Периферическая симпатическая нервная система. Симпатическая вегетативная нервная система: функции, центральный и периферический отделы

Т-клетки это фактически приобретенный иммунитет, способный защитить от цитотоксического повреждающего воздействия на организм. Чужеродные клетки-агрессоры, попадая в организм вносят “хаос”, который внешне проявляется в симптомах заболеваний.

Клетки-агрессоры повреждают по ходу своей деятельности в организме все, что могут, действуя в своих интересах. А задача иммунной системы найти и уничтожить все чуждые элементы.

Специфическая защита организма от биологической агрессии (чужеродных молекул, клеток, токсинов, бактерий, вирусов, грибов и т.д.) осуществляется при помощи двух механизмов:

  • продуцирования специфических антител в ответ на чужеродные антигены (потенциально опасных для организма веществ);
  • выработки клеточных факторов приобретённого иммунитета (Т-клетки).

При попадании в организм человека «клетки-агрессора», иммунная система распознаёт чужеродные и собственные измененные макромолекулы (антигены) и удаляет их из организма. Также при первичном контакте с новыми антигенами происходит их запоминание, что способствует их более быстрому удалению, в случае вторичного попадания в организм.

Процесс запоминания (презентация) происходит благодаря антиген-распознающим рецепторам клеток и работе антиген представляющих молекул (МНС молекул- комплексов гистосовместимости).

Что такое Т-клетки иммунной системы, и какие функции они выполняют

Функционирование иммунной системы обуславливается работой . Это клетки иммунной системы, являющиеся
разновидностью лейкоцитов и способствующие формированию приобретённого иммунитета. Среди них выделяют:

  • В-клетки (распознающие «агрессора» и вырабатывающие к нему антитела);
  • Т-клетки (выполняющие функцию регулятора клеточного иммунитета);
  • NК- клетки (разрушающие отмеченные антителами чужеродные структуры).

Однако, помимо регуляции иммунного ответа, Т-лимфоциты способны выполнять эффекторную функцию, разрушая опухолевые, мутировавшие и чужеродные клетки, участвовать в формировании иммунологической памяти, распознавать антигены и индуцировать иммунные реакции.

Справочно. Важной особенностью T-клеток является их способность реагировать только на презентированные антигены. На одном T-лимфоците находится только один рецептор к одному конкретному антигену. Это обеспечивает отсутствие реакции T-клеток на собственные аутоантигены организма.

Разнообразие функций Т-лимфоцитов обусловлено наличием в них субпопуляций, представленных Т-хелперами, Т-киллерами и Т-супрессорами.

Субпопуляция клеток, их стадия дифференцирования (развития), степень зрелости и т.д. определяется при помощи специальных кластеров дифференцировки, обозначаемых как СD. Наиболее значимыми являются СD3, СD4 и СD8:

  • СD3 находится на всех зрелых T-лимфоцитах, он способствует передаче сигнала от рецептора к цитоплазме. Это важный маркер функционирования лимфоцитов.
  • СD8 – это маркер цитотоксических T-клеток.
  • СD4 является маркером T-хелперов и рецептором к ВИЧ (вирус иммунодефицита человека)

Читайте также по теме

Гемотрансфузионные осложнения при переливании крови

Т-хелперы

Около половины Т-лимфоцитов имеют антиген CD4, то есть являются Т-хелперами. Это помощники, стимулирующие процесс секреции антител В-лимфоцитами, стимулируют работу моноцитов, тучных клеток и предшественников Т-киллеров к «включению» в иммунную реакцию.

Справочно. Функция хелперов осуществляется за счёт синтеза цитокинов (информационных молекул, регулирующих взаимодействие между клетками).

В зависимости от продуцируемого цитокина, их разделяют на:

  • T-хелперные клетки 1-го класса (продуцируют интерлейкин-2 и гамма-интерферон, обеспечивая гуморальный иммунный ответ на вирусы, бактерии, опухоли и трансплантанты).
  • T-хелперные клетки 2-го класса (секретируют интерлейкины-4,-5,-10,-13 и отвечают за образование IgЕ, а также иммунного ответа, направленного на внеклеточные бактерии).

Т-хелперы 1-го и 2-го типа всегда взаимодействуют антагонистически, то есть повышенная активность первого типа угнетает функцию второго типа и наоборот.

