположены на самом дне четвертого желудочка ГМ и омываются ликвором. Стоит незначительно изменить компонентное соотношение (например, увеличить концентрацию калиевых или натриевых ионов), последует изменение амплитуды и частоты вдохов/выдохов.

    Выполнение роли регулятора, стабилизирующей структуры для ЦНС.. Именно СМЖ поддерживает определенную кислотность, солевой и катионно-анионный состав, постоянство осмотического давления в тканях.

    Поддержание стабильности мозгового окружения. Этот барьер обязан быть практически нечувствительным к изменениям химического состава крови, чтобы мозг продолжал работать и во время того, как человек болеет или борется с патологией.

    Работа естественным иммунорегуляторов. Оценить состояние нервной системы и проследить ход заболеваний удастся оценить лишь с помощью детального анализа пунктата, исследование которого поможет уточнить диагноз или прогнозировать состояние здоровья пациента.

Состав ликвора

Цереброспинальная субстанция производится, в среднем, со скоростью около 0,40-0,45 мл в минуту (у взрослого). Объем, скорость продукции, а самое главное – компонентный состав ЦСЖ непосредственно зависит от метаболической активности и возраста организма. Обычно анализы отражают, что чем старше человек – тем сильнее снижено продуцирование.

Эта субстанция синтезируется из плазменной части крови, однако и субстрат, и продуцент существенно отличаются по ионному и клеточному содержанию. Основные компоненты:

    Белок.

    Глюкоза.

    Катионы: ионы натрия, калия, кальция и магния.

    Анионы: ионы хлора.

    Цитоз (наличие клеток в ликворе).

Повышенное содержание белка и клеточных скоплений указывает на отклонение от нормы, а значит – это состояние, что требует дальнейших анализов и обязательной консультации с лечащим врачом.

Анализ и исследования ликвора

Исследование церебрально-спинного пунктата – это метод, который применяют для выявления и диагностики различных расстройств мозговых структур и оболочек, центральной нервной системы. К таким патологиям относится:

    менингит, туберкулезный менингит;

    воспалительные процессы в оболочке;

    опухолевые образования;

    энцефалит;

    сифилис.

Проведение процедуры анализа и исследования СМ жидкости требует забора пробы в качестве пунктата из поясничного отдела спинного мозга. Забор производится через маленький точечный прокол в требуемой области позвоночника.

В полный анализ ЦСЖ входит макроскопическое и микроскопическое исследование, а также цитология, биохимия, бактериоскопия и бактериальный посев на питательную среду.

Исследовать спинномозговую пункцию будут по нескольким параметрам:

    Прозрачность.

Ликвор здорового человека абсолютно прозрачна, как чистая вода, поэтому при макроскопическом анализе ее сравнивают с эталоном – дистиллированной высокоочищенной водой в хорошем освещении. Если взятая проба недостаточно прозрачна или присутствует сильное, явное помутнение, то есть причина искать болезнь. После обнаружения несоответствия эталону, пробирка направляется в центрифугу – процедура позволит определить природу помутнения:

    Если после центрифугирования образец все еще мутный, то это указывает на бактериальное загрязнение.

    Если осадок опустился на дно колбы, то помутнение дали форменные элементы крови или другие клетки.

    Цвет.

Ликвор, производимый здоровым организмом, должен быть абсолютно бесцветным. Изменение показывает наличие в нем каких-либо соединений, которые в норме не должны там находится – многие патологические состояния организма провоцирует ксантохромию СМЖ, то есть, ее окрашивание в оттенки красного и оранжевого. Ксантохромия вызывается попаданием гемоглобина и его видов в пробу, например:

    желтоватость – наличие билирубиновой фракции,выделенная в ходе распада гемоглобина;

    светло-розовая, красно-розовая оттеняемость указывает на оксигемоглобин (гемоглобин, насыщенный кислородом) в ликворе;

    оранжевые оттенки – в пробе присутствуют билирубиновые соединения, появившиеся вследствие распада оксигемоглобина;

    бурые цвета — отражают наличие метгемоглобина (окисленная форма гемоглобина) – такое состояние наблюдается при опухолевых явлениях, инсультах;

    мутная зеленая, оливковая – присутствие гноя при гнойном менингите или после вскрытия абсцесса.

    краснота отражает наличие крови.

Если в образец попало немного сукровицы во время забора пунктата, то такая смесь считается «путевой» и не влияет на результат макроскопического анализа. Подобная примесь наблюдается не по всему объему пунктата, а лишь сверху. Примеси бывает бледно-розовой, мутно-розовой или серовато-розовой.

Кстанохромическая интенсивность пробы оценивается по поставленным лаборантом «плюсов» в ходе визуального оценивания:

    первая степень (слабая).

    вторая степень (умеренная).

    третья степень (сильная).

    четвертая степень (чрезмерная).

Кровяные фракции или сильная насыщенность пунктата позволяют предположить один из диагнозов: разрыв сосудов аневризмы и последующее внутричерепное кровоизлияние, геморрагический энцефалит или инсульт, ЧМТ средней и сильной степени, кровоизлияние в мозговую ткань.

    Цитология.

Состояние цереброспинальной жидкости здорового человека допускает незначительное содержание клеток, однако в пределах установленных значений.

Лейкоциты в одном кубическом мм:

    до 6 ед. (у взрослых);

    до 8-10 ед. (у детей);

    до 20 ед. (у младенцев и малышей до 10 месяца).

Плазматических клеток не должно быть. Наличие свидетельствует об инфекционных болезнях центральной нервной системы: рассеянном склерозе, энцефалите, менингите или восстановлении после хирургического вмешательства с раной, которая долго не заживала.

Моноциты наблюдаются в количестве до 2 на кубический мм. Если количество растет, то это повод заподозрить хроническую патологию ЦНС: ишемию, нейросифилис, туберкулез.

Нейтрофильный компонент присутствуют только при воспалительных процессах, измененные формы – при выздоровлении после воспаления.

Клетки-макрофаги зернистого типа могут находиться в СМЖ лишь тогда, когда мозговая ткань организма распадается, как при опухоли. Эпителиальные клетки попадают в пунктат только в случае развития опухоли ЦНС.

Норма, показатели ликвора у здорового человека

Помимо составляющих компонентов, прозрачности и цветовой характеристики, нормальный ликвор должен соответствовать и другим показателям: реакция среды, количество клеток, хлоридов, глюкозы, белка, максимальный цитоз, отсутствие антител и т.д.

Отклонение от приведенных показателей может служить, как идентификатор болезни – например, иммуноглобулины и антитела олигоклонального типа в образце могут указывать на наличие или риск развития рассеянного склероза.

    Белок в ликворе : люмбальный – 0,21-0,33 г/литр, вентрикулярный – 0,1-0,2 г/литр.

    Давление в диапазоне 100-200 мм водного ст. (иногда указывают величины 70-250 мм — в странах за пределами постсоветского пространства).

    Глюкоза : 2,70-3,90 ммоль на литр (некоторые источники указывают: две трети от общего количества глюкозы в плазме).

    Хлориды СМЖ: от 116 до 132 ммоль на литр.

    Оптимальными показателями реакции среды считаются значения в пределах 7,310 – 7,330 pH. Изменение кислотности крайне негативно сказывается на выполнении биологических функций, качестве СМЖ и скорости ее протекания по ликворовыводящим путям.

    Цитоз в ликворе : люмбальный – до трех ед. на мкл, вентрикулярный – до одного на мкл.

Чего быть в пунктате здорового человека НЕ должно?

    Антитела и иммуноглобулины.

    Опухолевые, эпителиальные, плазматические клетки.

    Фибриногены, фибриногеновая пленка.

Определяют также и плотность пробы. Норма:

    Общая плотность не должна превышать 1,008 грамм на литр.

    Люмбальный фрагмент – 1,006-1,009 г/л.

    Вентрикулярный фрагмент – 1,002-1,004 г/л.

    Субокципитальный фрагмент – 1,002-1,007 г/л.

Понижаться значение может при уремии, сахарном диабете или менингите, а повышаться – при гидроцефалическом синдроме (увеличении размеров головы вследствие скопления жидкости и ее затрудненного выведения).

Нарушение ликвора. Причины и симптомы

Среди основных болезненных состояний, связанных с СМЖ, выделяют ликворею, ликвородинамический дисбаланс, “водянку” мозга и повышенное внутричерепное давление. Их механизм развития различается, как и симптомокомплекс.

Ликворея

Является самым патогенетически простым заболеванием, ведь ее механизм понятен: нарушается целостность костей основания черепной коробки или мозговых оболочек, что провоцирует выделение спинномозговой субстанции.

В зависимости от симптомов и визуальных проявлений ликворею называют:

    Скрытой – ликвор истекает по носовым ходам, что не заметно визуально за счет аспирации или случайного заглатывания.

    Явной – прозрачная жидкость или с примесью сукровицы интенсивно выделяется из ушей, мест перелома, что заметно по протеканию бинтовой головной повязки.

Также выделяют:

    Первичную природу болезни – истечение проявляется сразу же после получения травмы, после операционного вмешательства.

    Вторичную, или ликворные свищи – истечение наблюдается на поздних сроках сильных осложнений инфекционных заболеваний.

Если первичная патология не лечится на протяжении длительного срока, а затем наслаивается воспаление (менингит или энцефалит), то это чревато развитием свища.

Распространенные причины истечения СМЖ:

    сильные ушибы с черепно-мозговой травмой;

    травмы и серьезные ранения позвоночника;

    осложненная гидроцефалия;

    грыжевые новообразования и опухоли в опасной близости или непосредственно в мозговой ткани;

    неаккуратность врачебных манипуляций – промывания или дренирования ЛОР-профиля;

    слабость швов твердой оболочки после проведения операций нейрохирургического профиля;

    спонтанная ликворея – очень редко.

    Ликвородинамические нарушения

    Ликвородинамика нарушается в случае затруднения или неправильной циркуляции спинномозговой жидкости. Течения болезни могут быть гипертензивными (связанными с повышенным давлением) или же гипотензивными (наоборот – с пониженным).

    Гипертензивная форма возникает при:

      чрезмерном выделении – из-за сильной возбудимости сосудистых сплетений, которые отвечают за продукцию ЦСЖ;

      недостаточной всасываемости, выведения.

