Последовательность генной терапии схема. Генная терапия

Рынок генной терапии имеет все шансы стать самым быстрорастущим рынком в мире в ближайшие 10 лет. Перспективы, которые открывают генетические манипуляции мотивируют представителей Большой Фармы не только вести собственные исследования, но и активно скупать наиболее многообещающие компании.

Фармгигант Novartis, судя по всему, может положить начало широкому внедрению генной терапии в мировую клиническую практику: управление по санитарному надзору за качеством пищевых продуктов и медикаментов (Food and Drug Administration, FDA) одобрило использование генной терапии для пациентов в возрасте от 3 до 25 лет, страдающих острым лимфобластным лейкозом.

Лечение помогает достигнуть ремиссии, а в некоторых случаях даже победить заболевание. СМИ уже справедливо окрестили это событие «новой эрой медицины» - человечество при помощи генетических манипуляций постепенно справляется с неизлечимыми ранее заболеваниями.

Вспомним, что привело к началу «новой эры» и посмотрим, куда движется один из самых многообещающих рынков.

С чего всё начиналось

Примерно 15 лет назад учёным удалось «прочитать» геном и наконец-то получить доступ к «исходному коду» человеческого организма, который хранит в себе все необходимые данные о нём, а главное - контролирует его жизнь и смерть. Ещё несколько лет потребовалось на то, чтобы осмыслить полученные знания и постепенно начать транслировать их в область практического применения: сначала в диагностическую, а затем и в клиническую практику.

За последние 100 лет справляться с возбудителями различных заболеваний, вроде вирусов и бактерий, наука научилась довольно хорошо - спасибо вакцинам и антибиотикам, - но недуги, вызванные мутациями в генах, долгое время считались неизлечимыми. Поэтому расшифровка более 3 млрд пар нуклеотидов открыла поистине неограниченные перспективы для развития «медицины будущего» - в первую очередь превентивной генетической терапии, а, в идеале, медицины полностью персонализированной.

Рыночные эксперты предрекают этим областям бурный рост: рынок генной терапии рака прогнозируется в $4 млрд к 2024 году, рынок генной терапии в целом - в $11 млрд к 2025, а прогнозы для всей персонализированной медицины ещё более оптимистичны: от $149 млрд в 2020 году до $2,5 трлн к 2022.

Первыми плодами расшифровки человеческого генома стало усовершенствование диагностики врожденных заболеваний или предрасположенности к ним (многие вспомнят случай с геном BRCA1 и Анджелиной Джоли). На этом фоне начал стремительно развиваться рынок так называемой «потребительской генетики» - , что к 2020 году он вырастет до $12 млрд.

Генетические тесты дают пациенту возможность провести анализ и найти «плохие гены» в своём организме или, наоборот, возрадоваться их отсутствию. Изначально довольно дорогое удовольствие ($999–2500) становилось всё более доступным по мере уменьшения стоимости секвенирования. Например, цена комплексного исследования, которое предлагает сегодня один из лидеров мирового рынка, компания 23andMe, составляет $199. В России цены несколько выше: от 20 000 до 30 000 рублей.

Помимо этого, реальностью становится таргетная терапия, которая особенно важна не только для наследственных заболеваний, но и для сердечно-сосудистых и инфекционных болезней, а также онкологии - ведущих причин смерти по всему миру . Генетические манипуляции позволяют ввести пациенту «хорошие» гены, чтобы компенсировать проблемы, вызванные халтурной работой генов «плохих» - например, как в случае с гемофилией , а в будущем позволят и «ремонтировать» или полностью удалять вредоносные гены - например, те, что вызывают нейродегенеративную болезнь Гентингтона . Пока генная терапия занимает на фармацевтическом рынке весьма скромное место, но её доля обязательно будет неуклонно расти.

Конечно, остаётся множество проблем, которые требуют решения: это и высокий риск иммунных реакций, высокая стоимость терапии и, быть может, даже этические вопросы, связанные с внесением изменений в человеческий организм на генетическом уровне. Однако подобные манипуляции - шанс для пациентов, болезни которых либо признаны неизлечимыми, либо не поддаются эффективной терапии при помощи существующих лекарств, а также новое оружие в борьбе против старения, дающее человечеству надежду на здоровое долголетие на совершенно ином уровне, а рынку - новые, куда более многообещающие пути для развития.

Первые победы

Эта программа начинает действовать ещё с момента полового созревания и медленно, но неумолимо приводит к смерти. Причём это достаточно регламентированный процесс. У каждого вида наблюдается четкий лимит жизни, который ему отпущен. У мыши, например, - это, в среднем, 2,5 года, у человека - примерно 80 лет. При этом есть другие грызуны, живущие в разы или даже на порядок дольше мышей - например, белки или знаменитый голый землекоп.

