Механизмы восприятия боли: головной мозг и боль. Боль: виды, причины, механизмы формирования

Анатомическими основаниями возникновения боли является иннервация органов тонкими миелинизированными (А-) нервными волокнами. Окончания этих нервных волокон возбуждаются раздражителями высокой интенсивности и таким образом в физиологических условиях проявляют потенциально повреждающие (ноксическую) раздражительные воздейсвтия. Поэтому они также получили название ноцирецепторы. Возбуждение периферических ноцирецепторов после переработки в спинном мозге проводится в центральную нервную систему, где наконец и возникает ощущение боли. В патофизиологических условиях чувствительность периферических ноци-рецепторов, а также центральной переработки боли увеличиваются, например, в рамках воспалений. Так сигнал тревоги боли становится требующим лечения симптомом.

Повышенная чувствительность в области периферических ноцирецепторов может проявляться как спонтанная активность или как сенсибилизация к термическим или механическим раздражениям. Мощный приток ноцицептивной информации (нейрональная активность в ноцирецепторах) из области воспаления может кроме того вызвать повышенную переработку боли в спинном мозгу (центральная сенсибилизация). Эта центральная сенсибилизация опосредуется, с одной стороны, напрямую и остро более высокой частотой входящих потенциалов действия и при этом высвобождаемыми в спинном мозгу нейротрансмиттерами и ко-трансмиттерами.

С другой стороны, также определенные факторы роста через специфические рецепторы сенсорных окончаний воспринимаются на периферии и транспортируются в клеточные ядра ганглионов задних корешков. Там они вызывают подострое изменение экспрессии генов, например, нейропептидов и нейротрансмиттеров, которые, в свою очередь, могут усиливать восприятие боли.

Сигнал тревоги боли становится требующим лечения симптомом

Спинальные ноцицептивные нейроны активируют через восходящие пути латеральную и медиальную таламокортикальную систему. При этом латеральная система через активирование первичного и вторичного сенсорного кортекса особенно в дискриминационном аспекте восприятия боли, а медиальная система через активирование переднего Сingulum, островка и префронтального кортекса имеют особое значения для аффективных компонентов.

Центральная нервная система через нисходящие пути модулирует обработку ноцицептивной информации в спинном мозгу. Подавляющие пути в большинстве происходят из периаквадуктулярной серой полости и Nucleus raphe magnus. Для терапии боли эти нисходящие пути имеют особый интерес, так как они особенно активируются опиатами.

В дальнейшем описываются детали возникновения боли. При этом по многим причинам воздействию подвергаются периферические механизмы; это однако не связано со значением центральных компонентов.

Периферические механизмы - первичные афферентные ноцицептор ы

Сенсорные протеины

Наиболее простой механизм, который может вызывать боли обусловленные воспалением, это непосредственное раздражение или сенсибилизация ноцицептивных нервных окончаний медиаторами воспаления. Для большого количества медиаторов известны специфические рецепторы на сенсорных окончаниях. У части этих рецепторов их активация приводит к активации деполяризации и вместе с тем может возбуждать эти ноцицепторы. Как источники этих медиаторов рассматриваются:

поврежденные клетки тканей (ATP, калий, энзимы, понижение рН и др.),
кровеносные сосуды (брадикинин, эндотелин),
стволовые клетки (гистомин, протеазы, фактор роста нервов NGF, туморнекротизирующий фактор TNF и др.),
лейкоциты (цитокины, простагландины, лейкотриены и др.).
В качестве непосредственных прямых активаторов ноцицепторов имеют значение особенно ацетилхолин, брадикинин, серотонин, кислая рН, аденозин трифосфат (АТР) и аденонозин. В отношении эндотелина считается, что он играет особую роль при болях ассоциирующих с опухолью.

Наряду с активирующими рецепторами ноцицептивные нервные окончания снабжены также и ингибирующими рецепторами. Важнейшими из них считаются опиат- и каннабиноидрецепторы. Роль периферических опиат-рецепторов для модуляции восприимчивости ноцицепторов уже подробно изучалась.В качестве новой цели анальгетиков за последнее время были описаны каннабиноид-рецепторы (СВ1 и СВ2), причем экспрессия СВ2-рецептров оказалась особенно выраженной на воспалительных клетках, тогда как СВ1-рецепторы среди прочего экспримиро-ваны в периферических ноцицепторах и центральной нервной системе.

Уже имеются первые результаты терапевтического применения каннабиноидов, однако их место в терапии боли еще не установлено. Стоит отметить, что более современные исследования к тому же исходят из взаимодейсвтия между опиоидами и каннабиоидами, при которой эндогенные опиаты высвобождаются при введении каннабиоидов, или опиаты высвобождают эндогенные каннабиноиды. В дальнейшем будут описаны более подробно рецепторы, которые рассматриваются в качестве терапевтической цели анальгетической терапии.

Transient-Rezeptor-Potenzial (TRP)-каналы

За последнее время был клонирован целый ряд температуро-чувствительных ионных каналов из семейства TRP-каналов (‘transient rezeptor potential). Наиболее известными представителями этой группы является TRPV1 (Capsacin-рецептор), который может активироваться высокой тем-пературой и пониженной рН средой. Другие представители семейства ваниллоидов (TRPV1, TRPV2, TRPV3, TRPV4) возбуждаются при стимуляции высокой температурой, тогда как каналы TRPM8 и TRPA1 (ANKTM1) реагируют на охлаждение или ноксические раздражения холодом. Дополнительно к активации при сильном охлаждении TPRA1 активируется и острыми естественными составными частями горчичного масла, имбиря и маслом корицы, а также брадикинином.

Активность TPRV1 модифицируется быстрым обратимым фосфорилированием и приводит к сенсибилизации или десенсибилизации реакции на тепловое раздражение и химическую раз-дражимость. Особая роль TPRV1 при этом видится в том, что этот рецептор как интегрируемый элемент определяет химическую и физическую раздражимость, что делает его многообещающей целью для терапии боли. Наряду с краткосрочными модуляциями восприимчивости также регулируется экспрессия TRPV1 на ноцицептивных нейронах: повышенная экспрессия описыва-ется как при воспалительных, так и при нейропатических болях.

ASIC: «acid-sensing ion channels»

Тканевой ацидоз играет важную роль при воспалении и усиливает боль и гиперальгезию. Более высокие раздражения рН могут активировать TRPV1, легкий ацидоз наоборот в первую очередь определяется через активацию ASIC («acid-sensing ion channel»). Локальное введение нестероидных антифлогистиков может путем рН-раздражения уменьшать индуцированную болевую реакцию, при чем в основе этого эффекта по всей вероятности лежит не подавление циклооксигеназы, но непосредственное подавление ASIC-каналов.

Брадикинин

Брадикинин - это вазоактивный провоспалительный нонапептид, чей ноцицептивный эффект на сенсорные терминалы опосредуется рецепторами брадикинин-В1 и В2. При этом исходят из того, что В1-рецепторы экспримируются особенно при воспалительном процессе. Также и у людей в рамках UV- индуцированных воспалительных реакциях была описана повышенная чувствительность к В1 и В2-агонистам. В настоящее время еще нет клинических сведений о терапевти-ческом применении В1 и В2-антагонистов; в связи с особой ролью рецепторов брадикинина при боли и воспалении они представляются особенно интересными в применении их при хрониче-ских воспалительных заболеваниях связанных с болью, как например при остеоартрите.