Работа хелперов обеспечивает взаимодействие между всеми клетками иммунитета, определяя какой тип иммунного ответа будет преобладать (клеточный либо гуморальный).

Важно. Нарушение работы клеток-помощников, а именно недостаточность их функции, наблюдается у больных с приобретённым иммунодефицитом. Т-хелперы являются основной мишенью ВИЧ. В результате их гибели нарушается иммунная реакция организма на стимуляцию антигенов, что приводит к развитию тяжёлых инфекций, росту онкологических новообразований и летальному исходу.

Это так называемые T-эффекторы (цитотоксические клетки) или клетки убийцы. Такое название обусловлено их способностью уничтожать клетки-мишени. Осуществляя лизирование (ли́зис (от греч. λύσις - разделение) - растворение клеток и их систем) мишеней, переносящих чужеродный антиген или мутировавший аутоантиген (трансплантанты, опухолевые клетки), они обеспечивают реакции противоопухолевой защиты, трансплантационного и противовирусного иммунитета, а также аутоиммунные реакции.

Т-киллеры при помощи собственных МНС-молекул распознают чужеродный антиген. Связываясь с ним на поверхности клетки, они продуцируют перфорин (цитотоксический белок).

После лизирования клетки «агрессора» Т-киллеры остаются жизнеспособными и продолжают циркулировать в крови, разрушая чужеродные антигены.

Т-киллеры составляют до 25-ти процентов от всех Т-лимфоциотов.

Справочно. Помимо обеспечения реакций нормального иммунного ответа, Т-эффекторы могут участвовать в реакциях антителозависимой клеточной цитотоксичности, способствуя развитию гиперчувствительности второго типа (цитотоксической).

Это может проявляться лекарственными аллергиями и различными аутоиммунными заболеваниями (системные заболевания соединительной ткани, гемолитическая анемия аутоиммунного характера, злокачественная миастения, аутоиммунные тиреоидиты, и т.д.).

Подобным механизмом действия обладают некоторые лекарственные средства, способные запускать процессы некроза опухолевых клеток.

Важно. Препараты с цитотоксическим действием используют в химиотерапии онкологических заболеваний.

Например, к таким медикаментам относится Хлорбутин. Это средство применяют для лечения хронического лимфолейкоза, лимфогранулематоза и рака яичников.

Чаще всего, такое заболевание, как Т-клеточная лимфома встречается у людей пожилого возраста, реже его диагностируют у детей и подростков.

Заболевание, как правило, поражает мужчин, случаи заболеваемости у женщин фиксируются реже.

Известно, что Т-клеточная лимфома имеет эпидермотропный характер (поражает клетки кожи и лимфоузлы).

  • Вся информация на сайте носит ознакомительный характер и НЕ ЯВЛЯЕТСЯ руководством к действию!
  • Поставить ТОЧНЫЙ ДИАГНОЗ Вам может только ВРАЧ!
  • Убедительно просим Вас НЕ ЗАНИМАТЬСЯ самолечением, а записаться к специалисту !
  • Здоровья Вам и Вашим близким! Не падайте духом

Классификация Т-клеточных лимфом

В клинической онкологии принято различать следующие виды:

  • Т-лимфобластная лимфома (представляет собой опухоль из незрелых Т-лимфоцитов, ядро, как правило, имеет неправильную форму, отмечается высокий уровень деления и размножения клеток);
  • Т-клеточная ангиоиммунобластная лимфома (во время гистологического исследования выявляется уплотнение лимфоузла плазматическими клетками и иммунобластами с последующим стиранием его структуры и патологическим формированием новых кровеносных сосудов);
  • периферическая лимфома (включает в себя все виды лимфомы Т- и NK-клеточной этиологии, за исключением Т-лимфобластного лейкоза и лимфомы из незрелых Т-лимфоцитов);
  • кожная лимфома (данная разновидность лимфом является последствием мутации Т или В лимфоцитов, далее, приводящая к их бесконтрольному делению и перемещению в эпидермис).

Причины

Причины возникновения заболевания до конца не изучены, на сегодняшний день, Т-клеточный лейкоз типа 1 (HTLV-1) I является одной из причин, порождающих данный недуг, но как вариант также рассматриваются следующие штаммы: вирус Эпштейна Барра и HHV-6.

У людей, страдающих Т-клеточной лимфомой очаг вируса можно обнаружить в эпидермисе, в плазме крови и клетках Лангерганса. Немаловажную роль в развитии онкологии занимает иммунопатологический процесс в клетках эпидермиса, ключевым из них считается неконтролируемое размножение клональных лимфоцитов.