    Ликвор продуцируется в больших количествах или же попросту не всасывается, что провоцирует такую симптоматику:

      выраженные головные боли, особенно интенсивны в утренние часы;

      тошнота, частые рвотные позывы, периодически — рвота;

      кружится голова;

      замедленное сердцебиение – брадикардия;

      иногда нистагм – частые непроизвольные движения глаз, «дрожание» зрачков;

      симптомы, характерные для менингита.

    Гипотензивная форма возникает реже, при гипофункции, или слабой активности сосудистых сплетений, следствие – сниженная продукция ликворной субстанции. Симптоматика:

      сильная головная боль в затылочной и теменной областях;

      неприятные ощущения, усилие боли при резких движений, чрезмерной физической активности;

      гипотензия.

    Нарушение оттока ликвора и резорбции

    Когда в организме происходит сбой, то может нарушаться отток цереброспинального вещества и его резорбция из головного мозга – за счет этого развиваются отклонения, которые по-разному проявляются у взрослых и у детей.

    Взрослый отреагирует на отклонение повышением внутричерепного давления за счет крепкой, «заросшей» черепной коробки. Кости черепа ребенка незрелые и еще не срослись, поэтому избыточное скопление спинномозговой субстанции провоцирует гидроцефалию (водянку ГМ) и другие неприятные проявления.

    Скопление ликвора в головном мозге – повышенное ВЧД у взрослых

    В черепной коробке находится не только мозговая ткань и великое множество нейронов – значительная часть объема занята именно СМЖ. Большая его доля находится в желудочках, а меньшая – омывает ГМ и движется между его паутинной и мягкой оболочками.

    Внутричерепное давление напрямую зависит от объема черепа и количества циркулирующей в нем жидкости. Повышается продукция вещества или снижается его резорбция – организм сразу же реагирует на это повышением ВЧД.

    Данный показатель отражает, на сколько давление внутри черепа превышает атмосферное – нормой является величина от 3 до 15 мм ртутного столбика. Незначительные колебания приводят к ухудшению самочувствия, а вот рост ВЧД до отметки в 30 мм рт. ст. уже грозит летальным исходом.

    Проявления повышенного ВЧД:

      постоянно клонит в сон, малая работоспособность;

      выраженные головные боли;

      ухудшение остроты зрения;

      забывчивость, рассеяность, низкая концентрация внимания;

      заметны «скачки» давления – гипертензия регулярно сменяется гипотензией;

      плохой аппетит, тошнота, рвота;

      эмоциональная нестабильность: перепады настроения, депрессивность, апатия, сильная раздражительность;

      позвоночные боли;

      озноб;

      повышение потливости;

      сбои дыхательной активности, одышка;

      кожа более чувствительна;

      мышечный парез.

    Наличие 2-3 симптомов не является причиной подозревать повышенное ВЧД, а вот практически полный комплекс – это весомая причина обратиться к специалисту.

    Ярчайший признак заболевания – опоясывающая головная боль, не выраженная в каком-либо отдельном участке. Кашель, чихание и резкие движения только провоцируют усиление болевых ощущений, которые не купируются даже анальгетиками.

    Второй важный признак повышенного ВЧД — проблемы со зрением. Больной страдает от двоения в глазах (диплопии), замечает ухудшение зрения в темноте и при ярком освещении, видит, как в тумане и страдает от приступов слепоты.

    Давление может повышаться и у здорового организма, однако сразу же приходит в норму – например, во время физических и эмоциональных нагрузках, стрессах, кашле или чихании.

    Скопление ликвора в головном мозге – детская водянка ГМ

    Маленькие дети не могут сообщить о своем самочувствии, поэтому родители должны уметь определить нарушение ликворного оттока по внешним признакам и поведению младенца. К ним относятся:

      заметная сосудистая сетка на коже лба, затылка;

      ночное беспокойство, плохой сон;

      частый плач;

      рвота;

      выпячивание родничка, его пульсация;

      судороги;

      увеличение размеров головы;

      неравномерный мышечный тонус – часть напряжена, а часть расслаблена.

    Самым серьезным признаком повышенного ВЧД у ребенка является гидроцефалия, которая встречается с частотой до одного случая на пару тысяч новорожденных. Малыши мужского пола болеют водянкой головного мозга чаще, а сам порок диагностируется врачами обычно в течение первых 3 месяцев жизни.

    Не стоит путать “мозговую водянку”, как самостоятельное заболевание, с диагнозом «гипертензивно-гидроцефальный синдром». Он отражает, что у новорожденного слегка повышено ВЧД, однако это не требует терапии, как и хирургического вмешательства, так как устраняется само.

    Детская форма болезни может быть врожденной или приобретенной в зависимости от причины развития, которых, как утверждают медицинские специалисты, может быть до 170. Врожденный недуг провоцируется:

      травмой ребенка во время родов;

      гипоксией во время родов (недостаточное поступление кислорода);

      генетическими сбоям;

      инфекционными заболеваниями, перенесенными плодом во время пребывания в утробе матери (цитомегалопатия, острые респираторные вирусные инфекции, заражения микоплазмой и токсоплазмой, сифилис, краснуха, паротит и герпесвирус).

    Генетические отклонения, вызывающие врожденную форму:

      недоразвитые ликворовыводящие протоки;

      синдром Киари – череп ребенка по объему больше,чем его мозг;

      суженный ликворопровод;

      другие хромосомные патологии.

    Приобретенная форма возникает вследствие токсических отравлений, развития опухолей, мозговых кровоизлияний, перенесенных инфекционных заболеваниях вне материнской утробы – к ним относятся отит, менингит и энцефалит.

    Говоря о гидроцефалии у новорожденных, стоит учесть, что в норме окружность головы малышей увеличивается достаточно быстро (по полтора сантиметра в месяц), однако если рост превышает показатели, то это весомый повод обследовать ребенка..

    Череп грудничка мягкий, еще не окостеневший, а избыток ликвора замедляет зарастание родничка, «раздвигает» кости и препятствует нормальному развитию черепной коробки – из-за этого голова увеличивается непропорционально. Скапливаясь в субарахноидальном пространстве , которое разделяет мозговые оболочки, ликвор сдавливает некоторые отделы мозга. Несмотря на податливость детских черепных костей, это проявление болезни опасно и требует немедленного лечения. Увеличение размера головы – не единственный признак затрудненного ликворного оттока у детей. Характерным является:

      специфический звук “разбитого горшка”, слышимый при легком постукивании по черепу;

      сложности с поднятием и держанием головы в одном положении;

      дрожание подбородка, рук.

    Важно обращать внимание на глаза малыша, ведь некоторые признаки являются показательными:

      непроизвольные, хаотичные движения глаз;

      периодическое закатывание глаз;

      глаза «косят»;

      синдром «заходящего солнца» — при моргании заметна тонкая белая полоса между зрачком и верхним веком.

    Гидроцефалия до 2 лет проявляется этим симптомокомплексом, а позже – комбинируется рвотой, тошнотой, проблемами с координацией, раздражительностью, диплопией или даже слепотой.

    Иногда гидроцефалический синдром развивается и у взрослых, как следствие перенесенных инфекций, однако это редкое явление.

    Как улучшить отток ликвора

    О патологии ликворного оттока у малыша обычно узнают от невропатолога, обследование у которого проходит в первый месяц после рождения. Первичное обследование и выявление признаков требует медицинской коррекции, так как данная болезнь будет препятствовать нормальному развитию ребенка.

    Если состояние маленького пациента сложное, то специалисты с помощью хирургического вмешательства создают «обходные пути» для СМЖ и устраняют плохой отток искусственным образом. В случае, если ситуация не угрожает жизни грудничка, то лечение может проходить и в домашних условиях с медикаментозной терапией. Для того, чтобы назначить оптимальные медикаменты ребенку, необходимо понимать, что может мешать оттоку ликвора при гидроцефалии . Причина, происхождение и осложнения – все факторы сыграют роль при подборе лечения.

    Фармакологическая коррекция нарушений оттока у детей включает:

      препараты, улучшающие и стимулирующие кровоток (Актовегин, Пантогам, Циннаризин);

      лекарства, способствующие выведению излишков жидкости (Триампур или Диакарб);

      препараты-нейропротекторы (Цераксон).

    Лечение нарушений спинномозгового ликвора

    Детские заболевания ликвородинамики чаще всего корректируются фармакотерапией, а вот взрослым требуется назначить физиологические процедуры:

      Курсовый электрофорез с эуфиллином (десять посещений) – лекарственная «подпитка» позволит активизировать доставку кислорода в мозговую ткань, страдающую от гипоксии при повышенном ВЧД. Состояние сосудов приходит в норму, что обеспечит нормальную резорбцию.

      15 сеансов массажа воротниковой зоны – процедура проста, поэтому со временем больной может и сам проводить подобную манипуляцию. С ее помощью снижается гипертонус мышц, снимается спазм и налаживает отток.

      Магнитное воздействие на воротниковую зону – снижение отечности и сосудистого спазма, улучшение иннервации.

      Лечебное плавание или поддерживающая физ. зарядка.

    Значение спинномозговой жидкости в остеопатии

    Развивающимся направлением в медицине является краниосакральная остеопатия. По состоянию и составу спинномозговой жидкости можно определить многие недуги в организме. В ликвор попадают медиаторы, регулирующие:

      дыхательную активность;

      режимы сна и бодрствования;

      стабильность эндокринных систем;

      работу сердечно-сосудистого комплекса.

    Для нормального человеческого функционирования ликвор должен беспрестанно циркулировать по своему «пути» и сохранять компонентное постоянство. Малейшее нарушение целостности черепных швов ведет к защемлению участка мозговой ткани, затем влияние распространяется на нижележащие структуры.

    Краниосакральная остеопатия желательна после серьезных ушибов, дорожных аварий, черепно-мозговых и родовых травм. Консультация у специалиста позволит выявить недуг на ранней стадии, а для младенцев это особенно важно. Пластические нарушения краниосакральной системы новорожденного прямо влияют на последующее развитие когнитивных функций, ЦНС и опорно-двигательного аппарата.