Аксональные протеины

Традиционно функция аксональных ионных каналов на проведение потенциала действия в смысле «все-или-ничего» ограничивалась. Современные данные однако указывают на то, что частота потенциала действия также модулируется аксонально. Кроме того, ионные каналы, имеющие значение в возникновении нейрональных мембранных потенциалов, также потенциально участвуют в возникновении спонтанной активности в рамках нейропатических состояний боли. В качестве примера можно было бы назвать кальций-зависимые калиевые каналы (sK), которые при проведении потенциалов действия вызывают медленную гиперполяризацию и вместе с тем снижение возбудимости. Уменьшение этих каналов уже было описано при травматических поражениях нервов с нейропатическими болями.

Функциональным противником sK-каналов являются индуцированные гиперполяризацией потоки (Ih), которые передаются через циклически нуклеоид-модулированные HCN-каналы (HCN: hy-perpolarization-activated cyclic nucleotid-modulated). Повышенная экспрессия HCN-каналов связывается с возникновением спонтанной активности при нейропатических болях.

Сенсибилизация сенсорных или аксональных нейрональных ионных каналов для наглядности будет рассматриваться отдельно, тем не менее, имеются существенные перекрытия в механизмах сенсибилизации: так аксональыне тетродоксинрезистентные зависимые от напряжения натриевые каналы (TTXr Na+) также сенсибилизируются и такими медиаторами, которые обычно активируют или сенсибилизируют сенсорные окончания (аденозин, простагландин Е2 или серотонин).

Особенности специальных классов ноцицептторов

Прочная взаимосвязь аксональных и сенсорных каналов выражается и в том, что различные классы нервных волокон отличаются как по своим сенсорным, так и по аксональным характеристикам: при функциональном распределении первичных аффренецием по их сенсорным особенностям (например, механо-сенситивные ноцицепторы, не-ноцицептинвые холодовые рецепторы) эти группы проявляют высокоспецифичные шаблоны индуцированной активностью гиперполяризации. Выраженная высокая индуцированная активностью гиперполяризация специфична для, так называемых, «немых ноцоцепторов», которые играют особую роль в сенсибилизации и нейрогенном воспалении.

Нейро-иммунологические взаимодействия

По клинической картине и первичному месту воспаления различаются воспалительная боль и нейропатическая боль. При этом в первом случае возбуждены или сенсибилизированы терминалы ноцицепторов в области воспаления, а при нейропатической боли, наоборот, боль исходит из повреждения, которое изначально пришлось на аксон нерва, но не на его сенсибилизированное окончание.

Хотя клиническая картина воспалительной и нейропатической боли отличаются друг от друга, однако из современных исследований следует, что локальное воспаление периферических нервов играет решающую роль в патофизиологии нейропатической боли. Кроме того, оказалось, что не-нейрональные клетки играют активную роль в процессе сенсибилизации: глиальные клетки, которые активируются в рамках повреждения нервов, могут сенсибилизировать нейроны путем выделения хемокинов. Это взаимодействие иллюстрирует прочную взаимосвязь между воспалением и ноцицепцией наряду с уже известной и изученной активностью воспалительных медиаторов в ноцицептивных нервных окончаниях в клинически воспаленной ткани.

Между миалинизированными нервными волокнами, местными тканевыми клетками и клетками воспаления существует многогранное взаимодействие. Кератиноциты могут сенсибилизировать ноцицептивные окончания через выделение ацетилхолина и фактора нервного роста (NGF); и наоборот, кератиноциты могут активироваться нейропептидами (например, субстанция Р, CGRP) из ноцицепторов. Особое взаимодействие существует между стволовыми клетками и нервными клетками: большое количество медиаторов стволовых клеток могут сенсибилизировать ноцицептивные нервные окончания (NGF, триптаза, TNF-a, гистамин). NGF сенсибилизирует ноцицепторы остро путем активации протеинкиназы А. Кроме того, NGF опосредует повышенную экспрессию нейропептидов, а также сенсорных протеинов, таких как рецептор капсацина, который затем снова усиленно транспортируется на периферию.

Между нервными волокнами, локальными тканевыми клетками и клетками воспаления существуют многогранные взимоотношения
Наряду с активирующими взаимодействиями между нейронами, тканевыми клетками и клетками воспаления существуют также и ингибирующие взаимодействия. Как ингибирующие медиаторы, дермальными нейронами выделяются нейропептиды, как вазоинтестинальный вазопептид, а также эндогенные опиаты. Стволовые клетки вырабатывают интерлейкин 10 и IL-1-рецептор-антогонисты, действующие противовоспалительно. Кератиноциты к тому же синтезируют меланин-стимулирующий гормон (a-MSH) и нейтральную нейропептидазу (NEP), которая ограничива-ет действие активирующих нейропептидов.

Таким образом, проявляется комплексная взаимосвязь противоположно направленного подавления и активации, при чем различные «Reichweite» активрующих и ингибирующих медиаторов имеют значение для пространственного распространения воспаления.

Центральные механизмы

Опыт и здравый смысл говорят, что поврежденные месте тела больше чувствительны к боли. Эта форма сверхчувствительности называется первичная гипералгезия и может объясняться локальным действием медиаторов воспаления на затронутые нервные окончания. Первичной гиперальгезии противопоставляется вторичная гиперальгезия, возникающая в непораженной ткани вокруг места повреждения.

Вокруг этого места поражения холод, касание («brush evoked hyperalgesia» или Allodinie) и раздражение от укола иглой (Pinprickhyperalgesia) воспринимаются как неприятные или болезненные. Происхождение этой формы вторичной гиперальгезии находится не в самой поврежденной области. Скорее речь идет о сенсибилизации спинальных нейронов массивным ноцицептивным раздражением и в результате этого измененной спинальной обработкой в направлении ноцицепции. Центральная сенсибилизация может этим объяснить, почему боль и сверхчувствительность не остаются строго ограниченными областью повреждения, но занимают гораздо большие ареалы. Молекулярные механизмы центральной сенсибилизации не до конца понятны, существенная роль однако принадлежит глютамат-рецепторам на спинальном уровне (NMDA- и мета-ботропные рецепторы), которые уже служат в качестве терапевтических целей (например кетамин).

Многие хронические состояния боли однако не могут быть объяснены периферическими или спинальными нарушениями переработки, но рассматриваются как следствия комплексной взаимосвязи генетических и психо-социальных факторов. Поэтому в клиническом плане возникает необходимость мультимодального и мультидисциплинарного подхода к терапии боли. Значение процесса обучения в возникновении или лечении хронических состояний боли за последнее время значительно приросло.

При открытие роли каннабиоидов в устранении (стирании) негативных содержаний памяти продемонстрировало новые возможности комбинации фармакотерапии и терапии поведения. Всеохватывающие и многообещающие возможности для дальнейшего анализа и терапевтического влияния на центральные механизмы боли, включая электростимуляционые методы, не могут быть описаны здесь из-за отсутствия места.

Резюме для практики

Периферические механизмы возникновения болей нашли отражение в прочном взаимодействии нейронов и окружающих тканевых и воспалительных клеток, что проявляется как в раздражающей, так и ингибирующем взаимодействии и представляет многообразие возможных терапевтических целей. На спинальном уровне процессы сенсибилизации приводят к распространению болей и способствуют хронификации. Процессы обучения и стирание адверсивного содержания памяти имеют большое значение при хронических состояниях боли как для патофизиологии, так и для терапии.

Боль является симптомом многих заболеваний и повреждений организма. У человека сформировался сложный механизм восприятия боли, который сигнализирует о повреждениях и заставляет принимать меры к устранению причин боли (одёрнуть руку и др.).