Рассматривая причины возникновения Т-клеточной лимфомы, следует упомянуть наследственный фактор, который несет немаловажную роль в образовании данного недуга.

Детально рассматривая наследственный фактор, была обнаружена закономерность в выявлении антигенов гистосовместимости, а именно: HLA А-10 – для медленно текучих лимфом, HLA В-5 и HLA B-35 – при кожных лимфомах высокого уровня и HLA B-8 – при эритродермической форме грибовидного микоза.

Данные факторы доказывают существование прямой наследственной связи в образовании заболевания. Исходя из этого, Т-клеточную лимфому можно отнести к мультифакториальным патологиям, которые берут свое начало с активации лимфоцитов.

Симптомы

Одним из широко распространенных заболеваний в группе Т-клеточных лимфом кожного типа, является грибовидный микоз, он регистрируется в 70% случаев. Данный недуг делится на три формы: классическая лимфома, эритродермическая и обезглавленная.

Первыми признаками Т-клеточной лимфомы являются увеличение лимфатических узлов в области шеи, в подмышечных впадинах или в паху.

Характерным для данных проявлений признаком можно назвать безболезненность данных образований и отсутствие реакции на антибиотики.

Реже симптомами Т-клеточной лимфомы являются:

  • общая слабость и переутомляемость;
  • фебрильная температура;
  • резкая потеря массы;
  • нарушение в работе ЖКТ.

Методы диагностики

Для того, чтобы правильно диагностировать Т-клеточную лимфому, следует пройти ряд исследований, а именно:

Ключевым исследованием для диагностирования Т-клеточной лимфомы является биопсия (оперативное удаление лимфоузла с последующим изучением). Данная ткань подвергается морфологическому анализу, которое осуществляет специалист-патоморфолог. Цель исследования заключается в обнаружении опухолевых лимфомных клеток, далее, если их наличие подтверждено, следует определить разновидность лимфомы.

Существует ряд диагностических исследований, одним из которых является лучевая диагностика. Лучевая диагностика включает в себя рентгенологическое, магнитно-резонансное и компьютерное исследование.

Особенность данного метода заключается в выявлении новообразований в тех частях тела, которые не подвластны осмотру специалиста. Данная методика хорошо подходит при определении стадии заболевания.

Дополнительные методы диагностики:

  • цитогенетические исследования;
  • молекулярно-генетические исследования;
  • иммунофенотипированый метод.

Лечение

Лечение назначается исходя из разновидности лимфомы и общего состояния пациента, так, например, медленно протекающие лимфомы не всегда подвергаются лечению, иногда достаточно постоянно наблюдаться у специалиста онколога или гематолога. В случаях, когда недуг начинает прогрессировать (увеличиваются лимфоузлы, повышается температура тела и прочее), необходимо как можно раньше начать терапевтическое лечение.

Для лечения местно-распространенных стадий лимфомы прибегают к радиотерапии. При генерализованных стадиях заболевания эффективной методикой является химиотерапия.

Для лечения медленно протекающих лимфом применяется

  • «Хлорбутин» и прочие медикаменты.

Такая разновидность лимфомы, как «индолентная», является плохо излечимой, в данном случае, терапия направляется на увеличение продолжительности жизни и улучшение общего состояния пациента. Агрессивное течение требуют незамедлительного начала терапии (химиотерапия CHOP, в комплексе с использованием моноклонального антитела Ритуксимаб).

Крайне агрессивные виды лимфом лечатся по программе терапии лимфобластных лейкозов. Конечной целью данного метода является полное излечение и ремиссия, однако данный исход является не всегда возможным, все зависит от степени поражения организма и от того, насколько вовремя был поставлен диагноз. Наиболее эффективным видом лечения является высокодозная химиотерапия, с последующей трансплантацией кроветворных стволовых клеток.

Выбор методики лечения является одним из ключевых этапов на пути к выздоровлению, здесь необходимо учитывать стадию и классификацию недуга, индивидуальные особенности пациента и прочее. Для подтверждения лечения необходимо посоветоваться с больным и его близкими родственниками, дабы методика терапии могла быть наиболее эффективной и практичной в каждом конкретном случае.