Главный вопрос заключается в том, можно ли старение отключить или хотя бы замедлить. Возможно, ответить на этот вопрос поможет революционная технология, обращающая клеточное развитие вспять, которую открыл Синъя Яманака, профессор Института передовых медицинских наук в Университете Киото: он установил, что индукция совместной экспрессии четырёх факторов транскрипции (Oct4, Sox2, Klf4 и c-Myc, а все вместе - OSKM, или факторы Яманаки), которые тесно связаны с основными этапами жизненного цикла клетки, превращает соматические клетки обратно в плюрипотентные. За это поистине революционное открытие в 2012 году Яманака получил Нобелевскую премию.

Используя прорыв Яманаки, группа учёных из Института Солка под руководством Хуана Карлоса Исписуа Бельмонте (Juan Carlos Izpisua Belmonte) попыталась применить этот природный механизм обнуления биологических часов для продления жизни взрослых животных. И не ошиблась. При помощи факторов Яманаки им удалось подтвердить гипотезу о возможности отката «эпигенетических часов», то есть омоложения клеток, и увеличить среднюю продолжительность жизни быстростареющим мышам на 33%-50% по сравнению с различными контрольными группами.

Порядка двухсот миллионов жителей планеты являются потенциальными кандидатами для генной терапии, а несколько тысяч уже стали пациентами-пионерами и в рамках испытаний получили лечение от ранее неизлечимых заболеваний. Кандидат медицинских наук, врач-терапевт Лаборатории регенеративной медицины Медицинского центра МГУ, старший научный сотрудник Факультета фундаментальной медицины МГУ, победитель «Научных боев» Политеха - 2015 Павел Макаревич объяснил T&P, как работает генная терапия и с какими проблемами сталкиваются ученые, разрабатывая этот принципиально другой метод лечения многих серьезных болезней.

Павел Макаревич

200 миллионов потенциальных кандидатов - это очень много. До половины случаев, в которых помогает генная терапия, это наследственные заболевания: гемофилия, иммунодефициты, болезни накопления, энзимопатия, 25–30% случаев - это онкологические заболевания, оставшиеся 20% - все остальное: кардиология, неврология, болезни нервной системы и даже травмы, например повреждения нерва или другие, более тяжелые случаи. Такое распределение связано с тем, что наследственные заболевания протекают крайне тяжело и зачастую имеют летальный исход, и там нет другого лечения в принципе, за исключением генной терапии.

В качестве лечебного действующего вещества в генной терапии используется генетическая информация, а точнее молекулы, которые ее несут: нуклеиновые кислоты РНК (реже) и ДНК (чаще). В каждой клетке есть «ксерокс» - экспрессионный аппарат - механизм, с помощью которого клетка переводит генетическую информацию в белки, позволяющие ей правильно функционировать. То состояние, когда есть правильный ген и хорошо работающий «ксерокс» (который вообще-то должен работать всегда, иначе такая клетка нежизнеспособна), с точки зрения генной терапии можно условно назвать здоровьем клетки. В любой клетке есть полная библиотека этих оригиналов - генов, которые клетка использует для правильной экспрессии белков и нормального функционирования. При патологии возможны самые различные ситуации. Например, когда по какой-то причине потерян важный оригинал (ген) или большая его часть и восстановить такую потерю уже невозможно. В такой ситуации развиваются такие заболевания, как, например, миодистрофия Дюшенна, которая приводит к прогрессивному параличу всех мышц тела и заканчивается смертью в 25–27 лет - как правило, от остановки дыхания.

Другой пример - небольшая «поломка», не такая фатальная, но тем не менее приводящая к тому, что этот белок не работает - не выполняет своей биологической функции. И если это, например, VIII фактор свертывания крови, то у человека развивается гемофилия. В обеих этих ситуациях наша задача - доставить в ткань «нормальную», рабочую копию гена, то есть как бы подложить в этот «ксерокс» правильный оригинал, чтобы наладить работу клетки и, может быть, целого организма, продлевая таким образом ему жизнь. Работает ли это? Да, такие подходы эффективны в экспериментах на животных и уже проходят стадии клинических испытаний на пациентах, хотя следует признать, что трудностей на пути хватает.

Мы также разрабатываем подходы для лечения ишемических заболеваний, которые гораздо более распространены, чем наследственная патология, хотя, несомненно, для них существует и множество других способов лечения. Дело в том, что каждый человек, который болеет ишемической болезнью сердца или конечностей, рано или поздно оказывается в состоянии, когда единственным способом лечения для него может оказаться генная терапия.

С помощью генной терапии лечится большая группа заболеваний, связанных с поражением центральной нервной системы, - болезнь Паркинсона, Альцгеймер, боковой амиотрофический склероз. Существуют вирусы, которые имеют склонность атаковать центральную нервную систему, и это свойство можно использовать во благо. Например, вирус герпеса живет в нервах, и с его помощью в нервную систему можно доставлять факторы роста и цитокины, которые замедляют развитие этих заболеваний. Это как раз пример того, когда вирус, вызывающий заболевание, редактируется, лишается белков, отвечающих за его патогенное действие, и используется как кассета, а факторы роста защищают нейроны от гибели, которая происходит при этих заболеваниях и становится причиной гибели больного. Таким образом получается, что вирусы, несущие гены факторов роста, замедляют прогресс болезни и продлевают жизнь пациента.