    Взрослые жалуются на нистагм, нарушения зрения и дыхания, снижение способности запоминать информацию, концентрироваться на предмете мысли, сбои в менструальном цикле, резкие изменения веса, психоэмоциональную нестабильность, интенсивное слезо-, слюно- и потоотделение. Обычно подобные жалобы приписываются другим болезням, а вот опытный врач-остеопат сможет провести доскональный анализ состояния больного, его черепа и позвоночника, после чего выяснит и устранит первоначальную причину.

При нарушении циркуляции ликвора появляется множество симптомов, которые очень сложно отнести к той или иной патологии позвоночника. например, недавно на приеме была пожилая женщина, которая жаловалась на боли в ногах, появляющиеся ночью. Ощущения очень неприятные. Ноги крутит, появляются ощущения онемения. Причем появляются то с права, то слева, то с двух сторон. Для того чтобы их снять необходимо встать и несколько минут походить. Боли проходят. Днем эти боли не беспокоят.

На МРТ имеется множественный стеноз позвоночного канала с явлениями нарушения ликвороциркуляции. Красными стрелками обозначены зоны сужения позвоночного канала желтыми стрелками расширенные ликворные пространства внутри дурального мешка.

При обследовании на МРТ были найдены признаки спондилеза (остеохондроза) и несколько уровней стеноза позвоночного канала в поясничном отделе, не очень выраженные, но однозначно нарушающие ликвороциркуляцию в этой области. Видны расширенные вены позвоночного канала. Следовательно существует и застой венозной крови. Эти две проблемы и дают перечисленные выше симптомы. Когда человек ложится, отток крови между зономи сдавления дурального мешка с корешками затрудняется, венозное давление повышается и всасывание ликвора замедляется. Это приводит к изолированному повышению ликворного давления, перерастяжению твердой мозговой оболочки и ишемии корешков спинного мозга. Поэтому то и появляется болевой синдром. Как только человек встает, происходит сброс венозной крови, увеличивается всасывание ликвора в венозных сплетениях и боль исчезает.
Другая частая проблема связанная с нарушением циркуляции ликвора появляется при сужении позвоночного канала на уровне шейного отдела позвоночника. Затруднение оттока ликвора приводит к повышению ликворного давления в полости черепа, что может сопровождаться головными болями, усиливающимися при поворотах головы, кашле, чихании. Часто эти боли возникают по утрам и сопровождаются тошнотой и рвотой. У больных появляется чувство давления на глазные яблоки, снижается зрение, появляется шум в ушах. И чем протяженней зона компрессии спинного мозга, тем более выражены эти симптомы. О лечении этих проблем мы будем говорить дальше, в следующих постах. Но кроме повышения внутричерепного давления стеноз на шейном уровне дает еще одну проблему. Нарушается питание спинного мозга и снабжение нервных клеток кислородом. Возникает локальное прединсультное состояние. Оно еще называется миелопмтическим синдромом. Исследования МРТ позволяют при определенных режимах увидеть эти поврежденные зоны мозга. На следущем снимке миелопатический очаг виден как белесоватое пятно в зоне максимального сдавления спинного мозга.



МРТ больной с сужением позвоночного канала (обозначенно стрелками) на уровне шейного отдела позвоночника. Клинически помимо миелопатического процесса (подробнее в следующих постах), имеются признаки нарушения ликвороциркуляции, сопровождающиеся повышением внутричерепного давления.

Существуют и другие чудеса. У ряда больных, иногда без видимой причины, появляются боли в грудном отделе позвоночника. Эти боли обычно носят постоянный характер, усиливаясь ночью. При МРТ исследовании в обычных режимах признаков компрессии спинного мозга или корешков нет. Однако при более глубоком исследовании в особых режимах можно увидеть зоны затруднения циркуляции ликвора в субарахноидальных пространствах (между оболочками спинного мозга). Их еще называют очагами турбулентности. Если такие очаги существуют длительно, иногда, арахноидальная оболочка, под которой и циркулирует ликвор, может осумковаться из-за постоянного раздражения и превратится в ликворную кисту, которая может привести к сдавлению мпинного мозга.


На МРТ грудного отдела позвоночника стрелками обозначены зоны с затруднением циркуляции ликвора.

Особая проблема - появление ликворной кисты в спинном мозге. Это так называемая сирингомиелитическая киста. Встречаются эти проблемы достаточно часто. Причиной может быть нарушение формирования спинного мозга у детей или различные компрессии спинного мозга миндалинками мозжечка, опухолью, гематомой, воспалительным процессом, травмой. И формируются такие полости внутри спинного мозга из-за того что внути его существует спинномозговой канал, или центральный канал, по которому тоже циркулирует ликвор. Циркуляция ликвора внутри спинного мозга способствует его нормальной жизнедеятельности. Причем он соединяется с цистернами головного мозга и субарахноидальным пространством поясничного отдела позвоночника. Он является резервным путем для уравнивания ликворного давления в желудочках головного мозга, спинного мозга и субарахноидальных пространствах. В норме ликвор по нему движется сверху вниз, но при появлении неблагоприятных факторов в субарахноидальном пространстве (в виде сдавления) может менять свое направление.


На МРТ красной стрелкой обозначена зона сдавления спинного мозга с явлениями миелопатии, желтой стрелкой - сформировавшаяся внутримозговая киста спинного мозга (сирингомиелитическая киста).

ИСТОРИЧЕСКИЙ ОЧЕРК ИЗУЧЕНИЯ ЛИКВОРА

Изучение цереброспинальной жидкости можно разделить на два периода:

1) до извлечения жидкости у живого человека и у животных и

2) после ее извлечения.

Первый период по существу является анатомическим, описательным. Физиологические предпосылки носили тогда главным образом умозрительный характер, основывались на анатомических взаимоотношениях тех образований нервной системы, которые находились в тесной связи с жидкостью. Эти выводы отчасти базировались на исследованиях, проводимых на трупах.

В этот период уже было получено много ценных данных, касающихся анатомии ликворных пространств и некоторых вопросов физиологии ликвора. Впервые описание мозговых оболочек мы встречаем у Герофила Александрийского (Herophile), в III веке до н. э. давшего название твердой и мягкой оболочкам и открывшего сеть сосудов на поверхности мозга, синусы твердой мозговой оболочки и их слияние. В том же веке Эразистрат описал желудочки мозга и отверстия, связывающие боковые желудочки с III желудочком. Позднее этим отверстиям было дано название монроевых.

Наибольшая заслуга в области изучения ликворных пространств принадлежит Галену (131- 201 гг.), впервые подробно описавшему мозговые оболочки и желудочки мозга. По Галену, головной мозг окружен двумя оболочками: мягкой (membrana tenuis), прилегающей к мозгу и содержащей большое количество сосудов, и плотной (membrana dura), прилегающей к некоторым частям черепа. Мягкая оболочка проникает в желудочки, но автор еще не называет эту часть оболочки сосудистым сплетением. По Галену, в спинном мозгу имеется еще третья оболочка, защищающая спинной мозг при движениях позвоночника. Наличие полости между оболочками в спинном мозгу Гален отрицает, но предполагает, что она имеется в головном мозгу в силу того, что последний пульсирует. Передние желудочки, по Галену, сообщаются с задним (IV). Очищение желудочков от лишних и посторонних веществ происходит через отверстия в оболочках, ведущих в слизистую носа и нёба. Описывая довольно подробно анатомические соотношения оболочек в головном мозгу, Гален, однако, не нашел в желудочках жидкости. По его мнению, они наполнены неким животным духом (spiritus animalis). Наблюдающуюся же в желудочках влажность он производит от этого животного духа.

Дальнейшие работы по изучению ликвора и ликворных пространств относятся к более позднему времени. В XVI веке Везалий (Vesalius) описал те же оболочки в мозгу, что и Гален, но он указал на сплетения в передних желудочках. Жидкости в желудочках он также не нашел. Варолий (Varolius) первый установил, что желудочки заполнены жидкостью, которая, как он думал, выделяется сосудистым сплетением.

Об анатомии оболочек и полостей головного и спинного мозга и цереброспинальной жидкости упоминают затем ряд авторов: Виллис (Willis, XVII век), Вьессен (Vieussen), XVII- XVIII век), Галлер (Haller, XVIII век). Последний допускал, что IV желудочек соединяется с подпаутинным пространством через боковые отверстия; позднее эти отверстия получили название отверстий Люшки. Соединение боковых желудочков с III желудочком, независимо от описания Эразистрата, установил Монро (Monroe, XVIII век), имя которого и присвоено этим отверстиям. Но последний отрицал наличие отверстий в IV желудочке. Пахиони (Pacchioni, XVIII век) дал подробное описание грануляций в синусах твердой мозговой оболочки, названных впоследствии его именем, и высказал предположение о секреторной функции их. В описаниях указанных авторов речь шла в основном о желудочковой жидкости и о связях желудочковых вместилищ.

Котуньо (Cotugno, 1770) впервые открыл наружную цереброспинальную жидкость как в головном, так и в спинном мозгу и дал подробное описание наружных ликворных пространств, особенно в спинном мозгу. По его мнению, одно пространство является продолжением другого; желудочки связаны с подоболочечным пространством спинного мозга. Котуньо подчеркивал, что жидкости головного и спинного мозга едины по составу и происхождению. Выделяется эта жидкость мелкими артериями, всасывается в вены твердой оболочки и во влагалища II, V и VIII пар нервов. Открытие Котуньо было, однако, забыто, и ликвор субарахноидальных пространств был вторично описан Мажанди (Magendie, 1825). Этот автор довольно подробно охарактеризовал субарахноидальное пространство головного и спинного мозга, цистерны головного мозга, связи паутинной оболочки с мягкой, околоневральные арахноидальные влагалища. Мажанди отрицал наличие канала Биша, с помощью которого предполагалось сообщение желудочков с субарахноидальным пространством. Путем эксперимента он доказал существование отверстия в нижнем отделе IV желудочка под писчим пером, через которое жидкость желудочков проникает в заднее вместилище субарахноидального пространства. Вместе с тем Мажанди сделал попытку выяснить направление движения жидкости в полостях головного и спинного мозга. В его опытах (на животных) окрашенная жидкость, введенная под естественным давлением в заднюю цистерну, распространялась по субарахноидальному пространству спинного мозга до крестца и в головном мозгу до лобной поверхности и во все желудочки. По детальности описания анатомии субарахноидального пространства, желудочков, связей оболочек между собой, а также по изучению химического состава ликвора и его патологических изменений Мажанди по праву принадлежит ведущее место. Однако физиологическая роль цереброспинальной жидкости осталась для него неясной и загадочной. Его открытие не получило в свое время полного признания. В частности, его противником выступил Вирхов (Virchow), не признававший свободных сообщений между желудочками и субарахноидальными пространствами.