Видео: Подробно о T-клеточных лимфомах

Прогноз при Т-клеточной лимфоме

Прогноз Т-клеточной лимфомы напрямую зависит от степени заболевания, и конечно, от того, насколько вовремя было начато лечение. Если недуг начать лечить на первой или второй стадии, существует большая вероятность получения благоприятного результата, долгой ремиссии и как следствие, длительной жизни. В таком случае, вероятность летального исхода может быть только по причине осложнений или при появлении других сопутствующих заболеваний.

Если лечение начинается после образования опухолей, прогноз является менее утешительным, в среднем, длительность жизни можно продлить на 1-2 года.

Роль вилочковой железы - основного органа в иммунной системе определилась лишь в 1961 г. благодаря данным R. A. Good и J. F. Miller. Несмотря на наличие многочисленных сведений о роли вилочковой железы в созревании лимфоидной системы, многие стороны этой проблемы, в частности превращение незрелых претимических лимфоидных клеток в иммунокомпетентные Т-клетки со значительной функциональной гетерогенностью, окончательно не выяснены.

Т-клетки, прошедшие через вилочковую железу, приобретают способность реагировать на антигены и митогены (ФГА и КонА), расселяются в тимусзависимых зонах лимфоидных органов (в паракортикальных зонах лимфоузлов, периартериальных фолликулах селезенки) и составляют основную массу рециркулирующего пула в периферической крови с длительным жизненным циклом. Эти клетки получили название тимусзависимых.

Развитие Т-клеток

Внутритимусное развитие обеспечивается различными факторами: специфическим «микроокружением», определяемым стромой вилочковой железы, а также ее гормонами, эпителиальными и мезенхимальными клетками. Из вилочковой железы выделяют ряд активных веществ, отличающихся активностью молекулярной массой, устойчивостью к температурным воздействиям. Среди них описывают тимозин, тимопоэтин, тимический гуморальный фактор. Эти вещества, в частности тимозин, способствуют превращению Т-клеток в более зрелые формы.

Механизм действия тимозина и других активных веществ на Т-клетки до конца не ясен, полагают, что точкой приложения их является мембрана клеток, а именно аденилатциклазная система. Вероятно, тимозин активизирует ее и повышает концентрацию внутриклеточных цАМФ и цГМФ. Указанные нуклеотиды имеют отношение к процессам клеточного развития. Последние очень сложны, многообразны и требуют еще дальнейшего изучения.

Виды и функции Т-клеток

Среди Т-клеток выделяют несколько субпопуляций, отличающихся кортизолчувствительностью и различием антигенов и рецепторов на их поверхности.

По назначению Т-клетки являются ответственными главным образом за клеточный иммунитет, но по своим функциям они неоднородны. В их составе различают несколько подклассов: клетки, распознающие антиген; клетки-хелперы; клетки-киллеры; клетки-супрессоры; клетки памяти и др. Очень сложным и дискутабельным является вопрос о том, когда происходит деление Т-клеток на различные по функциональному назначению субпопуляции. Неясно, что определяет функциональную направленность развития, происходят ли эти субпопуляции из единого предшественника или различие генетически детерминировано еще на уровне стволовой клетки.

Все субпопуляции Т-клеток составляют около 60-70% всех лимфоцитов; около 25% - В-клетки, или бурсозависимые, прошедшие «обучение» в другом центральном органе иммунитета - фабрициевой сумке (у птиц) или ее аналогах у человека, где приобретают отличительные от Т-клеток свойства. Следует отметить, что длительные поиски этого аналога не привели к успеху. Эту роль отводят различным лимфоидным образованиям - червеобразному отростку, миндалинам, групповым лимфатическим фолликулам кишок, лимфоидным скоплениям в легких и других органах. После созревания В-лимфоциты перемещаются преимущественно в фолликулы селезенки и лимфоузлы.

Большинство антигенов являются тимусзависимыми, поскольку иммунній ответ на них идет с обязательным участием Т-клеток; эти антигены комплексные, имеют несколько антигенных детерминант с различной специфичностью (тканевые, микробные, вирусные).

Механизм антигенного распознавания Т-клетками очень сложен, окончательно не изучен. Основной задачей Т-клеток и их рецепторов является распознавание «своих» и «чужих». антигенов. Этиология клеточных рецепторов Т-клеток, распознающих антигены, окончательно не установлена. Взаимодействие клеточных рецепторов с антигеном является сигналом для начала иммунного ответа и клеточной дифференцировки. Если иммунный ответ идет по типу антитело- образования, то для участия В-клеток и их трансформации в плазмоциты необходимо участие Т-клеток-хелперов (Th). Развитие и клеточных реакций, осуществляемых Т-клетками, происходит также с участием помощников - Т-ампфликаторов (Та).