Ноцицептивная система

За восприятие и проведение боли в организме отвечает так называемая ноцицептивная система . В упрощённом виде механизм проведения боли можно представить следующим образом (рисунок ⭣).

При раздражении болевых рецепторов (ноцицепторов), локализованных в различных органах и тканях (кожа, сосуды, скелетные мышцы , надкостница и др.), возникает поток болевых импульсов, которые по афферентным волокнам поступают в задние рога спинного мозга.

Афферентные волокна бывают двух типов: А-дельта волокна и С-волокна.

А-дельта волокна являются миелинизированными, а значит, быстропроводящими - скорость проведения импульсов по ним составляет 6-30 м/с. А-дельта волокна отвечают за передачу острой боли. Они возбуждаются высокоинтенсивными механическими (булавочный укол) и иногда термическими раздражениями кожи. Имеют скорее информационное значение для организма (заставляют отдёрнуть руку, отпрыгнуть и др.).

Анатомически А-дельта ноцицепторы представлены свободными нервными окончаниями, разветвлёнными в виде дерева. Они располагаются преимущественно в коже и в обоих концах пищеварительного тракта. Имеются они также и в суставах. Трансмиттер (передатчик нервного сигнала) А-дельта волокон остаётся неизвестным.

С-волокна - немиелинизированные; они проводят мощные, но медленные потоки импульсации со скоростью 0,5-2 м/с. Считается, что эти афферентные волокна предназначены для восприятия вторичной острой и хронической боли.

С-волокна представлены плотными некапсулированными гломерулярными тельцами. Они являются полимодальными ноцицепторами, поэтому реагируют как на механические, так на температурные и химические раздражения. Активируются они химическими веществами, возникающими при повреждении тканей, являясь одновременно хеморецепторами, считаются оптимальными тканеповреждающими рецепторами.

С-волокна распределяются по всем тканям за исключением центральной нервной системы. Волокна, имеющие рецепторы, воспринимающие повреждения тканей, содержат субстанцию Р, выступающую в качестве трансмиттера.

В задних рогах спинного мозга происходит переключение сигнала с афферентного волокна на вставочный нейрон, с которого, в свою очередь, импульс ответвляется, возбуждая мотонейроны. Данное ответвление сопровождается двигательной реакцией на боль - отдёрнуть руку, отпрыгнуть и т.д. Со вставочного нейрона поток импульсов, поднимаясь далее по ЦНС, проходит через продолговатый мозг, в котором находится несколько жизненно важных центров: дыхательный, сосудодвигательный, центры блуждающего нерва, центр кашля, рвотный центр. Именно поэтому боль в некоторых случаях имеет вегетативное сопровождение - сердцебиение, потоотделение, скачки артериального давления, слюнотечение и т.д.

Далее болевой импульс достигает таламуса. Таламус является одним из ключевых звеньев передачи болевого сигнала. В нём находятся так называемые переключающие (ПЯТ) и ассоциативные ядра таламуса (АЯТ). Эти образования имеют определённый, достаточно высокий порог возбуждения, который могут преодолеть далеко не все болевые импульсы. Наличие такого порога имеет очень важное значение в механизме восприятия боли, без него любое малейшее раздражение вызывало бы болевое ощущение.

Тем не менее, если импульс достаточно сильный, он вызывает деполяризацию клеток ПЯТ, импульсы от них поступают в двигательные зоны коры головного мозга, определяя само ощущение боли. Такой путь проведения болевых импульсов называет специфическим. Он обеспечивает сигнальную функцию боли - организм воспринимает факт возникновения боли.

В свою очередь, активация АЯТ обусловливает попадание импульсов в лимбическую систему и гипоталамус, обеспечивая эмоциональную окраску боли (неспецифический путь проведения боли). Именно из-за этого пути проведения восприятие боли имеет психоэмоциальную окраску. Кроме того, благодаря этому пути люди могут описывать воспринимаемую боль: острая, пульсирующая, колющая, ноющая и т.д., что определяется уровнем воображения и типом нервной системы человека.

Антиноцицептивная система

На всем протяжении ноцицепгивной системы присутствуют элементы антиноцицептивной системы, которая также является неотъемлемой частью механизма восприятия боли. Элементы этой системы призваны подавлять болевые ощущения. В механизмах развития анальгезии, подконтрольным антиноцицептивной системе, участвуют серотонинэргическая, ГАМК-эргическая и, в наибольшей степени, - опиоидная система. Функционирование последней реализуется за счёт белковых трансмиттеров - энкефалинов, эндорфинов - и специфических для них опиоидных рецепторов.

Энкефапины (мет-энкефалин - H-Tyr-Gly-Gly-Phe-Met-OH, лей-энкефалин - H-Tyr-Gly-Gly-Phe-Leu-OH и др.) впервые были выделены в 1975 г. из мозга млекопитающих. По своей химической структуре относятся к классу пентапептидов, имея очень близкое строение и молекулярную массу. Энкефалины являются нейромедиаторами опиоидной системы, функционируют на всем ее протяжении от ноцицепторов и афферентных волокон до структур головного мозга.

Эндорфины (β-эндофин и динорфин) - гормоны, продуцируемые кортикотропными клетками средней доли гипофиза. Эндорфины имеют более сложное строение и большую молекулярную массу, чем энкефалины. Так, β-эндофин синтезируется из β-липотропина, являясь, по сути, 61-91 аминокислотной частью этого гормона.

Энкефалины и эндорфины, стимулируя опиоидные рецепторы, осуществляют физиологическую антиноцицепцию, причём энкефалины следует рассматривать как нейромедиаторы, а эндорфины - как гормоны.

Опиоидные рецепторы - класс рецепторов, которые, являясь мишенями для эндорфинов и энкефалинов, участвуют в реализации эффектов антиноцицептивной системы. Их название произошло от опия - высушенного млечного сока мака снотворного, известного с древних времен источника наркотических анальгетиков.

Выделяют 3 основных типа опиоидных рецепторов: μ (мю), δ (дельта), κ (каппа). Их локализация и эффекты, возникающие при их возбуждении, представлены в таблице ⭣.

Локализация Эффект при возбуждении
μ-рецепторы:
Антиноцицептивная система Анальгезия (спинальная, супраспинальная), эйфория, пристрастие.
Кора головного мозга Торможение коры, сонливость. Косвенно - брадикардия, миоз.
Дыхательный центр Угнетение дыхания.
Центр кашля Угнетение кашлевого рефлекса.
Рвотный центр Стимуляция рвотного центра.
Гипоталамус Угнетение центра терморегуляции.
Гипофиз Ослабление выработки гонадотропных гормонов и усиление выработки пролактина и антидиуретического гормона.
Желудочно-кишечный тракт Снижение перистальтики, спазм сфинктеров, ослабление секреции желез.
δ-рецепторы:
Антиноцицептивная система Анальгезия.
Дыхательный центр Угнетение дыхания.
κ-рецепторы:
Антиноцицептивная система Анальгезия, дисфория.

Энкефалины и эндорфины, стимулируя опиоидные рецепторы, вызывают активацию связанного с этими рецепторами G₁-белка. Данный белок ингибирует фермент аденилатциклазу, которая в обычных условиях способствует синтезу циклического аденозинмонофосфата (цАМФ). На фоне её блокады количество цАМФ внутри клетки снижается, что приводит к активации мембранных калиевых каналов и блокаде кальциевых каналов.

Как известно, калий - это внутриклеточный ион, кальций - внеклеточный ион. Указанные изменения в работе ионных каналов обусловливают выход ионов калия из клетки, притом что кальций внутрь клетки войти не может. В результате заряд мембраны резко снижается, и развивается гиперполяризация - состояние, при котором клетка не воспринимает и не передаёт возбуждение. Как следствие возникает подавление ноцицептивной импульсации.