Или, например, слепота - состояние, которое полностью лишает человека зрительных образов на всю жизнь. Одна из причин слепоты - так называемая врожденная атрофия Лебера, которая развивается из-за мутации в гене RPE 65. В мире сейчас уже около 80 людей обрели минимальные зрительные возможности благодаря генной терапии - модифицированному аденовирусу, который доставил «рабочий» RPE 65 в ткани глаза и повысил его чувствительность к свету.

Как мы доставляем генетическую информацию в ткани: локально, в конкретный орган, или сразу в весь организм? Есть два варианта. Первый - это плазмида, то есть кольцевая молекула ДНК. Она супер спирализуется, становится очень маленькой и компактной, и мы «упаковываем» ее в какой-нибудь химический полимер, чтобы облегчить ее проникновение в клетку. В чем здесь проблема? Плазмидная ДНК через 12–14 дней будет удалена из клетки, и продукция белка остановится. В такой ситуации мы можем предпринять два решения: первое - ввести дополнительную дозу плазмидной ДНК (благо она не иммуногенна), второе - ввести туда сразу несколько генов (например, для усиления эффектов цитокинов на регенерацию ткани), чтобы увеличить силу действия в тот короткий период времени, в течение которого будет идти продукция белков.

Другой выход (о нем мы уже упоминали выше) - это вирусы. Изначально вирусы - патогенные частицы, вызывающие заболевания, но в нашем случае они могут использоваться и для доставки генетической информации в клетки. С помощью методов генетической инженерии мы можем убрать у вируса белки, отвечающие за его патогенное действие, оставив ему лишь то, что необходимо для проникновения в клетку, и нагрузив нужной нам информацией. Тогда вирус из оружия превращается в кассету для доставки полезной, лечебной генетической информации.

Получается, что у нас есть два очень мощных способа доставки гена, и вирус явно выглядит более предпочтительным, потому что он сам может находить свои мишени в организме: например, вирус гепатита найдет печень, а вирус герпеса - нейроны. Плазмида, кольцевая ДНК, работает только там, куда ее ввели. Возникает вопрос: почему мы до сих пор вообще пользуемся плазмидами, если есть вирусы? Ответ такой: вирусы иммуногенны, они вызывают иммунный ответ. И, как вариант, они могут быть либо уничтожены иммунной системой до того, как успеют сработать, либо, как худший вариант, они могут вызывать побочные действия - мощные иммунные реакции на введение вируса. Получается очень хрупкий баланс между эффективностью и безопасностью, который определяет судьбу препаратов, которые мы разрабатываем, и, если препарат показал себя небезопасным на этапе разработки, это тупик.

Чтобы разработать, получить и протестировать новый препарат для генной терапии, лаборатория или даже целый институт должны работать несколько лет. Это, мягко говоря, недешево, пока это штучное производство, и протоколы, если они не спонсируются разработчиком, очень дорогие. Есть два или три препарата, зарегистрированных в Европе, один в Японии, в России пока только один - «Неоваскулген», препарат для стимуляции роста сосудов.

Препараты, которые используются для генной терапии, имеют не изученную ранее фармакокинетику, фармакодинамику. Вся проблема в том, что на данный момент об этом накоплено очень мало информации по сравнению с тем, сколько ее вокруг обычных препаратов. Это означает, что все риски, связанные с генной терапией, теоретически должны учитываться при разработках. Допустим, мы знаем, что не нужно испытывать тысячекратную дозу аспирина на практике, и мы этого не делаем. В отношении генной терапии, поскольку мы пока не знаем фармакокинетику (а значит, и многих особенностей действия препаратов), мы должны учитывать все существующие возможные эффекты, и это сильно растягивает исследование во времени.

Вторая проблема заключается в том, что каждый препарат имеет свой уникальный тип действия. Это означает, что нужно доказывать его безопасность и эффективность на уникальных моделях, а это тоже растягивает период, после которого можно сказать: «Да, лекарство может быть выведено в клинику или на рынок, и это безопасно». Поэтому я считаю, что это во многом вопрос времени и опыта человечества в этой области, который, как и в любом drug-девелопменте, будет накапливаться ценой больших проблем: остановленных исследований, побочных эффектов. Но я также знаю, что это вопрос затраченных усилий сотен исследователей и потенциальный способ помочь миллионам людей. В настоящее время уже накоплен опыт и извлечены некоторые уроки, которые помогают идти дальше.

Введение

С каждым годом в научных журналах появляется всё больше статей о медицинских клинических исследованиях, в которых, так или иначе, применялось лечение, основанное на введении различных генов - генная терапия. Это направление выросло из таких хорошо развивающихся разделов биологии, как молекулярная генетика и биотехнология.