Очень сложным и до конца не изученным является механизм хелперного действия Т-лимфоцитов (прямой контакт, или выделяемые клетками активные вещества). Активированные Th вырабатывают специфические факторы и через макрофаги активируют В-клетки. Сущность этих факторов до конца не определена. Учитывая, что В-клетки продуцируют различные классы иммуноглобулинов, не исключено существование разных субпопуляций Th для регуляции антителообразования (IgG, IgE).

Gershon в 1969 г. разработал концепцию о супрессорной роли Т-клеток (Т-супрессоры), затем было установлено, что Ts способны регулировать различные фазы иммунного ответа. Роль супрессоров заключается в регуляции уровня и силы специфического иммунного ответа, обеспечении иммунологической толерантности к некоторым тимусзависимым антигенам и к антигенам своих тканей. Ts несут рецепторы к IgG, IgM, действуют через растворимые медиаторы. Природа этих факторов, секретируемых Ts, активно изучается. Нет единого мнения по вопросу о механизмах, индукции Ts (прямой контакт клеток с антигеном или сигналы «обратной связи»).

Значение Ts очень велико, ограничение иммунной реакции не менее важно для организма, чем ее стимуляция. Это особенно касается тех иммунных реакций, которые могут привести к патологии (аутоиммунные болезни, заболевания)

Т-клетки-киллеры осуществляют реакции клеточного иммунитета: цитопатогенное действие при трансплантационном иммунитете, противоопухолевом, некоторых видах инфекций. Субпопуляция киллеров является и эффектором гиперчувствительности замедленного типа (ГЗТ).

Гетерогенностью Т-клеточной популяции по их функциональным свойствам объясняется чрезвычайно сложное взаимодействие клеток в реакциях организма на антиген.

В настоящее время очевидно, что не только Т-клетки, но и В-клетки также не однородная масса клеток. Для В-клеток характерно наличие на поверхности иммуноглобулинов, обеспечивающих распознавание антигенов, под влиянием которых В-лимфоциты превращаются в плазмоциты, продуцирующие антитела - . Выработка их на большинство антигенов не может осуществляться без взаимодействия с Т-клетками. Клеточная кооперация является необходимым условием для развития иммунного ответа.

Активированные Т-клетки кроме факторов, выделяемых Ts и Th, образуют ряд медиаторов - лимфокинов, которые имеют различные физико-химические свойства. Их роль — вовлечение в иммунный ответ различных клеток - нейтрофильных гранулоцитов, макрофагов, эозинофильных гранулоцитов. Участие этих Т-клеток в иммунном ответе очень важно. Особенно велика роль макрофагов, которые разрушают антиген и переводят его в иммуногенную форму. К макрофагам в настоящее время относят группу клеток, способных к фагоцитозу, прилипающих по стеклу - adherens, фагоцитирующие мононуклеары, тканевые макрофаги и моноциты.

Статью подготовил и отредактировал: врач-хирург

Т-клеточные рецепторы (англ. TCR) - поверхностные белковые комплексы Т-лимфоцитов, ответственные за распознавание процессированных антигенов, связанных с молекулами главного комплекса гистосовместимости (англ. MHC) на поверхности антиген-представляющих клеток. TCR состоит из двух субъединиц, заякоренных в клеточной мембране и ассоциирован с многосубъединичным комплексом CD3. Взаимодействие TCR с MHC и связанным с ним антигеном ведет к активации Т-лимфоцитов и является ключевой точкой в запуске иммунного ответа.

TCR представляет собой гетеродимерный белок, состоящий из двух субъединиц - α и β либо γ и δ, представленных на поверхности клетки. Субъединицы закреплены в мембране и связаны друг с другом дисульфидной связью.

По своей структуре субъединицы TCR относятся к суперсемейству иммуноглобулинов. Каждая из субъединиц образована двумя доменами с характерной иммуноглобулиновой укладкой, трансмембранным сегментом и коротким цитоплазматическим участком.