Источники:
1. Лекции по фармакологии для высшего медицинского и фармацевтического образования / В.М. Брюханов, Я.Ф. Зверев, В.В. Лампатов, А.Ю. Жариков, О.С. Талалаева - Барнаул: изд-во Спектр, 2014.
2. Общая патология человека / Саркисов Д.С., Пальцев М.А., Хитров Н.К. - М.: Медицина, 1997.

Наиболее распространенным и актуальным определением боли, разработанным Международной ассоциацией по изучению боли (IASP), является определение, согласно которому «боль – это неприятное сенсорное и эмоциональное переживание, связанное с острым или потенциальным повреждением ткани, или описанное в терминах такого повреждения, или и то, и другое». Хотя для объяснения физиологических основ боли было предложено несколько теоретических схем, ни одна теория не смогла полностью охватить все аспекты восприятия боли.

Четырьмя наиболее общепризнанными теориями восприятия боли являются теория специфичности, интенсивности, теория паттернов и теории воротного контроля. Однако в 1968 году Melzack и Casey описали боль как многомерную, где измерения не являются независимыми, а скорее интерактивными. Эти измерения включают сенсорно-дискриминативный, аффективно-мотивационный и когнитивно-оценочный компоненты.

Определение наиболее вероятного механизма (механизмов) боли имеет крайне важное значение во время клинической оценки, поскольку это может служить руководством для определения наиболее подходящего лечения. Таким образом, критерии, на которых клиницисты могут основывать свои решения в отношении соответствующих классификаций, были установлены с помощью экспертного консенсусного перечня клинических показателей.

Друзья, 30 ноября — 1 декабря в Москве состоится семинар от авторов легендарного бестселлера Explain Pain.

Приведенные ниже таблицы были взяты у Smart и соавт. (2010), которые классифицировали болевые механизмы как «ноцицептивные», «периферические невропатические» и «центральные», и выделили как субъективные, так и объективные клинические показатели для каждого механизма. Таким образом, эти таблицы являются дополнением к любым общепринятым данным и служат основой для принятия клинических решений при определении наиболее подходящего механизма (механизмов) боли.

Кроме того, знание факторов, которые могут изменить боль и восприятие боли, может помочь в определении имеющегося у пациента механизма боли. Ниже перечислены факторы риска, которые могут изменить боль и восприятие боли.

  • Биомедецинский.
  • Психосоциальный или поведенческий.
  • Социальный и экономический.
  • Профессиональный /связанный с работой.

Механизм ноцицептивной боли

Ноцицептивная боль связана с активацией периферических окончаний первичных афферентных нейронов в ответ на вредные химические (воспалительные), механические или ишемические стимулы.

Субъективные показатели

  • Четкий, пропорциональная механическая/анатомическая природа провоцирующих и облегчающих факторов.
  • Боль, связанная и пропорциональная травме, или патологическому процессу (воспалительный ноцицептивный), или двигательной / постуральной дисфункции (ишемический ноцицептивный).
  • Боль, локализованная в области травмы/дисфункции (с/без отраженного компонента).
  • Обычно быстрое уменьшение/исчезновение боли в соответствии с ожидаемым временем заживления/восстановления ткани.
  • Эффективность нестероидных противовоспалительных препаратов/анальгетиков.
  • Периодический (резкий) характер боли, что может быть связано с движениями/механической нагрузкой; может быть постоянной тупой ноющей или пульсирующей.
  • Боль в сочетании с другими симптомами воспаления (например, отек, покраснение, жар).
  • Отсутствие неврологических симптомов.
  • Боль, которая началась недавно.
  • Четкая суточная или 24-часовая картина симптомов (т.е. утренняя скованность).
  • Отсутствие или незначительная связь с неадаптивными психосоциальными факторами (например, негативными эмоциями, низкой самоэффективностью).

Объективные показатели

  • Четкий, последовательный и пропорциональный механический/анатомический характер воспроизведения боли при движении/механическом тестировании тканей-мишеней.
  • Локализованная боль при пальпации.
  • Отсутствие или ожидаемое/ пропорциональное соотношение результатов (первичной и/или вторичной) гипералгезии и/или аллодинии.
  • Анталгические (то есть обезболивающие) позы/движения.
  • Наличие других кардинальных признаков воспаления (отек, покраснение, жар).
  • Отсутствие неврологических признаков: отрицательные нейродинамические тесты (например, тест подъема прямой ноги, тест натяжения плечевого сплетения, тест Тинеля).
  • Отсутствие дезадаптивного болевого поведения.

Механизм периферической нейропатической боли

Периферическая невропатическая боль инициируется или вызывается первичным поражением или дисфункцией периферической нервной системы (ПНС) и включает в себя многочисленные патофизиологические механизмы, связанные с измененным функционированием нерва и его реактивностью. Механизмы включают в себя повышенную возбудимость и аномальную генерацию импульсов, а также повышенную механическую, термическую и химическую чувствительность.

Субъективные показатели

  • Боль описывается как жгучая, стреляющая, острая, ноющая или подобная удару электрическим током.
  • История травмы нерва, патологии или механического повреждения.
  • Боль в сочетании с другими неврологическими симптомами (например, покалывание, онемение, слабость).
  • Боль характеризуется дерматомальным распределением.
  • Боль не меняется в ответ на применение НПВС/анальгетиков и уменьшается при приеме противоэпилептических препаратов (например, Нейронтин, Лирика) или антидепрессантов (например, Амитриптилин).
  • Боль высокой степени выраженности (т.е. легко провоцируемая и требующая больше времени для успокоения).
  • Механическая закономерность к отягчающим и смягчающим факторам, связанным с деятельностью/постурой, связанными с движением, нагрузкой или сжатием нервной ткани.
  • Боль в сочетании с другими дизестезиями (например, ползание мурашек, электрический ток, тяжесть).
  • Отсроченная боль в ответ на движение/механические нагрузки.
  • Боль усиливается ночью и связана с нарушением сна.
  • Боль, связанная с психологическими факторами (такими как дистресс, эмоциональные расстройства).

Объективные показатели

  • Провоцирование боли/симптомов с помощью механических/двигательных тестов (т. е. активных/пассивных, нейродинамических), которые перемещают/нагружают/сжимают нервную ткань.
  • Провокация боли/симптомов при пальпации соответствующих нервов.
  • Положительные неврологические результаты (включая измененные рефлексы, ощущения и мышечную силу в дерматомальном/миотомическом или кожном распределении).
  • Анталгическое положение пораженной конечности/части тела.
  • Положительные результаты гипералгезии (первичной или вторичной) и/или аллодинии и/или гиперпатии в пределах зоны распределения боли.
  • Отсроченная боль в ответ на движение/механическое тестирование.
  • Клинические исследования, подтверждающие периферический невропатический характер (например, МРТ, КТ, тесты нервной проводимости).
  • Признаки вегетативной дисфункции (такие как трофические изменения).

Примечание: вспомогательные клинические исследования (например, МРТ) могут не понадобиться для того, чтобы врачи-клиницисты могли классифицировать боль, как «периферическую невропатическую».

Механизм центральной боли

Центральная боль - это боль, инициированная или являющаяся следствием первичного поражения или дисфункции центральной нервной системы (ЦНС).