После Мажанди появилось значительное количество работ, касающихся в основном анатомии ликворных пространств и отчасти физиологии спинномозговой жидкости. В 1855 г. Люшка (Luschka) подтвердил наличие отверстия между IV желудочком и субарахноидальным пространством и дал ему название отверстия Мажанди (foramen Magendie). Помимо того, он установил наличие пары отверстий в боковых бухтах IV желудочка, через которые последний свободно сообщается с субарахноидальным пространством. Эти отверстия, как мы отметили, были описаны значительно раньше Галлером. Основная же заслуга Люшка заключается в детальном изучении сосудистого сплетения, которое автор считал секреторным органом, продуцирующим цереброспинальную жидкость. В тех же работах Люшка дает подробное описание паутинной оболочки.

Вирхов (1851) и Робен (1859) изучают стенки сосудов головного и спинного мозга, их оболочек и указывают на наличие щелей вокруг сосудов и капилляров более крупного калибра, располагающихся кнаружи от собственной адвентиции сосудов (так называемые вирхов-робеновские щели). Квинке (Quincke), инъецируя собакам сурик в арахноидальное (субдуральное, эпидуральное) и субарахноидальное пространства спинного и головного мозга и исследуя животных через некоторое время после инъекций, установил, во-первых, что между субарахноидальным пространством и полостями головного и спинного мозга имеется связь и, во-вторых, что движение жидкости в этих полостях идет в противоположных направлениях, но более мощное- снизу вверх. Наконец Кей и Ретциус (1875) в своей работе дали довольно детальное описание анатомии субарахноидального пространства, взаимоотношений оболочек между собой, с сосудами и периферическими нервами и заложили основы физиологии спинномозговой жидкости, главным образом в отношении путей ее движения. Некоторые положения этой работы не потеряли ценности до сих пор.

Отечественные ученые внесли весьма значительный вклад в изучение анатомии ликворных пространств, цереброспинальной жидкости и смежных вопросов, причем это изучение шло в тесной связи с физиологией образований, связанных с ликвором. Так, Н.Г.Квятковский (1784) упоминает в своей диссертации о мозговой жидкости в связи с ее анатомо-физиологическими взаимоотношениями с нервными элементами. В.Рот описал тонкие волокна, отходящие от наружных стенок сосудов мозга, которые пронизывают периваскулярные пространства. Волокна эти встречаются у сосудов всех калибров, вплоть до капилляров; другие концы волокон исчезают в сетчатой структуре спонгиозы. Рот рассматривает эти волокна как лимфатический ретикулум, в котором подвешены кровеносные сосуды. Аналогичную волокнистую сеть Рот обнаружил в эпицеребральной полости, где волокна отходят от внутренней поверхности intimae piae и теряются в сетчатой структуре мозга. В месте перехода сосуда в мозг волокна, исходящие из pia, заменяются волокнами, отходящими от адвентиции сосудов. Эти наблюдения Рота получили частичное подтверждение в отношении периваскулярных пространств.

С.Пашкевич (1871) дал довольно детальное описание строения твердой мозговой оболочки. И.П.Мержеевский (1872) установил наличие отверстий в полюсах нижних рогов боковых желудочков, связывающих последние с субарахноидальным пространством, что позднейшими исследованиями других авторов подтверждено не было. Д.А.Соколов (1897), производя ряд экспериментов, дал подробное описание отверстия Мажанди и боковых отверстий IV желудочка. В отдельных случаях Соколов не находил отверстия Мажанди, и в таких случаях связь желудочков с субарахноидальным пространством осуществлялась только латеральными отверстиями.

К.Нагель (1889) изучал кровообращение в мозгу, пульсацию мозга и взаимоотношения между колебанием крови в мозгу и давлением ликвора. Рубашкин (1902) подробно описал строение эпендимы и субэпендимного слоя.

Подводя итог историческому обзору по цереброспинальной жидкости, можно отметить следующее: основные работы касались изучения анатомии ликворных вместилищ и обнаружения ликвора, причем на это понадобилось несколько веков. Изучение анатомии ликворных вместилищ и путей движения ликвора дало возможность сделать чрезвычайно много ценных открытий, дать ряд описаний, до сих пор незыблемых, но частично устаревших, потребовавших пересмотра и иной трактовки в связи с введением в исследования новых, более тонких методов. Что касается физиологических проблем, то их касались попутно, исходя из анатомических соотношений, и главным образом места и характера образования спинномозговой жидкости и путей ее движения. Введение метода гистологических исследований в значительной степени расширило изучение физиологических проблем и принесло ряд данных, не потерявших ценности до настоящего времени.

В 1891 г. Эссекс Уинтер (Essex Winter) и Квинке впервые извлекли у человека цереброспинальную жидкость путем люмбальной пункции. Этот год надо считать началом более детального и более плодотворного изучения состава ликвора в нормальных и патологических условиях и более сложных вопросов физиологии цереброспинальной жидкости. С этого же времени начато изучение одной из существенных глав в учении о цереброспинальной жидкости- проблемы барьерных образований, обмена в центральной нервной системе и роли цереброспинальной жидкости в обменных и защитных процессах.

ОБЩИЕ СВЕДЕНИЯ О ЛИКВОРЕ

Ликвор- жидкая среда, циркулирующая в полостях желудочков головного мозга, ликворопроводящих путях, субарахноидальном пространстве головного и спинного мозга. Общее содержание ликвора в организме 200 — 400 мл. Цереброспинальная жидкость заключена в основном в боковых, III и IV желудочках головного мозга, Сильвиевом водопроводе, цистернах головного мозга и в субарахноидальном пространстве головного и спинного мозга.

Процесс ликворообращения в ЦНС включает 3 основных звена:

1) Продукцию (образование) ликвора.

2) Циркуляцию ликвора.

3) Отток ликвора.

Движение ликвора осуществляется поступательными и колебательными движениями, ведущими к периодическому её обновлению, совершающемуся с различной скоростью (5 — 10 раз в сутки). Что зависит у человека от суточного режима, нагрузки на ЦНС и от колебаний в интенсивности физиологических процессов в организме.

Распределение ликвора головного мозга.

Цифры распределения ликвора таковы: каждый боковой желудочек содержит 15 мл ликвора; III, IV желудочки вместе с Сильвиевым водопроводом содержат 5 мл; церебральное субарахноидальное пространство — 25 мл; спинальное пространство — 75 мл ликвора. В младенчестве и в раннем детстве количество ликвора колеблется между 40 — 60 мл, у детей младшего возраста 60 — 80 мл, у старших детей 80 — 100 мл.

Скорость образования ликвора у человека.

Одни авторы (Mestrezat, Eskuchen) полагают, что жидкость может обновляться в течение суток 6 — 7 раз, другие авторы (Dandy) считают, что 4 раза. Это означает, что в сутки продуцируется 600 — 900 мл ликвора. По Weigeldt, полный обмен его совершается в течение 3 дней, иначе в сутки образуется всего 50 мл ликвора. Иные авторы указывают цифры от 400 до 500 мл, другие от 40 до 90 мл ликвора за сутки.

Столь различные данные объясняются в первую очередь неодинаковыми методиками исследования скорости образования ликвора у человека. Одни авторы получили результаты путём введения постоянного дренажа в желудочек мозга, другие — путём собирания ликвора у больных при назальной ликворее, третьи вычисляли быстроту резорбции введённой в мозговой желудочек краски или рассасывания введённого в желудочек воздуха при энцефалографии.

Помимо различных методик, обращает на себя внимание и то обстоятельство, что указанные наблюдения велись в патологических условиях. С другой стороны, количество продуцируемого ликвора и у здорового человека, несомненно, колеблется в зависимости от ряда разнообразных причин: функционального состояния высших нервных центров и висцеральных органов, физического или умственного напряжения. Следовательно, связь с состоянием крово- и лимфообращения в каждый данный момент, зависит от условия питания и приёма жидкостей, отсюда связь с процессами тканевого обмена в ЦНС у различных индивидуумов, возраст человека и прочие, безусловно, влияют на общее количество ликвора.

Одним из важных вопросов является вопрос о количестве выпускаемой цереброспинальной жидкости, необходимой для тех или иных целей исследователя. Одни исследователи рекомендуют брать для диагностических целей 8 — 10 мл, а другие — около 10 — 12 мл, третьи — от 5 до 8 мл ликвора.

Разумеется, нельзя точно установить для всех случаев более или менее одинаковое количество ликвора, потому что необходимо: а. Считаться с состоянием больного и уровнем давления в канале; б. Согласовываться с теми методами исследования, которые пунктирующий должен провести в каждом отдельном случае.

Для наиболее полного же исследования, согласно современным требованиям лаборатории, необходимо иметь в среднем 7 — 9 мл ликвора, исходя из следующего примерного расчёта (необходимо иметь в виду, что в этот расчёт не входят специальные биохимические методы исследования):

Морфологические исследования1 мл

Определение белка1 — 2 мл

Определение глобулинов1 — 2 мл

Коллоидные реакции1 мл

Серологические реакции (Вассермана и др.)2 мл

Минимальное количество ликвора — 6 — 8 мл, максимальное10 — 12 мл

Возрастные изменения ликвора.