N-концевые домены являются вариабельными (V) и отвечают за связывание антигена, презентируемого молекулами главного комплекса гистосовместимости. В составе вариабельного домена содержится характерный для иммуноглобулинов гипервариабельный участок (CDR). За счет необычайного разнообразия данных участков, различные Т-клетки способны распознавать широчайший спектр различных антигенов.

Второй домен - константный (C) и его структура одинакова у всех субъединиц данного типа у конкретной особи (за исключением соматических мутаций на уровне генов любых других белков). На участке между С-доменом и трансмембранным сегментом имеется остаток цистеина, с помощью которого между двумя цепями TCR образуется дисульфидная связь.

Субъединицы TCR агрегированы с мембранным полипептидным комплексом CD3. CD3 образован четырьмя типами полипептидов - γ, δ, ε и ζ. Субъединицы γ, δ и ε кодируются тесно сцепленными генами и имеют близкую структуру. Каждая из них образована одним константным иммуноглобулиновым доменом, трансмембранным сегментом и длинной (до 40 аминокислотных остатков) цитоплазматической частью. Цепь ζ имеет маленький внеклеточный домен, трансмембранный сегмент, и большой цитоплазматический домен. Иногда вместо цепи ζ в состав комплекса входит цепь η - более длинный продукт того же гена, полученный путем альтернативного сплайсинга.

Поскольку структура белков комплекса CD3 инвариантна (не имеет вариабельных участков), они не способны определять специфичность рецептора к антигену. Распознавание является исключительно функцией TCR, а CD3 обеспечивает передачу сигнала в клетку.

Трансмембранный сегмент каждой из субъединиц CD3 содержит отрицательно заряженный аминокислотный остаток, а TCR – положительно заряженный. За счет электростатических взаимодействий они объединяются в общий функциональный комплекс Т-клеточного рецептора. На основании стехиометрических исследований и измерения молекулярной массы комплекса наиболее вероятным его составом является (αβ)2+γ+δ+ε2+ζ2.

TCR, состоящие из αβ-цепей и γδ-цепей весьма близки по структуре. Эти формы рецепторов по-разному представлены в различных тканях организма.

Структура рецептора Т-лимфоцита во многом напоминает структуру молекулы антитела. Молекулы Т-клеточных рецепторов (ТКР) состоят из двух цепей - а и р. Каждая из них содержит V- и С-домены, их структура закреплена дисульфидными связями. Вариабельные домены а- и р-цепей имеют не 3-4, как у антител, а не менее 7 гипервариабельных участков, которые формируют активный центр рецептора. За С-доменами, около мембраны, располагается шарнирная область из 20аминокислотных остатков. Она обеспечивает соединение а- и р-цепей с помощью дисульфидных связей. За шарнирной областью располагается трансмембранный гидрофобный домен из 22 аминокис­лотных остатков, он связан с коротким внутрицитоплазматичеким доменом из 5-16 аминокислотных остатков. Распознавание Т-клеточным рецептором представляемого антигена происходит следующим образом. Молекулы МНС классаП, как и рецепторы Т-лимфоцитов, состоят из двух полипептидных цепей - а и р. Их активный центр для связывания представляемых антигенных пептидов имеет форму «щели». Она формируется спиральными участками а- и р-цепей, соединенными на дне «щели» между собой неспиральной областью, образованной сегментами той и другой цепи. В этом центре (щели) молекула МНС присоединяет процессированный антиген и таким образом представляет его Т-клеткам (рис. 63). Активный центр Т-клеточного рецептора образуется гипервариабельными участ­ками а- и р-цепей. Он также представляет собой своеобразную «щель», структура которой соответ­ствует пространственной структуре представляемой молекулой МНС классаП пептидного фрагмента антигена в такой же степени, как структура активного центра молекулы антитела соответствует пространственной структуре детерминанта антигена. Каждый Т-лимфоцит несет рецепторы только для одного какого-то пептида, то есть специфичен в отношении конкретного антигена и связывает процес­сированный пептид только одного типа. Присоединение представляемого антигена к Т-клеточному рецептору индуцирует передачу сигнала от него на геном клетки.



Для функционирования любого ТКР необходим его контакт с молекулой CD3. Она состоит из 5субъединиц, каждая из которых кодируется своим геном. Молекулы CD3 имеют все субклассы Т-лимфоцитов. Благодаря взаимодействию Т-клеточного рецептора с молекулой CD3 обеспечиваются следующие процессы: а)вынос ТКР на поверхность мембраны Т-лимфоцита; б)придание соответствую­щей пространственной структуры молекуле Т-клеточного рецептора; в)прием и передача сигнала Т-клеточным рецептором после его контакта с антигеном в цитоплазму, а затем в геном Т-лимфоцита через фосфатидилинозитольный каскад с участием посредников.