Субъективные показатели

  • Непропорциональный, немеханический, непредсказуемый характер провокации боли в ответ на множественные/неспецифические факторы обострения/ослабления.
  • Боль, сохраняющаяся за пределами ожидаемого времени заживления тканей / восстановления патологии.
  • Боль, несоразмерная характеру и степени травмы или патологии.
  • Широко распространенное, неанатомическое распределение боли.
  • История неудачных вмешательств (медицинских/хирургических /терапевтических).
  • Сильная связь с дезадаптивными психосоциальными факторами (т. е. отрицательные эмоции, низкая самоэффективность, дезадаптивные убеждения и болезненное поведение, измененное семьей / работой / социальной жизнью, медицинский конфликт).
  • Боль не снижается в ответ на НПВС, но становится менее интенсивной на фоне приема противоэпилептических препаратов и антидепрессантов.
  • Сообщения о спонтанной (т.е. независимой от стимула) боли и/или пароксизмальной боли (т.е. внезапных рецидивах и усилении боли).
  • Боль в сочетании с выраженным нарушением дееспособности.
  • Более постоянная/неизменяющаяся боль.
  • Боль по ночам/нарушение сна.
  • Боль в сочетании с другими дизестезиями (жжение, холод, ощущение мурашек).
  • Боль высокой степени выраженности (т.е. легко провоцируемая, требующая много времени для успокоения).
  • Остроченная боль в ответ на движение/механические нагрузки, активность повседневной жизни.
  • Боль в сочетании с симптомами дисфункции вегетативной нервной системы (изменение цвета кожи, чрезмерное потоотделение, трофические нарушения).
  • История расстройства/поражения ЦНС (например, повреждение спинного мозга).

Объективные показатели

  • Непропорциональная, непоследовательная, немеханическая/неанатомическая картина провоцирования боли в ответ на движение/механическое тестирование.
  • Положительные результаты гипералгезии (первичной, вторичной) и/или аллодинии и/или гиперпатии в пределах распределения боли.
  • Диффузные/неанатомические области боли/болезненности при пальпации.
  • Позитивная идентификация различных психосоциальных факторов (например, катастрофизация, избегание, дистресс).
  • Отсутствие признаков повреждения ткани/патологии.
  • Отсроченная боль в ответ на движение/механическое испытание.
  • Атрофии мышц.
  • Признаки дисфункции вегетативной нервной системы (изменение цвета кожи, потливость).
  • Анталгические позы/движения.

Клинические примеры

Следующие клинические примеры дополнят приведенную выше информацию о вероятных механизмах боли.

Случай № 1

Пациент «А» — 58-летняя женщина на пенсии. История текущей жалобы — примерно 1 месяц назад внезапно возникла боль в пояснице, отдающая в правую ногу. Пациентка жалуется на постоянную тупую боль в пояснице справа (Б1), ВАШ 7-8/10, отдающую по передней части правой ноги до колена (Б2), которая является периодической 2/10 и связанной со жгучей болью над коленом. Б1 усугубляется во время керлинга, когда правая нога является ведущей, при ходьбе свыше 15 минут, вождении машины более 30 минут и подъеме по лестнице. Б2 появляется при сидении на твердых поверхностях свыше 30 минут и длительном сгибании. Кашель и чихание не усиливают боль. Пациент «А» около 10 лет назад перенес травму поясницы, прошел курс лечения с хорошим восстановлением. Каков механизм боли?

Случай № 2

Пациент “B” — 30-летний мужчина, бухгалтер. История текущей жалобы — внезапное начало – неспособность повернуть и наклонить шею вправо, что возникло 2 дня назад. При этом у пациента голова находится в положении небольшого поворота и наклона влево. Пациент сообщает о низком уровне боли (ВАШ 2-3/10), но только в момент поворота головы вправо, при этом движение «застревает». Пациент отрицает какое-либо онемение, покалывание или жгучую боль, но НПВС неэффективны. Также известно, что тепло и мягкий массаж уменьшают симптомы. Объективный осмотр указывают на то, что пассивные физиологические и добавочные движения вправо имеют меньшую амплитуду. Все другие движения шейного отдела в пределах нормы. Каков доминирующий механизм боли?

Случай № 3

Пациент «С» — 25-летняя студентка. История текущей жалобы — дорожно-транспортное происшествие около месяца назад по пути на учебу — пациентка получила удар сзади. С тех пор пациентка была на 6 сеансах физиотерапии без каких-либо улучшений в плане постоянных болей в шее. Боль локализуется слева на уровне С2-7 (ВАШ 3-9/10) и варьируется от тупой боли до острой боли в зависимости от положения шеи. Боль усугубляется при сидении и ходьбе в течение более 30 минут и при поворотах влево. Ночью при поворотах в постели пациентка может просыпаться от боли, кашель/чихание не усиливают боль. Боль иногда уменьшается при воздействии тепла и растяжки. НПВС неэффективны. Результаты инструментальной диагностики без особенностей. Общее состояние здоровья в целом хорошее. Незначительные растяжения при занятиях спортом, что никогда не требовало лечения. Пациентка высказывает озабоченность по поводу вождения (ни разу не садилась за руль после аварии). Также пациентка сообщила о повышении чувствительности в нижних конечностях. Каков ведущий механизм боли?

Боль и обезболивание всегда остаются важнейшими проблемами медицины, а облегчение страданий больного человека, снятие боли или уменьшение ее интенсивности - одна из самых важных задач врача. В последние годы достигнуты определенные успехи в понимании механизмов восприятия и формирования боли. Однако остается еще много нерешенных теоретических и практических вопросов.

Боль представляет собой неприятное ощущение, реализующееся специальной системой болевой чувствительности и высшими отделами мозга, относящимися к психоэмоциональной сфере. Она сигнализирует о воздействиях, вызывающих повреждение ткани или об уже существующих повреждениях, возникших вследствие действия экзогенных факторов или развития патологических процессов.

Систему восприятия и передачи болевого сигнала называют ноцицептивной системой (nocere-повреждение, cepere- воспринимать, лат.).

Классификация боли . Выделяют физиологическую и патологическую боль. Физиологическая (нормальная) боль возникает как адекватная реакция нервной системы на опасные для организма ситуации, и в этих случаях она выступает как фактор предупреждения о процессах, потенциально опасных для организма. Обычно физиологической болью называют ту, которая возникает при целостной нервной системе в ответ на повреждающие или тканеразрушающие стимулы. Главным биологическим критерием, отличающим патологическую боль, является ее дизадаптивное и патогенное значение для организма. Патологическая боль осуществляется измененной системой болевой чувствительности.

По характеру выделяют острую и хроническую (постоянную) боль. По локализации выделяются кожные, головные, лицевые, сердечные, печеночные, желудочные, почечные, суставные, поясничные и др. В соответствии с классификацией рецепторов выделяют поверхностную (экстероцептивную), глубокую (проприоцептивную ) и висцеральную (интероцептивную ) боль.

Различают боли соматические (при патологических процессах в коже, мышцах, костях), невралгические (обычно локализованные) и вегетативные (обычно диффузные). Возможны так называемые иррадиирующие боли, например, в левую руку и лопатку при стенокардии, опоясывающие при панкреатите, в мошонку и бедро при почечной колике. По характеру, течению, качеству и субъективным ощущениям боли различают: приступообразные, постоянные, молниеносные, разлитые, тупые, иррадиирующие, режущие, колющие, жгучие, давящие, сжимающие и др.

Ноцицептивная система . Боль, являясь рефлекторным процессом, включает и все основные звенья рефлекторной дуги: рецепторы (ноцицепторы), болевые проводники, образования спинного и головного мозга, а также медиаторы, осуществляющие передачу болевых импульсов.