Зачастую, когда обычные (консервативные) методы уже перепробованы, именно генная терапия может помочь пациентам выжить и даже полностью выздороветь. Например, это касается наследственных моногенных заболеваний, то есть таких, которые вызваны дефектом в одном-единственном гене, а также и многих других . Или, к примеру, генная терапия может выручить и спасти конечность тем больным, у которых сужен просвет сосудов в нижних конечностях и вследствие этого развилась стойкая ишемия окружающих тканей, то есть эти ткани испытывают сильный недостаток питательных веществ и кислорода, которые в норме разносятся кровью по организму . Хирургическими манипуляциями и лекарствами таких пациентов лечить зачастую не получается, зато если локально заставить клетки выбрасывать наружу больше белковых факторов, которые повлияли бы на процесс образования и прорастания новых сосудов, то ишемия стала бы гораздо менее выраженной и жить больным станет гораздо легче.

Генную терапию сегодня можно определить как лечение заболеваний путем введения генов в клетки пациентов с целью направленного изменения генных дефектов или придания клеткам новых функций. Первые клинические испытания методов генной терапии были предприняты совсем недавно - 22 мая 1989 года в целях диагностики рака. Первым наследственным заболеванием, в отношении которого были применены методы генной терапии, оказался наследственный иммуннодефицит .

С каждым годом число успешно проведенных клинических испытаний лечения различных заболеваний с использованием генной терапии растёт, и к январю 2014 г. достигло 2 тысяч .

Вместе с тем и в современных исследованиях по генной терапии необходимо учитывать, что последствия манипулирования генами или «перетасованными» (рекомбинантными) ДНК in vivo (лат. буквально "в живом") изучены недостаточно. В странах с наиболее продвинутым уровнем исследований в этой области, особенно в США, медицинские протоколы с использованием смысловых последовательностей ДНК подвергаются обязательной экспертизе в соответствующих комитетах и комиссиях. В США таковыми являются Консультативный комитет по рекомбинантным ДНК (Recombinant DNA Advisory Committee, RAC) и Управление по лекарствам и пищевым продуктам (Food and Drug Administration, FDA) с последующим обязательным утверждением проекта директором Национальных институтов здоровья (National Institutes of Health) .

Итак, мы определились, что данное лечение основано на том, что если какие-то ткани организма испытывают недостаток некоторых отдельных белковых факторов, то это можно исправить введением в эти ткани соответствующих генов, кодирующих белки, и всё станет более или менее замечательно. Сами белки вводить не получится, потому что наш организм тут же среагирует неслабой иммунной реакцией, да и длительность действия была бы недостаточной. Теперь следует определиться с методом доставки гена в клетки.

Трансфекция клеток

Для начала стоит ввести определения некоторых терминов.

Транспорт генов осуществляется благодаря вектору - это молекула ДНК, используемая как «транспортное средство» для искусственного переноса генетической информации в клетку. Выделяют множество разновидностей векторов: плазмидные, вирусные, а также космиды, фазмиды, искусственные хромосомы и т.д. Принципиально важно, что векторы (в частности, плазмидные) обладают характерными для них свойствами:

1. Точка начала репликации (ori) - последовательность нуклеотидов, с которой начинается удвоение ДНК. Если векторная ДНК не сможет удваиваться (реплицироваться), то необходимый лечебный эффект не будет достигнут, потому что она просто быстро расщепится внутриклеточными ферментами-нуклеазами, а из-за недостатка матриц будет в итоге образовано гораздо меньше молекул белка. Следует отметить, что эти точки специфичны для каждого биологического вида, то есть если векторную ДНК предполагается получать путём её размножения в культуре бактерий (а не просто химическим синтезом, что обычно гораздо дороже), то потребуются отдельно две точки начала репликации - для человека и для бактерий;

2. Сайты рестрикции - специфические короткие последовательности (чаще палиндромные), которые узнаются специальными ферментами (эндонуклеазы рестрикции) и разрезаются ими определённым образом - с образованием «липких концов» (рис.1).

Рис.1 Образование "липких концов" с участием рестриктаз

Эти сайты необходимы для того, чтобы сшить векторную ДНК (которая, по сути, является «болванкой») с нужными терапевтическими генами в единую молекулу. Такая сшитая из двух или нескольких частей молекула зовётся «рекомбинантной»;

3. Понятно, что нам желательно бы получить миллионы копий рекомбинантной молекулы ДНК. Опять-таки, если мы имеем дело с культурой клеток бактерий, то далее эту ДНК нужно выделить. Проблема заключается в том, что далеко не все бактерии проглотят нужную нам молекулу, некоторые не станут этого делать. Чтобы эти две группы всё-таки различить, в векторную ДНК вставляют селективные маркёры - участки устойчивости к определённым химическим веществам; теперь если в среду добавить эти самые вещества, то выживут только те, которые обладают устойчивостью к ним, а остальные погибнут.