В результате взаимодействия молекулы МНС классаП, несущей антигенный пептид, с рецептором Т-лимфоцита пептид как бы встраивается в «щель» рецептора, которую образуют гипервариабельные участки а- и р-цепей, контактируя при этом с той и другой цепью

ВЕГЕТАТИВНАЯ (АВТОНОМНАЯ) НЕРВНАЯ СИСТЕМА

Вегетативная нервная система, как и вся нервная система, состоит из нейронов и их отростков — нервных волокон. Для вегетативной нервной системы характерен двухнейронный принцип строения. Первые нейроны вегетативной нервной системы расположены в головном (среднем и продолговатом) и спинном мозгу, где образуют скопления — вегетативные ядра. Аксоны первых нейронов (нервные волокна) выходят из ЦНС и заканчиваются в специальных узлах (ганглиях), находящихся около позвоночного столба, вблизи внутренних органов или в их стенках, на вторых нейронах. Аксоны вторых нейронов идут к иннервируемому органу.

Нервные волокна вегетативной нервной системы выходят из головного или спинного мозга в составе некоторых черепных и спинномозговых нервов и подходят к клеткам вегетативных узлов. Они называются преганглионарными. От узлов в свою очередь отходят постганглионарные нервные волокна, которые иннервируют внутренние органы. Волокна вегетативной нервной системы образуют около органов и в их стенках вегетативные нервные сплетения. В составе этих сплетений имеются нейроны. Вегетативные ядра, лежащие в головном и спинном мозгу, составляют центральную часть вегетативной нервной системы, а нервные узлы и волокна — ее периферическую часть.

Вегетативная нервная система подразделяется на два отдела: симпатический и парасимпатический. Каждый из них характеризуется своими особенностями. Высшие нервные центры вегетативной нервной системы находятся в гипоталамусе: в передних ядрах — центры парасимпатического, в задних ядрах — центры симпатического отделов.

К симпатическому отделу вегетативной нервной системы относятся боковые рога спинного мозга (симпатические нейроны этих рогов, составляющие центральную часть симпатического отдела вегетативной нервной системы), пограничный симпатический ствол, симпатические нервные сплетения и симпатические нервные волокна.

Симпатический отдел вегетативной нервной систе-мы имеет следующие особенности строения:

1) образован нервными волокнами, отходящими симметричными парами по обе стороны спинного мозга от нейронов грудного и поясничного сегментов (от первого грудного до второго — четвертого поясничного). Отростки клеток боковых рогов выходят из спинного мозга в составе соответствующих спинномозговых нервов , отделяются от них и подходят к пограничному симпатическому стволу;

2) ганглии расположены далеко от иннервируемых органов в виде цепочки по обе стороны спинного мозга (пограничный симпатический ствол) или в виде скопления вдали от спинного мозга (солнечное сплетение и др.);


3) преганглионарные волокна короткие;

4) постганглионарные волокна длинные.

Функции симпатической иннервации.

Симпатическая иннервация универсальна; симпатические нервы иннервируют ткани всех органов, скелетные мышцы и кровеносные сосуды. Передача импульсов с постганглионарного волокна на орган осуществляется с помощью медиатора норадреналина .

Симпатические нервные волокна стимулируют работу сердца (учащают и усиливают сокращения), потовых желез, обмен веществ в мышцах, сужают кровеносные сосуды, тормозят деятельность пищеварительной системы (ослабляют сокоотделение и тормозят моторику), расширяют зрачки, расслабляют стенку мочевого пузыря и т. д.

Волокна шейного отдела симпатического ствола иннервируют кровеносные сосуды и органы шеи и головы, к которым подходят ветви сонных артерий: глотку, слюнные железы, слёзные железы, мышцу, расширяющую зрачок, и т. д. Волокна грудного отдела, от которого отходят большой и малый чревные нервы, иннервируют грудную аорту, пищевод, бронхи и легкие. Волокна поясничного и тазового отделов, солнечного сплетения иннервируют все органы брюшной полости, волокна подчревного сплетения — органы малого таза.