Согласно современным данным, ноцицепторы в большом количестве содержатся в различных тканях и органах и имеют множество концевых разветвлений с мелкими аксо-плазматическими отростками, которые и являются структурами, активируемыми болевым воздействием. Считается, что по сути своей они являются свободными немиелизированными нервными окончаниями. Более того, в коже, и, особенно, в дентине зубов были обнаружены своеобразные комплексы свободных нервных окончаний с клетками иннервируемой ткани, которые рассматриваются как сложные рецепторы болевой чувствительности. Особенностью как поврежденных нервов, так и свободных немиелинизированных нервных окончаний является их высокая хемочувствительность.

Установлено, что любое воздействие, приводящее к повреждению тканей и являющееся адекватным для ноцицептора, сопровождается высвобождением алгогенных (вызывающих боль) химических агентов. Выделяют три типа таких веществ.

а) тканевые (серотонин, гистамин, ацетилхолин, простагландины, ионы К и Н);

б) плазменные (брадикинин, каллидин);

в) выделяющиеся из нервных окончаний (субстанция P).

Предложено немало гипотез о ноцицептивных механизмах алгогенных субстанций. Считается, что субстанции, содержащиеся в тканях, непосредственно активируют концевые разветвления немиелинизированных волокон и вызывают импульсную активность в афферентах. Другие (простагландины), сами не вызывают боли, но усиливают эффект ноцицептивного воздействия иной модальности. Третьи (субстанция P) выделяются непосредственно из терминалей и взаимодействуют с рецепторами, локализованными на их мембране, и, деполяризуя ее, вызывают генерацию импульсного ноцицептивного потока. Предполагается также, что субстанция P, содержащаяся в сенсорных нейронах спинномозговых ганглиев, действует и как синаптический передатчик в нейронах заднего рога спинного мозга.

В качестве химических агентов, активирующих свободные нервные окончания, рассматриваются не идентифицированные до конца вещества или продукты разрушения тканей, образующиеся при сильных повреждающих воздействиях, при воспалении, при локальной гипоксии. Свободные нервные окончания активируются и интенсивным механическим воздействием, вызывающим их деформацию, обусловленную сжатием ткани, растяжением полого органа с одновременным сокращением его гладкой мускулатуры.

По мнению Гольдшайдера, боль возникает не в результате раздражения специальных ноцицепторов, а вследствие избыточной активации всех типов рецепторов различных сенсорных модальностей, которые в норме реагируют только на не болевые, "не ноцицептивные" стимулы. В формировании боли в этом случае главенствующее значение имеет интенсивность воздействия, а также пространственно-временное соотношение афферентной информации, конвергенция и суммация афферентных потоков в ЦНС. В последние годы получены весьма убедительные данные о наличии "неспецифических" ноцицепторов в сердце, кишечнике, легких.

В настоящее время считается общепризнанным, что основными проводниками кожной и висцеральной болевой чувствительности являются тонкие миэлиновые А- дельта и без миэлиновые С волокна, различающиеся по ряду физиологических свойств.

Сейчас общепринято следующее разделение боли на:

1) первичную- светлую, коротко латентную, хорошо локализованную и качественно детерминированную боль;

2) вторичную- темную, длинно латентную, плохо локализованную, тягостную, тупую боль.

Показано, что "первичная" боль связана с афферентной импульсацией в А- дельта волокнах, а "вторичная" - с C-волокнами.

Восходящие пути болевой чувствительности . Существуют два основные "классические" - лемнисковые и экстралемнисковые восходящие системы. В пределах спинного мозга одна из них располагается в дорсальной и дорсолатеральной зоне белого вещества, другая - в его вентролатеральной части. В ЦНС не существует специализированных путей болевой чувствительности, и интеграция боли осуществляется на различных уровнях ЦНС на основе сложного взаимодействия лемнисковых и экстралемнисковых проекций. Однако, доказано, что значительно большую роль в передаче восходящей ноцицептивной информации играют вентролатеральные проекции.

Структуры и механизмы интеграции боли . Одной из главных зон восприятия афферентного притока и его переработки является ретикулярная формация головного мозга. Именно здесь оканчиваются пути и коллатерали восходящих систем и начинаются восходящие проекции к вентро-базальным и интраламинарным ядрам таламуса и далее - в соматосенсорную кору. В ретикулярной формации продолговатого мозга существуют нейроны, активирующиеся исключительно ноцицептивными стимулами. Наибольшее их количество (40-60%) выявлено в медиальных ретикулярных ядрах. На основе информации, поступающей в ретикулярную формацию, формируются соматические и висцеральные рефлексы, которые интегрируются в сложные соматовисцеральные проявления ноцицепции. Через связи ретикулярной формации с гипоталамусом, базальными ядрами и лимбическим мозгом реализуются нейроэндокринные и эмоционально - аффективные компоненты боли, сопровождающие реакции защиты.

Таламус . Выделяют 3 основных ядерных комплекса, имеющих непосредственное отношение к интеграции боли: вентро-базальный комплекс, задняя группа ядер, медиальные и интраламинарные ядра.

Вентро-базальный комплекс является главным релейным ядром всей соматосенсорной афферентной системы. В основном здесь оканчиваются восходящие лемнисковые проекции. Считается, что мультисенсорная конвергенция на нейронах вентро-базального комплекса обеспечивает точную соматическую информацию о локализации боли, ее пространственную соотнесенность. Разрушение вентро-базального комплекса проявляется проходящим устранением "быстрой", хорошо локализованной боли и изменяет способность к распознаванию ноцицептивных стимулов.

Считается, что задняя группа ядер наряду с вентро-базальным комплексом участвует в передаче и оценке информации о локализации болевого воздействия и частично в формировании мотивационно-аффективных компонентов боли.

Клетки медиальных и интраламинарных ядер отвечают на соматические, висцеральные, слуховые, зрительные и болевые стимулы. Разно модальные ноцицептивные раздражения - пульпы зуба, А-дельта, С-кожных волокон, висцеральных афферентов, а также механические, термические и др. вызывают отчетливые, увеличивающиеся пропорционально интенсивности стимулов, ответы нейронов. Предполагается, что клетки интраламинарных ядер осуществляют оценку и раскодирование интенсивности ноцицептивных стимулов, различая их по продолжительности и паттерну разрядов.

Кора головного мозга . Традиционно считалось, что основное значение в переработке болевой информации имеет вторая соматосенсорная зона. Эти представления связаны с тем, что передняя часть зоны получает проекции из вентро-базального таламуса, а задняя - из медиальных, интраламинарных и задних групп ядер. Однако в последние годы представления об участии различных зон коры в перцепции и оценке боли существенно дополняются и пересматриваются.

Схема корковой интеграции боли в обобщенном виде может быть сведена к следующему. Процесс первичного восприятия осуществляется в большей мере соматосенсорной и фронто-орбитальной областями коры, в то время как другие области, получающие обширные проекции различных восходящих систем, участвуют в качественной ее оценке, в формировании мотивационно-аффективных и психодинамических процессов, обеспечивающих переживание боли и реализацию ответных реакций на боль.

Следует подчеркнуть, что боль в отличие от ноцицепции это не только и даже не столько сенсорная модальность, но и ощущение, эмоция и "своеобразное психическое состояние" (П.К. Анохин). Поэтому боль как психофизиологический феномен формируется на основе интеграции ноцицептивных и антиноцицептивных систем и механизмов ЦНС.

Антиноцицептивная система . Ноцицептивная система имеет свой функциональный антипод - антиноцицептив-ную систему, которая контролирует деятельность структур ноцицептивной системы.