По данным Tassovatz, Г. Д. Ароновича и других, у нормальных, доношенных детей при рождении ликвор прозрачен, но окрашен в желтый цвет (ксантохромия). Жёлтая окраска ликвора соответствует степени общей желтушности младенца (icteruc neonatorum). Количество и качество форменных элементов также не соответствует ликвору взрослого человека в норме. Кроме эритроцитов (от 30 до 60 в 1 мм3), обнаруживается несколько десятков лейкоцитов, из них от 10 до 20% лимфоцитов и 60 — 80 % макрофагов. Общее количество белка также увеличено: от 40 до 60 мл %. При стоянии ликвора образуется нежная плёнка, сходная с той, которая обнаруживается при менингитах, кроме увеличения количества белка, следует отметить нарушения в углеводном обмене. Впервые 4 — 5 дней жизни новорождённого часто обнаруживается гипогликемия и гипогликорахия, что, вероятно, объясняется неразвитостью нервного механизма регуляции углеводного обмена. Внутричерепные кровотечения и особенно кровотечение в надпочечниках усиливают естественную склонность в гипогликемии.

У недоношенных детей и при тяжелых родах, сопровождаемых травмами плода, обнаруживаются ещё более резкое изменение ликвора. Так, например, при мозговых кровоизлияниях у новорождённых в 1-е сутки отмечается примесь крови к ликвору. На 2 — 3-и сутки обнаруживается асептическая реакция со стороны мозговых оболочек: резкий гиперальбуминоз в ликворе и плеоцитоз с наличием эритроцитов и полинуклеаров. На 4 — 7-й день воспалительная реакция со стороны мозговых оболочек и сосудов затихает.

Общее количество у детей, как и у стариков, резко увеличено по сравнению с взрослым человеком среднего возраста. Однако, судя по химизму ликвора, интенсивность окислительно-восстановительных процессов в мозгу у детей значительно выше, чем у стариков.

Состав и свойства ликвора.

Цереброспинальная жидкость полученная при спинномозговой пункции так называемый люмбальный ликвор — в норме прозрачна, бесцветна, имеет постоянный удельный вес 1,006 — 1,007; удельный вес цереброспинальной жидкости из желудочков головного мозга (вентрикулярный ликвор) — 1,002 — 1,004. Вязкость цереброспинальной жидкости в норме колеблется от 1,01 до 1,06. Ликвор имеет слабощелочную реакцию рН 7,4 — 7,6. Длительное хранение ликвора вне организма при комнатной температуре приводит к постепенному повышению её рН. Температура цереброспинальной жидкости в субарахноидальном пространстве спинного мозга 37 — 37,5о С; поверхностное натяжения 70 — 71 дин/см; точка замерзания 0,52 — 0,6 С; электропроводимость 1,31 10-2 — 1,3810-2 ом/1см-1; рефрактометрический индекс 1,33502 — 1,33510; газовый состав (в об %) О2 -1,021,66; СО2 — 4564; щелочной резерв 4954 об%.

Химический состав цереброспинальной жидкости сходен с составом сыворотки крови 89 — 90% составляет вода; сухой остаток 10 — 11% содержит органические и неорганические вещества, принимающие участие в метаболизме мозга. Органические вещества, содержащиеся в цереброспинальной жидкости представлены белками, аминокислотами, углеводами, мочевиной, гликопротеидами и липопротеидами. Неорганические вещества — электролитами, неорганическим фосфором и микроэлементами.

Белок нормальной цереброспинальной жидкости представлен альбуминами и различными фракциями глобулинов. Установлено содержание в цереброспинальной жидкости более 30 различных белковых фракций. Белковый состав цереброспинальной жидкости отличается от белкового состава сывороткой крови наличием двух дополнительных фракций: предальбуминовой (Х-фракций) и Т-фракции, располагающейся между фракциями и -глобулинов. Предальбуминовая фракция в вентрикулярном ликворе составляет 13-20%, в цереброспинальной жидкости, содержащейся в большой цистерне 7-13%, в люмбальном ликворе 4-7% общего белка. Иногда предальбуминовую фракцию в цереброспинальной жидкости обнаружить не удаётся; так как она может маскироваться альбуминами или при очень большом количестве белка в цереброспинальной жидкости вообще отсутствовать. Диагностическое значение имеет белковый коэффициент Кафки (отношение количества глобулинов к количеству альбуминов), который в норме колеблется от 0,2 до 0,3.

По сравнению с плазмой крови в цереброспинальной жидкости отмечается более высокое содержание хлоридов, магния, но меньшее содержание глюкозы, калия, кальция, фосфора и мочевины. Максимальное количество сахара содержится в вентрикулярной цереброспинальной жидкости, наименьшее -в цереброспинальной жидкости субарахноидального пространства спинного мозга. 90% сахара составляет глюкоза, 10% декстроза. Концентрация сахара в цереброспинальной жидкости зависит от его концентрации в крови.

Количество клеток (цитоз) в цереброспинальной жидкости в норме не превышает 3-4 в 1 мкл, это лимфоциты, клетки арахноидэндотелия, эпендимы желудочков головного мозга, полибласты (свободные макрофаги).

Давление ликвора в спинномозговом канале при положении больного лёжа на боку составляет 100-180 мм вод. ст., в положении сидя оно повышается до 250 — 300 мм вод. ст., В мозжечково-мозговой (в большой) цистерне головного мозга давление её несколько снижается, а в желудочках головного мозга составляет всего 190 — 200 мм вод. ст… У детей давление цереброспинальной жидкости ниже чем у взрослых.

ОСНОВНЫЕ БИОХИМИЧЕСКИЕ ПОКАЗАТЕЛИ ЛИКВОРА В НОРМЕ

ПЕРВЫЙ МЕХАНИЗМ ОБРАЗОВАНИЯ ЛИКВОРА

Первым механизмом образования ликвора (80%) является продукция осуществляемая сосудистыми сплетениями желудочков головного мозга путём активной секреции железистыми клетками.

СОСТАВ ЛИКВОРА , традиционная система единиц, (система СИ)

Органические вещества:

Общий белок цистерного ликвора — 0,1 -0,22 (0,1 -0,22 г/л)

Общий белок вентрикулярного ликвора — 0,12 — 0,2 (0,12 — 0,2 г/л)

Общий белок люмбального ликвора — 0,22 — 0,33 (0,22 — 0,33 г/л)

Глобулины — 0,024 — 0,048 (0,024 — 0,048 г/л)

Альбумины - 0,168 — 0,24 (0,168 — 0,24 г/л)

Глюкоза — 40 — 60 мг% (2,22 — 3,33 ммоль/л)

Молочная кислота — 9 — 27 мг% (1 — 2,9 ммоль/л)

Мочевина — 6 — 15 мг% (1 — 2,5 ммоль/л)

Креатинин — 0,5 — 2,2 мг% (44,2 — 194 мкмоль/л)

Креатин — 0,46 — 1,87 мг% (35,1 — 142,6 мкмоль/л)

Общий азот - 16 — 22 мг% (11,4 — 15,7 ммоль/л)

Остаточный азот - 10 — 18 мг% (7,1 — 12,9 ммоль/л)

Эфиры и холестерины - 0,056 — 0,46 мг% (0,56 — 4,6 мг/л)

Свободный холестерин - 0,048 — 0,368 мг% (0,48 — 3,68 мг/л)

Неорганические вещества:

Фосфор неорганический - 1,2 — 2,1 мг% (0,39 — 0,68 ммоль/л)

Хлориды - 700 — 750 мг% (197 — 212 ммоль/л)

Натрий - 276 — 336 мг% (120 — 145 ммоль/л)

Калий — (3,07 — 4,35 ммоль/л)

Кальций — 12 — 17 мг% (1,12 — 1,75 ммоль/л)

Магний - 3 — 3,5 мг% (1,23 — 1,4 ммоль/л)

Медь — 6 — 20 мкг% (0,9 — 3,1 мкмоль/л)

Сосудистые сплетения головного мозга расположенные в желудочках головного мозга- это сосудисто-эпителиальные образования, являются производными мягкой мозговой оболочки, проникают в желудочки головного мозга и участвуют в образовании сосудистого сплетения.

Сосудистые основы

Сосудистая основа IV желудочка является складкой мягкой мозговой оболочки, выпячивающейся вместе с эпендимой в IV желудочек, и имеет вид треугольной пластинки, прилегающей к нижнему мозговому парусу. В сосудистой основе разветвляются кровеносные сосуды, образующие сосудистую основу IV желудочка. В этом сплетении выделяют: среднюю, косо-продольную часть (залегающую в IV желудочке) и продольную часть (располагающуюся в его латеральном кармане). Сосудистая основа IV желудочка образует передние и задние ворсинчатые ветви IV желудочка.

Передняя ворсинчатая ветвь IV желудочка отходит от передней нижней мозжечковой артерии около клочка и разветвляется в сосудистой основе, формирует сосудистую основу латерального кармана IV желудочка. Задняя ворсинчатая часть IV желудочка отдаётся от задней нижней мозжечковой артерии и ветвится в средней части сосудистой основы. Отток крови от сосудистого сплетения IV желудочка осуществляем по нескольким венам, впадающим в базальную или в большую мозговую вену. Из сосудистого сплетения расположенного в области латерального кармана, кровь оттекает по венам латерального кармана IV желудочка в среднемозговые вены.

Сосудистая основа III желудочка представляет собой тонкую пластинку, расположенную под сводом мозга, между правым и левом таламусом, которую можно видеть после удаления мозолистого тела и свода мозга. Её форма зависит от формы и размеров III желудочка.

В сосудистой основе III желудочка выделяют 3 отдела: средний (заключается между мозговыми полосками таламуса) и два боковых (покрывающих верхние поверхности таламуса); кроме того, различают правый и левый края, верхний и нижний листки.

Верхний листок распространяется на мозолистое тело, свод и далее на полушария головного мозга, где представляет собой мягкую оболочку мозга; нижний листок покрывает верхние поверхности таламуса. От нижнего листка, по бокам от средней линии в полости III желудочка, внедряются ворсины, дольки, узлы сосудистого сплетения III желудочка. Спереди сплетение подходит к межжелудочковым отверстиям, через которые соединяется с сосудистым сплетением боковых желудочков.

В сосудистом сплетении разветвляются медиальные и латеральные задние ворсинчатые ветви задней мозговой артерии и ворсинчатые ветви передней ворсинчатой артерии.

Медиальные задние ворсинчатые ветви через межжелудочковые отверстия анастомозируют с латеральной задней ворсинчатой ветвью. Латеральная задняя ворсинчатая ветвь, располагаясь вдоль подушки таламуса, распространяется в сосудистую основу боковых желудочков.