Все эти три составляющие можно наблюдать и в самой первой искусственно синтезированной плазмиде (рис.2).

Рис.2

Сам процесс внедрения плазмидного вектора в определённые клетки называется трансфекцией . Плазмида - это довольно короткая и обычно кольцевая молекула ДНК, которая находится в цитоплазме бактериальной клетки. Плазмиды не связаны с бактериальной хромосомой, они могут реплицироваться независимо от нее, могут выбрасываться бактерией в окружающую среду или, наоборот, поглощаться (процесс поглощения - трансформация ). С помощью плазмид бактерии могут обмениваться генетической информацией, например, передавать устойчивость к определённым антибиотикам.

Плазмиды существуют в бактериях в естественных условиях. Но никто не может помешать исследователю искусственно синтезировать плазмиду, которая будет обладать нужными для него свойствами, вшить в нее ген-вставку и внедрить в клетку. В одну и ту же плазмиду можно вшивать разные вставки .

Методы генной терапии

Существует два основных подхода, различающиеся природой клеток-мишеней:

1. Фетальная, при которой чужеродную ДНК вводят в зиготу (оплодотворённую яйцеклетку) или эмбрион на ранней стадии развития; при этом ожидается, что введённый материал попадёт во все клетки реципиента (и даже в половые клетки, обеспечив тем самым передачу следующему поколению). В нашей стране она фактически запрещена ;

2. Соматическая, при которой генетический материал вводят уже родившемуся в неполовые клетки и он не передаётся половым клеткам.

Генная терапия in vivo основана на прямом введении клонированных (размноженных) и определенным образом упакованных последовательностей ДНК в определённые ткани больного. Особенно перспективным для лечения генных болезней in vivo представляется введение генов с помощью аэрозольных или инъецируемых вакцин. Аэрозольная генотерапия разрабатывается, как правило, для лечения лёгочных заболеваний (муковисцидоз, рак легких).

Разработке программы генной терапии предшествует много этапов. Это и тщательный анализ тканеспецифической экспрессии соответствующего гена (т. е., синтеза на матрице гена какого-то белка в определённой ткани), и идентификация первичного биохимического дефекта, и исследование структуры, функции и внутриклеточного распределения его белкового продукта, а также биохимический анализ патологического процесса. Все эти данные учитываются при составлении соответствующего медицинского протокола.

Важно, что при составлении схем коррекции генов оценивается эффективность трансфекции, степень исправления первичного биохимического дефекта в условиях клеточных культур (in vitro, "в пробирке") и, что особенно важно, in vivo на животных - биологических моделях. Только после этого можно приступать к программе клинических испытаний .

Прямая доставка и клеточные носители терапевтических генов

Существует множество методов внедрения чужеродной ДНК в эукариотическую клетку: некоторые зависят от физической обработки (электропорация, магнетофекция и т.д.), другие - от применения химических материалов или биологических частиц (например, вирусов), которые используются как переносчики. Сразу стоит оговориться, что обычно комбинируются химические и физические методы (например, электропорация + окутывание ДНК липосомами)

Прямые методы

1. Трансфекция на химической основе может быть классифицирована на несколько видов: с использованием вещества циклодекстрина, полимеров, липосом или наночастиц (с или без химической или вирусной функционализации, т.е. модификации поверхности).
а) Один из самых дешевых методов - использование фосфата кальция. Он повышает эффективность включения ДНК в клетки в 10-100 раз. ДНК образует с кальцием прочный комплекс, что обеспечивает его эффективное поглощение. Недостаток - ядра достигает всего около 1 - 10% ДНК. Метод используется in vitro для переноса ДНК в клетки человека (рис.3);

Рис.3

б) Применение сильноразветвленных органических молекул - дендример, для связывания ДНК и переноса её в клетку (рис.4);

Рис.4

в) Очень эффективным методом для трансфекции ДНК является внедрение её через липосомы - малые, окруженные мембраной тельца, которые могут сливаться с клеточной цитоплазматической мембраной (ЦПМ), представляющая собой двойной слой из липидов. Для эукариотических клеток трансфекция производится эффективнее с применением катионных липосом, потому что клетки к ним более чувствительны. Процесс имеет своё название - липофекция. Этот метод сегодня считается одним из самых безопасных. Липосомы нетоксичны и неиммуногенны. Однако, эффективность переноса генов с помощью липосом ограничена, поскольку внесенная ими ДНК в клетках обычно сразу же захватывается лизосомами и разрушается. Введение ДНК в клетки человека с помощью липосом сегодня является главным при терапии in vivo (рис.5);

Рис.5

г) Еще один метод - использование катионных полимеров, таких как диэтиламиноэтил-декстран или полиэтиленимин. Отрицательно заряженные молекулы ДНК связываются с положительно заряженными поликатионами, и этот комплекс далее проникает в клетку путём эндоцитоза. ДЭАЭ-декстран изменяет физические свойства плазматической мембраны и стимулирует поглощение этого комплекса клеткой. Главный недостаток метода заключается в том, что ДЭАЭ-декстран в высоких концентрациях токсичен. Метод не получил распространения в генотерапии;

д) С помощью гистонов и других ядерных белков. Эти белки, содержащие много положительно заряженных аминокислот (Lys, Arg), в естественных условиях помогают компактно уложить длинную цепь ДНК в сравнительно небольшое ядро клетки.