Антиноцицептивная система состоит из разнообразных нервных образований, относящихся к разным отделам и уровням организации ЦНС, начиная с афферентного входа в спинном мозге и кончая корой головного мозга.

Антиноцицептивная система играет существенную роль в механизмах предупреждения и ликвидации патологической боли. Включаясь в реакцию при чрезмерных ноцицептивных раздражениях, она ослабляет поток ноцицептивной стимуляции и интенсивность болевого ощущения, благодаря чему боль остается под контролем и не приобретает патологического значения. При нарушении же деятельности антиноцицептивной системы ноцицептивные раздражения даже небольшой интенсивности вызывают чрезмерную боль.

Антиноцицептивная система имеет свое морфологическое строение, физиологические и биохимические механизмы. Для нормального его функционирования необходим постоянный приток афферентной информации, при ее дефиците функция антиноцицептивной системы ослабляется.

Антиноцицептивная система представлена сегментарным и центральным уровнями контроля, а также гуморальными механизмами - опиоидной, моноаминергической (норадреналин, дофамин, серотонин), холин-ГАМК-эргическими системами.

Опиатные механизмы обезболивания . Впервые в 1973 г. было установлено избирательное накопление веществ, выделенных из опия, например морфина или его аналогов, в определенных структурах мозга. Эти образования получили название опиатных рецепторов. Наибольшее их количество находится в отделах мозга, передающих ноцицептивную информацию. Показано, что опиатные рецепторы связываются с веществами типа морфина или его синтетическими аналогами, а также с аналогичными веществами, образующимися в самом организме. В последние годы доказана неоднородность опиатных рецепторов. Выделены Мю-, дельта-, каппа-, сигма-опиатные рецепторы. Так, например, морфиноподобные опиаты соединяются с Мю-рецепторами, опиатные пептиды - с дельта рецепторами.

Эндогенные опиаты . Выяснено, что в крови и спинномозговой жидкости человека имеются вещества, обладающие способностью соединяться с опиатными рецепторами. Они выделены из мозга животных, имеют структуру олигопептидов и получили название энкефалинов (мет- и лей-энкефалин). Из гипоталамуса и гипофиза были получены вещества с еще большей молекулярной массой, имеющие в своем составе молекулы энкефалина и названные большими эндорфинами . Эти соединения об- разуются при расщеплении бета-липотропина, а учитывая, что он является гормоном гипофиза, можно объяснить гормональное происхождение эндогенных опиоидов. Из других тканей получены вещества с опиатными свойствами и иной химической структуры - это лей-бета-эндорфин, киторфин, динорфин и др.

Различные области ЦНС имеют неодинаковую чувствительность эндорфинам и энкефалинам. Например, гипофиз в 40 раз чувствительнее к эндорфинам, чем к энкефалинам. Опиатные рецепторы обратимо соединяются с наркотическими аналгетиками, и последние могут быть вытеснены их антагонистами с восстановлением болевой чувствительности.

Каков же механизм обезболивающего действия опиатов? Считается, что они соединяются с рецепторами (ноцицепторами) и, так как имеют большие размеры, препятствуют соединению с ними нейротрансмиттера (субстанции P). Известно также, что эндогенные опиаты обладают и пресинаптическим действием. В результате этого уменьшается выделение дофамина, ацетилхолина, субстанции P, а также простагландинов. Предполагают, что опиаты вызывают угнетение в клетке функции аденилатциклазы, уменьшение образования цАМФ и, как следствие, торможение выделения медиаторов в синаптическую щель.

Адренэргичекие механизмы обезболивания. Установлено, что норадреналин тормозит проведение ноцицептивных импульсов как на сегментарном (спинной мозг), так и стволовом уровнях. Этот его эффект реализуется при взаимодействии с альфа-адренорецепторами. При болевом воздействии (равно как и стрессе) резко активируется симпатоадреналовая система (САС), мобилизуются тропные гормоны, бета-липотропин и бета-эндорфин как мощные аналгетические полипептиды гипофиза, энкефалины. Попадая в спинномозговую жидкость, они влияют на нейроны таламуса, центрального серого вещества мозга, задние рога спинного мозга, тормозя образование медиатора боли- субстанции Р и обеспечивая, таким образом глубокую анальгезию. Одновременно с этим усиливается образование серотонина в большом ядре шва, который также тормозит реализацию эффектов субстанции Р. Считается, что эти же механизмы обезболивания включаются при акупунктурной стимуляции не болевых нервных волокон.

Для иллюстрации многообразия компонентов антиноцицептивной системы следует сказать, что выявлено много гормональных продуктов, оказывающих аналгетический эффект без активации опиатной системы. Это вазопрессин, ангиотензин, окситоцин, соматостатин, нейротензин. Причем, аналгетический эффект их может быть в несколько раз сильнее энкефалинов.

Есть и другие механизмы обезболивания. Доказано, что активация холинэргической системы усиливает, а блокада ее ослабляет морфийную систему. Предполагают, что связывание ацетилхолина с определенными центральными М- рецепторами стимулирует высвобождение опиоидных пептидов. Гамма-аминомасляная кислота регулирует болевую чувствительность, подавляя эмоционально-поведенческие реакции на боль. Боль, активируя ГАМК и ГАМК - эргическую передачу, обеспечивает адаптацию организма к болевому стрессу.

Острая боль . В современной литературе можно встретить несколько теорий, объясняющих происхождение боли. Наибольшее распространение получила т.н. "воротная" теория Р. Мельзака и П. Уолла. Она заключается в том, что желатинозная субстанция заднего рога, которая обеспечивает контроль поступающих в спинной мозг афферентных импульсов, выступает в роли ворот, пропускающих ноцицептивные импульсы вверх. Причем, важное значение принадлежит Т-клеткам желатинозной субстанции, где происходит пресинаптическое торможение терминалей, в этих условиях болевые импульсы не проходят дальше в центральные мозговые структуры и боль не возникает. По современным представлениям, закрытие "ворот" связано с образование энкефалинов, которые тормозят реализацию эффектов важнейшего медиатора боли - субстанции Р. Если увеличивается приток афферентации по А-дельта и С-волокнам, активируются Т- клетки и ингибируются клетки желатинозной субстанции, что снимает ингибиторный эффект нейронов желатинозной субстанции на терминали афферентов с Т-клетками. Поэтому активность Т-клеток превышает порог возбуждения и возникает боль вследствие облегчения передачи болевых импульсов в мозг. "Входные ворота" для болевой информации в этом случае открываются.

Важным положением этой теории является учет центральных влияний на "воротный контроль" в спинном мозге, ибо такие процессы, как жизненный опыт, внимание оказывают влияние на формирование боли. ЦНС осуществляет контроль сенсорного входа за счет ретикулярных и пирамидных влияний на воротную систему. Например, Р. Мельзак приводит такой пример: женщина неожиданно обнаруживает у себя уплотнение в груди и, беспокоясь, что это рак, может вдруг почувствовать боль в груди. Боль может усиливаться и даже распространяться на плечо и руку. Если врачу удастся убедить ее, что это уплотнение не представляет опасности, может наступить моментальное прекращение боли.

Формирование боли обязательно сопровождается активацией антиноцицептивной системы. Что же влияет на уменьшение или исчезновение боли? Это, прежде всего информация, которая поступает по толстым волокнам и на уровне задних рогов спинного мозга, усиливает образование энкефалинов (об их роли мы говорили выше). На уровне ствола мозга включается нисходящая аналгетическая система (ядра шва), которая посредством серотонин-, норадреналин-, энкефалинэргических механизмов оказывает нисходящие влияния на задние рога и таким образом на болевую информацию. За счет возбуждения САС также тормозится передача болевой информации, и это является важнейшим фактором усиления образования эндогенных опиатов. Наконец, за счет возбуждения гипоталамуса и гипофиза активируется образование энкефалинов и эндорфинов, а также усиливается прямое влияние нейронов гипоталамуса на задние рога спинного мозга.