Отток крови из вен сосудистого сплетения III желудочка осуществляют несколько тонких вен, относящихся к задней группе притоков внутренних мозговых вен. Сосудистое основа боковых желудочков является продолжением сосудистого сплетения III желудочка, которое выпячивается в боковые желудочки с медиальных сторон, через щели между таламусами и сводом. Со стороны полости каждого желудочка сосудистое сплетение покрыто слоем эпителия, который прикрепляется с одной стороны к своду, а с другой — к прикреплённой пластинке таламуса.

Вены сосудистого сплетения боковых желудочков формируются многочисленными извитыми протоками. Между ворсинками тканей сплетений имеется большое количество вен, связанных между собой анастомозами. Многие вены, особенно обращённые в полость желудочка, имеет синусоидальные расширения, образуя петли и полукольца.

Сосудистое сплетение каждого бокового желудочка размещается в его центральной части и переходит в нижний рог. Оно формируется передней ворсинчатой артерией, частично ветвями медиальной задней ворсинчатой ветви.

Гистология сосудистого сплетения

Слизистая оболочка покрыта однослойным кубическим эпителием — сосудистыми эпендимоцитами. У плодов и новорождённых сосудистые эпендимоциты имеют реснички, окружённые микроворсинками. У взрослых на апикальной поверхности клеток реснички сохраняются. Сосудистые эпендимоциты соединены непрерывной запирательной зоной. В близи основания клетки имеется круглое или овальное ядра. Цитоплазма клетки зерниста в базальной части, содержит много крупных митохондрий, пиноцитозных пузырьков, лизосом и других органелл. На базальной стороне сосудистых эпендимоцитов формируются складки. Эпителиальные клетки располагаются на соединительно-тканном слое, состоящем из коллагеновых и эластических волокон, клеток соединительной ткани.

Под соединительно-тканным слоем находится собственно сосудистое сплетение. Артерии сосудистого сплетения образуют капилляроподобные сосуды с широким просветом и стенкой, характерной для капилляров. Выросты или ворсинки сосудистого сплетения имеют в середине центральный сосуд, стенка которого состоит из эндотелия; сосуд окружён соединительно-тканными волокнами; ворсинка снаружи покрыта соединительными эпителиоцитами.

По данным Минкрота, барьер между кровью сосудистого сплетения и цереброспинальной жидкостью состоит из системы круговых тугих соединений, связывающих прилежащие эпителиальные клетки, гетеролитической системы пиноцитозных пузырьков и лизосом цитоплазмы эпендимоцитов и системы клеточных ферментов, связанных с активным транспортом веществ в обоих направлениях между плазмой и ликвором.

Функциональное значение сосудистого сплетения

Принципиальное сходство ультраструктуры сосудистого сплетения с такими эпителиальными образованьями, как почечный клубочек даёт основание полагать, что функция сосудистого сплетения связана с продукцией и транспортом ликвора. Вейнди и Джойт называют сосудистое сплетение околожелудочковым органом. Помимо секреторной функции сосудистого сплетения, важное значение имеет регуляция состава ликвора, осуществляемая всасывающими механизмами эпендимоцитов.

ВТОРОЙ МЕХАНИЗМ ОБРАЗОВАНИЯ ЛИКВОРА

Вторым механизмом образования ликвора (20%) является диализ крови через стенки кровеносных сосудов и эпендиму желудочков мозга, которые функционируют как диализные мембраны. Обмен ионами между плазмой крови и цереброспинальной жидкостью происходит путём активного мембранного транспорта.

В продукции спинной жидкости помимо структурных элементов желудочков мозга принимает участие сосудистая сеть мозга и его оболочек, а также клетки мозговой ткани (нейроны и глия). Однако в нормальных физиологических условиях экстровентрикулярная (вне желудочков мозга) продукция цереброспинальной жидкости весьма незначительна.

ЦИРКУЛЯЦИЯ ЛИКВОРА

Циркуляция ликвора происходит постоянно, из боковых желудочков мозга через отверстие Монро он поступает в III желудочек, а затем через Сильвиев водопровод оттекает в IV желудочек. Из IV желудочка, через отверстие Люшки и Мажанди, большая часть ликвора переходит в цистерны основания мозга (мозжечково-мозговую, охватывающую цистерны моста, межножковую цистерну, цистерну перекрёста зрительных нервов и другие). Достигает Сильвиевой (боковой) борозды и поднимается в субарахноидальное пространство конвекситольной поверхности полушарий головного мозга — это так называемый боковой путь циркуляции ликвора.

В настоящие время установлено, что существует и другой путь циркуляции цереброспинальной жидкости из мозжечково-мозговой цистерны в цистерны червя мозжечка, через охватывающую цистерну в субарахноидальное пространство медиальных отделов полушарий головного мозга — это так называемый центральный путь циркуляции ликвора. Меньшая часть ликвора из мозжечково-мозговой цистерны спускается каудально в субарахноидальное пространство спинного мозга, достигает конечной цистерны.

Мнения о циркуляции ликвора в субарахноидальном пространстве спинного мозга противоречивы. Точка зрения о существовании тока цереброспинальной жидкости и в краниальном направлении пока разделяется не всеми исследователями. Циркуляция цереброспинальной жидкости связана с наличием градиентов гидростатического давления в ликвороносных путях и вместилищах, которые создаются вследствие пульсации внутричерепных артерий, изменения венозного давления и положения тела, а так же других факторов.

Отток цереброспинальной жидкости в основном (30- 40 %) происходит через арахноидальные грануляции (пахионовы ворсины) в верхней продольный синус, являющиеся частью венозной системы головного мозга. Арахноидальные грануляции представляют собой отростки паутинной оболочки, которые пронизывают твёрдую мозговую оболочку и располагаются непосредственно в венозных синусах. А теперь рассмотрим строение арахноидальной грануляции более углублено.

Арахноидальные грануляции

Выросты мягкой оболочки мозга, расположенные на её наружной поверхности впервые описал Пахион (1665 — 1726 гг.) в 1705 году. Он считал, что грануляции являются железами твёрдой оболочки мозга. Некоторые из исследователей (Гиртль) даже считали, что грануляции это патологически злокачественные образования. Кей и Ретциус (Key u. Retzius, 1875) рассматривали их как "вывороты arachnoideae и субарахноидальной ткани", Смирнов определяет их как "дупликатуру arachnoideae", ряд других авторов Иванов, Блуменау, Раубер рассматривает структуру пахионовых грануляций, как разрастания arachnoideae, то есть "узелки соединительной ткани и гистиоцитов", не имеющих внутри каких-либо полостей и "естественных оформленных отверстий". Считается, что грануляции развиваются после 7 — 10 лет.

Целый ряд авторов указывает на зависимость внутричерепного давления от дыхания и внутрикровяного давления и потому различает дыхательные и пульсовые движения мозга (Мажанди (magendie, 1825), Экер (Ecker, 1843), Лонге (Longet), Люшка (Luschka, 1885) и др. Пульсация артерий мозга в совокупности своей, и особенно более крупные артерии основания мозга создают условия для пульсаторных движений всего мозга, дыхательные же движения мозга связаны с фазами вдоха и выдоха, когда в связи с вдохом цереброспинальная жидкость оттекает от головы, а в момент выдоха она притекает к головному мозгу и в связи с этим изменяется внутричерепное давление.

Ле Гросс Кларк указывал, что образование ворсинок arachnoideae "является ответом на изменение давления со стороны цереброспинальной жидкости". Г. Иванов в своих работах показал, что "весь, значительной по ёмкости, ворсинчатый аппарат паутинной оболочки является регулятором давления в подпаутинном пространстве и в мозге. Это давление, переходя известную грань, измеряемую степенью растяжения ворсинок, быстро передаётся на ворсинчатый аппарат, который таким образом в принципе играет роль как бы предохранителя высокого давления".

Наличием у новорождённых и на первом году жизни ребёнка родничков создаётся условие, облегчающие внутричерепное давление путём выпячивания перепонки родничков. Наибольшим по своим размерам является лобный родничок: он является тем естественным эластическим "вентилем", который местно регулирует давление ликвора. При наличии родничков нет, по-видимому, условий для развития грануляции arachnoideae, ибо имеются другие условия, регулирующие внутричерепное давления. С окончанием формирования костного черепа эти условия исчезают, и на смену им начинает появляться новый регулятор внутричерепного давления- ворсинки паутинной оболочки. Поэтому не случайно, что именно в области бывшего лобного родничка, в области лобных углов теменной кости располагаются в большинстве случаев пахионовы грануляции взрослых.

В части топографии пахионовы грануляции указывают преимущественное расположение их вдоль сагиттального синуса, поперечного синуса, у начала прямого синуса, на основании мозга, в области Сильвиевой борозды и в других местах.

Грануляции мягкой оболочки мозга аналогичны выростам других внутренних оболочек: ворсинам и аркадам серозных оболочек, синовиальных ворсинок суставов и другим.

По форме, в частности субдуральное, напоминают колбочку с расширенной дистальной частью и стебельком, прикреплённым к мягкой мозговой оболочке мозга. В зрелых арахноидальных грануляциях дистальная часть ветвится. Являясь производным мягкой оболочки мозга, арахноидальные грануляции образованы двумя соединительными компонентами: арахноидальной оболочкой и субарахноидальной тканью.

Арахноидальная оболочка

Арахноидальная грануляция включает три слоя: наружный- эндотелиальный, редуцированный, волокнистый и внутренний- эндотелиальный. Субарахноидальное пространство образовано множеством мелких щелей, расположенных между трабекулами. Оно заполнено ликвором и свободно сообщается с ячейками и канальцами субарахноидального пространства мягкой оболочки мозга. В арахноидальной грануляции имеются кровеносные сосуды, первичные волокна и их окончания в виде клубочков, петелек.

В зависимости от положения дистальной части различают: субдуральные, интрадуральные, интралакунарные, интрасинусные, интравенозные, эпидуральные, интракраниальные и экстракраниальные арахноидальные грануляции.