2. Физические методы:

а) Электропорация - очень популярный метод; мгновенное повышение проницаемости мембраны достигается за счет того, что клетки подвергаются коротким воздействиям интенсивного электрического поля. Показано, что в оптимальных условиях количество трансформантов может достигать 80% выживших клеток. На человеке на сегодняшний день не используется (рис.6).

Рис.6

б) «Cell squeezing» - метод, изобретенный в 2013 г. Он позволяет доставить молекулы в клетки путём "мягкого сдавливания" клеточной мембраны. Метод исключает возможность токсичности или неправильного попадания по мишени, так как он не зависит от внешних материалов или электрических полей;

в) Сонопорация - метод искусственного переноса чужеродных ДНК в клетки с помощью воздействия на них ультразвуком, вызывающим открывание пор в клеточной мембране;
г) Оптическая трансфекция - метод, при котором производится крошечное отверстие в мембране (около 1 мкм в диаметре) при использовании сильносфокусированного лазера;
д) Гидродинамическая трансфекция - метод доставки генетических конструкций, белков и т.д. путем контролируемого повышения давления в капиллярах и межклеточной жидкости, что вызывает кратковременное повышение проницаемости клеточных мембран и образование в них временных пор. Осуществляется быстрой инъекцией в ткань, доставка при этом является неспецифичной. Эффективность доставки для скелетной мышцы - от 22 до 60% ;

е) Микроинъекция ДНК - введение в ядро клетки животных с помощью тонких стеклянных микротрубочек (d=0,1-0,5 мкм). Недостаток - сложность метода, высока вероятность разрушения ядра либо ДНК; можно трансформировать ограниченное число клеток. Не используется для человека.

3. Методы на основе частиц.

а) Прямой подход к трансфекции - генная пушка, при этом ДНК сцепляют в наночастицу с инертными твердыми веществами (чаще золото, вольфрам), которая затем «выстреливает» направленно в ядра клеток-мишеней. Этот метод применяется in vitro и in vivo для введения генов, в частности, в клетки мышечных тканей, например при таком заболевании, как миодистрофия Дюшена. Размеры частиц золота - 1-3 мкм (рис.7).

Рис.7

б) Магнитофекция - метод, использующий силы магнетизма для доставки ДНК в клетки-мишени. Сначала нуклеиновые кислоты (НК) ассоциируются с магнитными наночастицами, а далее, под действием магнитного поля, частицы загоняются в клетку. Эффективность почти 100%-ная, отмечена явная нетоксичность. Уже через 10-15 мин частицы регистрируются в клетке - это гораздо быстрее других методик.
в) Импалефекция (impalefection; "impalement", букв. "сажание на кол" + "infection") - метод доставки с применением наноматериалов, таких как углеродные нанотрубки и нановолокна. При этом клетки буквально протыкаются подстилкой из нанофибрилл . Приставка «нано» применяется для обозначения их очень маленьких размеров (в пределах миллиардных долей метра) (рис.8).

Рис.8

Отдельно стоит выделить такой метод, как РНК-трансфекция: в клетку доставляется не ДНК, а молекулы РНК - их «преёмники» в цепи биосинтеза белка; при этом активизируются специальные белки, разрезающие РНК на короткие фрагменты -- т.н. малые интерферирующих РНК (миРНК). Эти фрагменты связываются с другими белками и, в конце концов, это приводит к угнетению экспрессии клеткой соответствующих генов. Таким образом можно заблокировать в клетке действие тех генов, которые потенциально на данный момент приносят больше вреда, чем пользы. Широкое применение РНК-трансфекция нашла, в частности, в онкологии.

Основные принципы доставки генов с использованием плазмидных векторов рассмотрены. Теперь можно перейти к рассмотрению вирусных методов. Вирусы - это неклеточные формы жизни, чаще всего представляющие собой молекулу нуклеиновой кислоты (ДНК или РНК), обёрнутой в белковую оболочку. Если вырезать из генетического материала вируса все те последовательности, которые вызывают возникновение заболеваний, то весь вирус также можно успешно превратить в «транспортное средство» для нашего гена.

Процесс внедрения ДНК в клетку, опосредованное вирусом, называется трансдукцией .
На практике чаще всего используют ретровирусы, аденовирусы и аденоассоциированные вирусы (AAV). Для начала стоит разобраться, каким должен быть идеальный кандидат для трансдукции среди вирусов. Критерии таковы, что он должен быть:

Стабилен;
. ёмок, то есть вмещать достаточное количество ДНК;
. инертным в отношении метаболических путей клетки;
. точным - в идеале, должен встраивать свой геном в конкретный локус генома ядра хозяина и др.