Хроническая боль .При длительном повреждении тканей (воспаление, переломы, опухоли и т.д.) формирование боли происходит так же, как и при острой, только постоянная болевая информация, вызывая резкую активацию гипоталамуса и гипофиза, САС, лимбических образований мозга, сопровождается более сложными и продолжительными изменениями со стороны психики, поведения, эмоциональных проявлений, отношения к окружающему миру (уход в боль).

По теории Г.Н. Крыжановского хроническая боль возникает в результате подавления тормозных механизмов, особенно на уровне задних рогов спинного мозга и таламуса. При этом в мозге формируется генератор возбуждения. Под влиянием экзогенных и эндогенных факторов в определенных структурах ЦНС вследствие недостаточности тормозных механизмов возникают генераторы патологически усиленного возбуждения (ГПУВ), активирующие положительные связи, вызывая эпилептизацию нейронов одной группы и повышение возбудимости других нейронов.

Фантомные боли (боли в ампутированных конечностях) объясняются в основном дефицитом афферентной информации и в результате этого тормозное влияние Т-клеток на уровне рогов спинного мозга снимается, а любая афферентация из области заднего рога воспринимается как болевая.

Отраженная боль . Ее возникновение связано с тем, что афференты внутренних органов и кожи связаны с одними и теми же нейронами заднего рога спинного мозга, которые дают начало спинно-таламическому тракту. Поэтому афферентация, идущая от внутренних органов (при их поражении), повышает возбудимость и соответствующего дерматома, что воспринимается как боль в этом участке кожи.

Основные различия проявлений острой и хронической боли следующие: .

1. При хронической боли автономные рефлекторные реакции постепенно уменьшаются и, в конечном счете исчезают, а превалируют вегетативные расстройства.

2.При хронической боли, как правило, не бывает самопроизвольного купирования боли, для ее нивелирования требуется вмешательство врача.

3.Если острая боль выполняет защитную функцию, то хроническая вызывает более сложные и длительные расстройства в организме и приводит (J.Bonica,1985) к прогрессивному "изнашиванию", вызванному нарушением сна и аппетита, снижением физической активности, часто избыточным лечением.

4. Кроме страха, характерного для острой и хронической боли, для последней свойственны также депрессия, ипохондрия, безнадежность, отчаяние, устранение больных от социально-полезной деятельности (вплоть до суицидальных идей).

Нарушения функций организма при боли . Расстройства функций Н.С. при интенсивной боли проявляются нарушением сна, сосредоточенности, полового влечения, повышенной раздражительностью. При хронической интенсивной боли резко уменьшается двигательная активность человека. Больной находится в состоянии депрессии, повышается болевая чувствительность в результате снижения болевого порога.

Небольшая боль учащает, а очень сильная замедляет дыхание вплоть до его остановки. Может увеличиться частота пульса, системное АД, развиться спазм периферических сосудов. Кожные покровы бледнеют, а если боль непродолжительна, спазм сосудов сменяется их расширением, что проявляется покраснением кожи. Изменяется секреторная и двигательная функция ЖКТ. За счет возбуждения САС сначала выделяется густая слюна (в целом слюноотделение увеличивается), а затем за счет активации парасимпатического отдела нервной системы - жидкая. В последующем уменьшается секреция слюны, желудочного и панкреатического сока, замедляется моторика желудка и кишечника, возможна рефлекторная олиго- и анурия. При очень резкой боли появляется угроза развития шока.

Биохимические изменения проявляются в виде повышения потребления кислорода, распада гликогена, гипергликемии, гиперлипидемии.

Хронические боли сопровождаются сильными вегетативными реакциями. Например, кардиалгии и головные боли сочетаются с подъемом АД, температуры тела, тахикардией, диспепсией, полиурией, повышенным потоотделением, тремором, жаждой, головокружением.

Постоянным компонентом реакции на болевое воздействие является гиперкоагуляция крови. Доказано повышение свертываемости крови у больных на высоте приступа болей, во время оперативных вмешательств, в раннем послеоперационном периоде. В механизме гиперкоагуляции при боли основное значение имеют ускорение тромбиногенеза. Вы знаете, что внешний механизм активации свертывания крови инициируется тканевым тромбопластином, а при боли (стрессе) наблюдается выброс тромбопластина из интактной сосудистой стенки. Кроме того, при болевом синдроме уменьшается содержание в крови физиологических ингибиторов свертывания крови: антитромбина, гепарина. Еще одним характерным изменением при боли в системе гемостаза является перераспределительный тромбоцитоз (поступление в кровь зрелых тромбоцитов из депо- легких).

Болевая рецепция полости рта .

Особое значение для врача-стоматолога имеет изучение болевой чувствительности полости рта. Болевое ощущение может возникнуть либо при воздействии повреждающего фактора на специальный «болевой» рецептор – ноцицептор , либо при сверхсильных раздражениях других рецепторов. Ноцицептор составляют 25-40 % всех рецепторных образований. Они представлены свободными некапсулированными нервными окончаниями, имеющими разнообразную форму.

В полости рта наиболее изучена болевая чувствительность слизистой оболочки альвеолярных отростков и твердого неба, которые являются участками протезного ложа.

Выраженной болевой чувствительностью обладает часть слизистой оболочки на вестибулярной поверхности нижней челюсти в области боковых резцов. Оральная поверхность слизистой оболочки десен обладает наименьшей болевой чувствительностью. На внутренней поверхности щеки имеется узкий участок, лишенный болевой чувствительности. Самое большое количество болевых рецепторов находится в тканях зуба. Так, на 1 см 2 дентина расположено 15000-30000 болевых рецепторов, на границе эмали и дентина их количество доходит до 75000. На 1 см 2 кожи – не более 200 болевых рецепторов.

Раздражение рецепторов пульпы зуба вызывает исключительно сильное болевое ощущение. Даже легкое прикосновение сопровождается острой болью. Зубная боль, относящаяся к самым жестоким болям, возникает при поражении зуба патологическим процессом. Лечение зуба прерывает его и устраняет боль. Но само лечение подчас является чрезвычайно болезненной манипуляцией. Кроме того, при зубном протезировании нередко приходится препарировать здоровый зуб, что также вызывает болезненные ощущения.

Возбуждение от ноцицепторов слизистой оболочки рта, рецепторов пародонта, языка и пульпы зуба проводится по нервным волокнам, относящимся к группам А и С. Большая часть этих волокон принадлежит второй и третьей ветвям тройничного нерва. Чувствительные нейроны заложены в ганглии тройничного нерва. Центральные отростки направляются в продолговатый мозг, где заканчиваются на нейронах тригеминального комплекса ядер, состоящего из главного сенсорного ядра и спинального тракта. Наличие большого количества коллатералей обеспечивает функциональную взаимосвязь между различными ядрами тригеминального комплекса. От вторых нейронов тригеминального комплекса ядер возбуждения направляются к задним и вентральным специфическим ядрам таламуса. Помимо этого, за счет обширных коллатералей к ретикулярной формации продолговатого мозга, ноцицептивное возбуждение паллидо-спино-бульбо-таламических проекционных путей адресуется к срединной и внутри пластинчатой группам ядер таламуса. Это обеспечивает широкую генерализацию ноцицептивных возбуждений в передних отделах мозга и включение антиноцицептивной системы.