Арахноидальные грануляции в процессе развития подвергается фиброзу, гиалинизации и обызвествлению с образованием псаммомных телец. На смену гибнущим формам приходят вновь образовавшиеся. Поэтому у человека одновременно встречаются все стадии развития арахноидальной грануляции и их инволюционных превращений. По мере приближения к верхним краям больших полушарий головной мозга число и размеры арахноидальной грануляции резко увеличиваются.

Физиологическое значение, ряд гипотез

1) Является аппаратом оттока ликвора в венозные русла твёрдой оболочки.

2) Являются системой механизма, регулирующего давление в венозных синусах, твёрдой оболочки и субарахноидальном пространстве.

3) Является аппаратом, подвешивающим головной мозг в полости черепа и предохраняющим его тонкостенные вены от растяжения.

4) Является аппаратом задержки и переработки токсических продуктов обмена, препятствующим проникновению этих веществ в ликвор, и абсорбции белка из ликвора.

5) Является сложным барорецептором воспринимающим давление ликвора и крови в венозных синусах.

Отток ликвора.

Отток ликвора через арахноидальные грануляции- частное выражение общей закономерности- оттока её через всю арахноидальную оболочку. Возникновение омываемых кровью арахноидальных грануляций чрезвычайно мощно развитых у взрослого человека, создаёт наиболее короткий путь оттока ликвора непосредственно в венозные синусы твёрдой оболочки, минуя обходной путь через субдуральное пространство. У маленьких детей и мелких млекопитающих, у которых нет арахноидальных грануляций, выделение ликвора осуществляется через паутинную оболочку в субдуральное пространство.

Субарахноидальные щели интрасинусных арахноидальных грануляций, представляющие тончайшие, легко спадающиеся "трубочки", являются клапанным механизмом, открывающимся при повышении давления ликвора в большом субарахноидальном пространстве и закрывающихся при повышении давления в синусах. Этот клапанный механизм обеспечивает одностороннее продвижение цереброспинальной жидкости в синусах и согласно экспериментальным данным, открываются при давлении 20 -50 мм. воз. столба в большом субарахноидальном пространстве.

Основным механизмом оттока ликвора из подпаутинного пространства через паутинную оболочку и её дериваты (арахноидальные грануляции) в венозную систему является разница в гидростатическом давлении ликвора и венозной крови. Давление цереброспинальной жидкости в норме превышает венозное давление в верхнем продольном синусе на 15 — 50 мм. вод. ст. Около 10% цереброспинальной жидкости оттекает через сосудистое сплетение желудочков мозга, от 5% до 30% в лимфатическую систему через переневральные пространства черепно-мозговых и спинномозговых нервов.

Кроме того, существуют и другие пути оттока цереброспинальной жидкости, направленные из субарахноидального в субдуральное пространство, а затем в сосудистую сеть твёрдой мозговой оболочки или из межмозжечковых пространств мозга в сосудистую систему мозга. Некоторое количество цереброспинальной жидкости резорбируется эпендимой желудочков мозга и сосудистыми сплетениями.

Не много отступая от данной темы, нужно сказать, что в изучении невральных влагалищ, и соответственно периневральных влагалищ огромный вклад внёс выдающийся профессор, заведующий кафедрой анатомии человека Смоленского Государственного Медицинского Института (ныне академии) П.Ф.Степанов. В его работах любопытным является тот факт, что изучение велось на эмбрионах самых ранних периодов, 35 мм темено-копчиковой длинны, до сформировавшегося плода. В своей работе по развитию невральных влагалищ, он выделил следующие стадии: клеточную, клеточно-волокнистую, волокнисто- клеточную и волокнистую.

Закладка периневрия представлена внутриствольными клетками мезенхимы, имеющими клеточную структуру. Выделение периневрия только начинается на клеточно-волокнистой стадии. У эмбрионов, начиная с 35 мм темено-копчиковой длинны, среди внутристволовых отросчатых клеток мезенхимы, спинномозговых и черепно-мозговых нервов, начинают постепенно преобладать в количественном отношении именно те клетки, которые напоминают контуры первичных пучков. Границы первичных пучков становятся более чёткими особенно в местах внутриствольного выделения ветвей. По мере выделения не многочисленных первичных пучков, вокруг них формируются клеточно-волокнистый периневрий.

Так же были замечены различия в структуре периневрия различных пучков. В тех участках, которые возникли более рано, периневрий по своей структуре напоминает эпиневрий, имея волокнисто-клеточное строения, а пучки, возникшие в более поздние сроки, оказываются окружённые периневрием имеющим клеточно-волокнистое и даже клеточное строение.

ХИМИЧЕСКАЯ АСИММЕТРИЯ МОЗГА

Суть её в том, что некоторые эндогенные (внутреннего происхождения) вещества- регуляторы преимущественно взаимодействуют с субстратами левого или правого полушарий мозга. Это приводит к одностороннему физиологическому ответу. Исследователи пытались найти такие регуляторы. Изучить механизм их действия, сформировать гипотезу о биологическом значении, а также наметить пути использования этих веществ в медицине.

У пациента с правосторонним инсультом, парализованными левой рукой и ногой взяли спинномозговую жидкость и ввели в спинной мозг крысы. Предварительно ей перерезали спинной мозг в верхней части, чтобы исключить влияние головного мозга на те же процессы, которые может вызвать спинномозговая жидкость. Сразу же после введения задние лапы крысы, лежавшие до сих пор симметрично, изменили положение: причем одна лапа согнулась больше, чем другая. Другими словами у крысы развилась асимметрия позы задних конечностей. Удивительно, та сторона согнутой лапы животного совпала со стороной парализованной ноги больного. Такое совпадение было зарегистрировано в экспериментах со спинной жидкостью многих больных с левосторонними и правосторонними инсультами и черепно-мозговыми травмами. Итак, в спинномозговой жидкости впервые были обнаружены некие химические факторы, несущие информацию о стороне повреждения мозга и вызывающие асимметрию позы, то есть действующие, скорее всего, по-разному на нейроны, лежащие слева и справа от плоскости симметрии мозга.

Не вызывает сомнения поэтому существование механизма, который должен контролировать при развитии мозга движение клеток, их отростков и клеточных пластов слева направо и справа налево относительно продольной оси тела. Химический контроль процессов происходит при наличии градиентов химических веществ и их рецепторов в этих направлениях.

ЛИТЕРАТУРА

1. Большая советская энциклопедия. Москва. Том №24/1, стр. 320.

2. Большая медицинская энциклопедия. 1928г. Москва. Том №3, стр. 322.

3. Большая медицинская энциклопедия. 1981г. Москва. Том №2, стр. 127 — 128. Том №3, стр. 109 — 111. Том №16, стр. 421. Том №23, стр. 538 — 540. Том №27, стр. 177 — 178.

4. Архив анатомии, гистологии и эмбриологии. 1939 г. Том 20. Выпуск второй. Серия А. Анатомия. Книга вторая. Гос. изд-во мед. литература Ленинградское отделение. Стр. 202 — 218.

5. Развитие невральных влагалищ и внутриствольных сосудов плечевого сплетения человека. Ю. П. Судаков автореферат. СГМИ. 1968г. Смоленск.

6. Химическая асимметрия мозга. 1987 г. Наука в СССР. №1 Стр. 21 — 30. Е. И. Чазов. Н. П. Бехтерева. Г. Я. Бакалкин. Г. А. Вартанян.

7. Основы ликворологии. 1971 г. А. П. Фридман. Ленинград. "Медицина".

Спинномозгова́я жидкость (цереброспина́льная жидкость, ли́квор) - жидкость, постоянно циркулирующая в желудочках головного мозга, ликворопроводящих путях, субарахноидальном (подпаутинном) пространстве головного и спинного мозга. Предохраняет головной и спинной мозг от механических воздействий, обеспечивает поддержание постоянного внутричерепного давления и водно-электролитного гомеостаза. Поддерживает трофические и обменные процессы между кровью и мозгом. Флуктуация ликвора оказывает влияние на вегетативную нервную систему. Основной объём цереброспинальной жидкости образуется путём активной секреции железистыми клетками сосудистых сплетений в желудочках головного мозга. Другим механизмом образования цереброспинальной жидкости является пропотевание плазмы крови через стенки кровеносных сосудов и эпендиму желудочков.

Ликвор- жидкая среда, циркулирующая в полостях желудочков головного мозга, ликворопроводящих путях, субарахноидальном пространстве головного и спинного мозга. Общее содержание ликвора в организме 200 - 400 мл. Цереброспинальная жидкость заключена в основном в боковых, III и IV желудочках головного мозга, Сильвиевом водопроводе, цистернах головного мозга и в субарахноидальном пространстве головного и спинного мозга.

Процесс ликворообращения в ЦНС включает 3 основных звена:

1). Продукцию (образование) ликвора.

2). Циркуляцию ликвора.

3). Отток ликвора.

Движение ликвора осуществляется поступательными и колебательными движениями, ведущими к периодическому её обновлению, совершающемуся с различной скоростью (5 - 10 раз в сутки). Что зависит у человека от суточного режима, нагрузки на ЦНС и от колебаний в интенсивности физиологических процессов в организме. Циркуляция ликвора происходит постоянно, из боковых желудочков мозга через отверстие Монро он поступает в III желудочек, а затем через Сильвиев водопровод оттекает в IV желудочек. Из IV желудочка, через отверстие Люшки и Мажанди, большая часть ликвора переходит в цистерны основания мозга (мозжечково-мозговую, охватывающую цистерны моста, межножковую цистерну, цистерну перекрёста зрительных нервов и другие). Достигает Сильвиевой (боковой) борозды и поднимается в субарахноидальное пространство конвекситольной поверхности полушарий головного мозга - это так называемый боковой путь циркуляции ликвора.

В настоящие время установлено, что существует и другой путь циркуляции цереброспинальной жидкости из мозжечково-мозговой цистерны в цистерны червя мозжечка, через охватывающую цистерну в субарахноидальное пространство медиальных отделов полушарий головного мозга - это так называемый центральный путь циркуляции ликвора. Меньшая часть ликвора из мозжечково-мозговой цистерны спускается каудально в субарахноидальное пространство спинного мозга, достигает конечной цистерны.