В реальной жизни очень сложно скомбинировать хотя бы несколько пунктов, так что обычно выбор происходит при рассмотрении каждого индивидуального случая в отдельности (рис.9).

Рис.9

Из всех трёх перечисленных наиболее используемых вирусов самыми безопасными и одновременно самыми точными являются AAV. Их почти что единственный недостаток - сравнительно малая ёмкость (ок. 4800 п.н.), которая, однако, оказывается достаточной для многих генов .

Помимо перечисленных методов достаточно часто генная терапия применяется в комбинации с клеточной: при этом сначала в питательную среду высаживают культуру определённых клеток человека, после этого тем или иным способом внедряют в клетки нужные гены, некоторое время культивируют и снова пересаживают в организм хозяина. В результате клеткам можно вернуть их нормальные свойства. Так, к примеру, модифицировали белые клетки крови человека (лейкоциты) при лейкемии (рис.10).

Рис.10

Судьба гена после его попадания в клетку

Так как с вирусными векторами всё более-менее ясно в силу их свойства более эффективно доставлять гены до конечной цели - ядра, то остановимся на судьбе плазмидного вектора.

На данном этапе мы добились того, что ДНК прошла первый большой барьер - цитоплазматическую мембрану клетки.

Далее, в комплексе с другими веществами, оболочкой или без, ей необходимо достигнуть клеточного ядра, чтобы специальный фермент - РНК-полимераза - синтезировала молекулу информационной РНК (иРНК) на матрице ДНК (этот процесс называется транскрипция ). Только после этого иРНК выйдет в цитоплазму, образует комплекс с рибосомами и согласно генетическому коду синтезируется полипептид - например, фактор роста сосудов (VEGF), который начнёт выполнять определённую терапевтическую функцию (в данном случае - запустит процесс образования ветвлений сосудов в ткани, подверженной ишемии).

Что касается экспрессии введенных генов в требуемом типе клеток, то эта задача решается с помощью регуляторных элементов транскрипции. Ткань, в которой происходит экспрессия, часто определяется комбинацией специфичного для этой ткани энхансера («усиливающей» последовательности) с определенным промотором (последовательность нуклеотидов, с которой РНК-полимераза начинает синтез), который может быть индуцируемым . Известно, что активность генов можно модулировать in vivo внешними сигналами, а так как энхансеры могут работать с любым геном, то в вектора можно вводить еще инсуляторы, которые помогают энхансеру работать независимо от его положения и могут вести себя как функциональные барьеры между генами. Каждый энхансер содержит набор участков связывания активирующих или супрессирующих белковых факторов . С помощью промоторов можно также регулировать уровень экспрессии генов. Например, есть металлотионеиновые или температурочувствительные промоторы; промоторы, управляемые гормонами.

Экспрессия гена зависит от его положения в геноме. В большинстве случаев существующие вирусные методы приводят лишь к случайному встраиванию гена в геном. Чтобы исключить такую зависимость, при конструировании векторов снабжают ген известными нуклеотидными последовательностями, которые позволяют гену экспрессироваться независимо от места его встраивания в геном.

Наиболее простой путь регуляции экспрессии трансгена - это обеспечение его индикаторным промотором, который чувствителен к физиологическому сигналу, такому, как выделение глюкозы или гипоксия. Такие «эндогенные» контролирующие системы могут быть полезны в некоторых ситуациях, таких, как осуществление глюкозозависимого контроля продукции инсулина. Более надежны и универсальны «экзогенные» системы контроля, когда экспрессия гена контролируется фармакологически введением маленькой лекарственной молекулы. В настоящее время известны 4 основные системы контроля - регулируемые тетрациклином (Tet), стероидом насекомых, экдизоном или его аналогами, антипрогестиновым препаратом майфпристоном (RU486) и химическими димеризаторами, такими, как рапамицин и его аналоги. Все они включают лекарственно зависимое привлечение домена активации транскрипции к основному промотору, ведущему нужный ген, но отличаются по механизмам этого привлечения .

Заключение

Обзор данных позволяет прийти к заключению, что, несмотря на усилия многих лабораторий мира, все уже известные и испытанные in vivo и in vitro векторные системы далеки от совершенства . Если проблема доставки чужеродной ДНК in vitro практически решена, а ее доставка в клетки-мишени разных тканей in vivo успешно решается (главным образом путем создания конструкций, несущих рецепторные белки, в том числе и антигены, специфичные для тех или иных тканей), то другие характеристики существующих векторных систем - стабильность интеграции, регулируемая экспрессия, безопасность - все еще нуждаются в серьезных доработках.