28-29. Спинной мозг, форма, топография. Основные отделы спинного мозга. Шейное и пояснично-крестцовое утолщения спинного мозга. Сегменты спинного мозга.Спинной мозг (лат. Medulla spinalis ) - каудальная часть (хвостовая) ЦНС позвоночных, расположенная в образованном невральными дугами позвонков позвоночном канале. Принято считать, что граница между спинным и головным мозгом проходит на уровне перекрёста пирамидных волокон (хотя эта граница весьма условна). Внутри спинного мозга имеется полость, называемая центральным каналом. Спинной мозг защищён мягкой , паутинной и твёрдой оболочками. Пространства между оболочками и канал заполнены спинномозговой жидкостью. Пространство между внешней твёрдой оболочкой и костью позвонков называется эпидуральным и заполнено жиром и венозной сетью. Шейное утолщение – нервы к рукам, крестцово – поясничное – к ногам. Шейный С1-С8 7 позвонков; Грудной Th1-Th12 12(11-13); Поясничный L1-L5 5(4-6); Крестцовый S1-S5 5(6); Копчиковый Со1 3-4.

30.Корешки спинномозговых нервов. Спинномозговые нервы. Концевая нить и конский хвост. Образование спинальных ганглиев. корешок спинномозгового нерва(radix nervi spinalis)-пучок нервных волокон, входящих и выходящих из какого либо сегмента спинного мозга и образующих спинномозговой нерв. Спинномозговые или спинальные нервы берут начало в спинном мозге и выходят из него между соседними позвонками почти по всей длине позоночника. В их состав входят и сенсорные нейроны, и моторные нейроны, поэтому их называют смешанными нервами. Смешанные нервы - нервы, передающие импульсы как от центральной нервной системы к периферии, так и в обратном направлении, например, тройничный, лицевой, языкоглоточный, блуждающий и все спинномозговые нервы. Спинно-мозговые нервы (31 пара) формируются из двух корешков, отходящих от спинного мозга - переднего корешка (эфферентного) и заднего (афферентного) , которые, соединяясь между собой в межпозвоночном отверстии, образуют ствол спинномозгового нерва См. рис. 8 . Спинно-мозговые нервы это 8 шейных, 12 грудных, 5 поясничных, 5 крестцовых и 1 копчиковый нерв. Спинно-мозговые нервы соответствуют сегментам спинного мозга. К заднему корешку прилежит чувствительный спинномозговой узел, образованный телами крупных афферентных Т-образных нейронов. Длинный отросток (дендрит) направляется на периферию, где заканчивается рецептором, а короткий аксон в составе заднего корешка входит в задние рога спинного мозга. Волокна обоих корешков (переднего и заднего) образуют смешанные спинно-мозговые нервы, содержащие чувствительные, двигательные и вегетативные (симпатические) волокна. Последние имеются не во всех боковых рогах спинного мозга, а только в VIII шейном, всех грудных и I - II поясничных нервах. В грудном отделе нервы сохраняют сегментарное строение (межреберные нервы), а в остальных соединяются друг с другом петлями, образуя сплетения: шейное, плечевое, поясничное, крестцовое и копчиковое, от которых отходят периферические нервы, иннервирующие кожу и скелетные мышцы (рис. 228). На передней (вентральной) поверхности спинного мозга залегает глубокая передняя срединная щель, по бокам которой находятся менее глубокие переднебоковые борозды. Из переднебоковой борозды или вблизи от нее выходят передние (вентральные) корешки спинномозговых нервов. Передние корешки содержат эфферентные волокна (центробежные) , которые являются отростками двигательных нейронов, проводящих импульсы к мышцам, железам и на периферию тела. На задней (дорсальной) поверхности хорошо видна задняя срединная борозда. По бокам от нее находятся заднебоковые борозды, в которые входят задние (чувствительные) корешки спинномозговых нервов. Задние корешки содержат афферентные (центростремительные) нервные волокна, проводящие чувствительные импульсы от всех тканей и органов тела в ЦНС. Задний корешок формирует спинномозговой ганглий (узел) , который представляет собой скопление тел псевдоуниполярных нейронов. Отойдя от такого нейрона, отросток Т-образно разделяется. Один из отростков - длинный - направляется на периферию в составе спинномозгового нерва и оканчивается чувствительным нервным окончанием. Другой отросток - короткий - следует в составе заднего корешка в спинной мозг. Спинномозговые ганглии (узлы) окружены твердой мозговой оболочкой и залегают внутри позвоночного канала в межпозвоночных отверстиях.

31.Внутренне строение спинного мозга. Серое вещество. Чувствительные и двигательные рога серого вещества спинного мозга. Ядра серого вещества спинного мозга. Спинной мозг состоит из серого вещества, образованного скоплением тел нейронов и их дендритов, и покрывающего его белого вещества, состоящего из нейритов.I. Серое вещество , занимает центральную часть спинного мозга и образует в нем две вертикальные колонны по одной в каждой половине, соединяющиеся серыми спайками (передней и задней). СЕРОЕ ВЕЩЕСТВО МОЗГА, нервная ткань темного цвета, из которой состоит КОРА ГОЛОВНОГО МОЗГА. Присутствует также в СПИННОМ МОЗГЕ. Отличается от так называемого белого вещества тем, что содержит больше нервных волокон (НЕЙРОНОВ) и большое количество беловатого изолирующего материала, называемого МИЕЛИН.
РОГА СЕРОГО ВЕЩЕСТВА.
В сером веществе каждой из боковых частей спинного мозга различают три выступа. На протяжении всего спинного мозга эти выступы образуют серые столбы. Выделяют передний, задний и боковой столбы серого вещества. Каждый из них на поперечном разрезе спинного мозга получает название соответственно

Переднего рога серого вещества спинного мозга,

Заднего рога серого вещества спинного мозга

Бокового рога серого вещества спинного мозга Передние рога серого вещества спинного мозга содержат крупные двигательные нейроны. Аксоны этих нейронов, выходя из спинного мозга, составляют передние (двигательные) корешки спинномозговых нервов. Тела двигательных нейронов образуют ядра эфферентных соматических нервов, иннервирующих скелетную мускулатуру (аутохтонная мускулатура спины, мышцы туловища и конечностей). При этом чем дистальнее расположены иннервируемые мышцы, тем латеральнее лежат иннервирующие их клетки.
Задние рога спинного мозга образованы относительно мелкими вставочными (переключательными, кондукторными) нейронами, которые воспринимают сигналы от чувствительных клеток, лежащих в спинномозговых ганглиях. Клетки задних рогов (вставочные нейроны) образуют отдельные группы, так называемые соматические чувствительные столбы. В боковых рогах находятся висцеральные моторные и чувствительные центры. Аксоны этих клеток проходят через передний рог спинного мозга и выходят из спинного мозга в составе передних корешков. ЯДРА СЕРОГО ВЕЩЕСТВА.
Внутреннее строение продолговатого мозга. Продолговатый мозг возник в связи с развитием органов гравитации и слуха, а также в связи с жаберным аппаратом, имеющим отношение к дыханию и кровообращению. Поэтому в нем заложены ядра серого вещества, имеющие отношение к равновесию, координации движений, а также к регуляции обмена веществ, дыхания и кровообращения.
1. Nucleus olivaris, ядро оливы, имеет вид извитой пластинки серого вещества, открытой медиально (hilus), и обусловливает снаружи выпячивание оливы. Оно связано с зубчатым ядром мозжечка и является промежуточным ядром равновесия, наиболее выраженным у человека, вертикальное положение которого нуждается в совершенном аппарате гравитации. (Встречается еще nucleus olivaris accessorius medialis.) 2. Formatio reticularis, ретикулярная формация, образующаяся из переплетения нервных волокон и лежащих между ними нервных клеток. 3. Ядра четырех пар нижних черепных нервов (XII -IX), имеющие отношение к иннервации производных жаберного аппарата и внутренностей. 4. Жизненно важные центры дыхания и кровообращения, связанные с ядрами блуждающего нерва. Поэтому при повреждении продолговатого мозга может наступить смерть.

32. Белое вещество спинного мозга: строение и функции.

Белое вещество спинного мозга представлено отростками нервных клеток, которые составляет тракты, или проводящие пути спинного мозга:

1) короткие пучки ассоциативных волокон, связывающие сегменты спинного мозга, расположенные на различных уровнях;

2) восходящие (афферентные, чувствительные) пучки, направляющиеся к центрам большого мозга и мозжечка;

3) нисходящие (эфферентные, двигательные) пучки, идущие от головного мозга к клеткам передних рогов спинного мозга.

Белое вещество спинного мозга располагается по периферии серого вещества спинного мозга и представляет собой совокупность миелинизированных и отчасти маломиелинизированных нервных волокон, собранных в пучки. В белом веществе спинного мозга расположены нисходящие волокна (идущие из головного мозга) и восходящие волокна, которые начинаются от нейронов спинного мозга и проходят в головной мозг. По нисходящим волокнам передается преимущественно информация от моторных центров головного мозга к мотонейронам (двигательным клеткам) спинного мозга. По восходящим волокнам поступает информация как от соматических, так и от висцеральных чувствительных нейронов. Расположение восходящих и нисходящих волокон носит закономерный характер. На спинной (дорсальной) стороне расположены преимущественно восходящие волокна, а на брюшной (вентральной) - нисходящие волокна.

Борозды спинного мозга разграничивают белое вещество каждой половины на передний канатик белого вещества спинного мозга, боковой канатик белого вещества спинного мозга и задний канатик белого вещества спинного мозга

Передний канатик ограничен передней срединной щелью и переднебоковой бороздой. Боковой канатик расположен между переднебоковой бороздой и заднебоковой бороздой. Задний канатик находится между задней срединной бороздой и заднебоковой бороздой спинного мозга.

Белое вещество обеих половин спинного мозга связано двумя комиссурами (спайками): дорсальной, лежащей под восходящими путями, и вентральной, находящейся рядом с моторными столбами серого вещества.

В составе белого вещества спинного мозга различают 3 группы волокон (3 системы проводящих путей):

Короткие пучки ассоциативных (межсегментных) волокон, связывающие участки спинного мозга на различных уровнях;

Длинные восходящие (афферентные, чувствительные) проводящие пути, которые идут от спинного мозга к головному;

Длинные нисходящие (эфферентные, двигательные) проводящие пути, идущие от головного мозга к спинному.