Прежде всего, это касается стабильности интеграции. До настоящего времени интеграция в геном достигалась только при использовании ретровирусных либо аденоассоциированных векторов. Повысить эффективность стабильной интеграции можно путем совершенствования генных конструкций типа рецептор-опосредованных систем либо путем создания достаточно стабильных эписомных векторов (то есть ДНК-структур, способных к длительному пребыванию внутри ядер). В последнее время особое внимание уделяется созданию векторов на базе искусственных хромосом млекопитающих. Благодаря наличию основных структурных элементов обычных хромосом такие мини-хромосомы длительно удерживаются в клетках и способны нести полноразмерные (геномные) гены и их естественные регуляторные элементы, которые необходимы для правильной работы гена, в нужной ткани и в должное время.

Генная и клеточная терапия открывает блестящие перспективы для восстановления утраченных клеток и тканей и генно-инженерного конструирования органов, что, несомненно, существенно расширит арсенал методов для медико-биологических исследований и создаст новые возможности для сохранения и продления жизни человека .

За свою относительно недолгую историю генная терапия претерпела и « взлеты и падения» : иногда ученые и практические врачи видели в ней чуть ли не панацею, а затем наступал период разочарования и скептицизма…
Идеи о возможности введения в организм генов с терапевтической целью были высказаны еще в начале 60-х годов минувшего столетия, однако реальные шаги были сделаны лишь в конце 80-х и были тесно связаны с международным проектом по расшифровке генома человека.

В 1990 г. была предпринята попытка генной терапии тяжелого, зачастую несовместимого с жизнью, наследственного иммунодефицита, вызванного дефектом в гене, кодирующем синтез фермента аденозиндезаминазы. Авторы исследования сообщили о четко выраженном терапевтическом эффекте. И хотя со временем возник ряд сомнений по поводу стойкости полученного эффекта и его конкретных механизмов, именно эта работа послужила мощнейшим толчком для развития генной терапии и привлекла многомиллиардные инвестиции.

Генная терапия — медицинский подход, основанный на введении в клетки генных конструкций для лечения различных заболеваний. Желаемый эффект достигается либо в результате экспрессии введенного гена, либо за счет подавления функции дефектного гена. Следует подчеркнуть, что целью генной терапии является не « лечение» генов как таковых, а лечение различных заболеваний с их помощью.

Как правило, в качестве « лекарственного препарата» используют фрагмент ДНК, содержащий необходимый ген. Это может быть просто « голая ДНК» , обычно в комплексе с липидами, белками и др. Но гораздо чаще ДНК вводят в составе специальных генетических конструкций (векторов), созданных на основе разнообразных вирусов человека и животных с помощью целого ряда генно-инженерных манипуляций. Например, из вируса удаляют гены, необходимые для его размножения. Это, с одной стороны, делает вирусные частицы практически безопасными, с другой, « освобождает место» для генов, предназначенных для введения в организм.

Принципиальным моментом генной терапии является проникновение генной конструкции в клетку (трансфекция), в подавляющем большинстве случаев — в ее ядро. При этом важно, чтобы генная конструкция достигла именно тех клеток, которые нужно « лечить» . Поэтому успешность генной терапии во многом зависит от выбора оптимального или, по крайней мере, удовлетворительного способа введения генных конструкций в организм.

С вирусными векторами ситуация более или менее предсказуема: они распространяются по организму и проникают в клетки подобно своим вирусам-предкам, обеспечивая достаточно высокий уровень органной и тканевой специфичности. Такие конструкции обычно вводят внутривенно, внутрибрюшинно, подкожно или внутримышечно.

Для « целевой доставки» невирусных векторов был разработан ряд специальных методов. Простейший метод доставки нужного гена в клетки in vivo — прямая инъекция генетического материала в ткань. Использование данного метода ограничено: инъекции можно делать только в кожу, тимус, поперечно-полосатые мышцы, некоторые плотные опухоли.

Другой способ доставки трансгена — баллистическая трансфекция. Она основана на « обстреле» органов и тканей микрочастицами тяжелых металлов (золото, вольфрам), покрытых фрагментами ДНК. Для « обстрела» используют специальную « генную пушку» .

При лечении заболеваний легких возможно введение генетического материала в дыхательные пути в виде аэрозоля.

Трансфекцию клеток можно также проводить ех vivo: клетки выделяют из организма, производят с ними генно-инженерные манипуляции, а затем вводят обратно в организм больного.

Лечим: наследственное …

На начальном этапе развития генной терапии ее основными объектами считались наследственные заболевания, вызванные отсутствием или недостаточной функцией одного гена, то есть моногенные. Предполагалось, что введение больному нормально функционирующего гена приведет к излечению от болезни. Неоднократно предпринимались попытки лечения « королевской болезни» — гемофилии, миодистрофии Дюшена, муковисцидоза.

Сегодня разрабатываются и испытываются методы генной терапии почти 30 моногенных заболеваний человека. Между тем, вопросов остается больше, чем ответов, а реальный терапевтический эффект в большинстве случаев не достигнут. Причинами этого, прежде всего, являются иммунная реакция организма, постепенное « затухание» функций введенного гена, а также невозможность добиться « адресного» встраивания переносимого гена в хромосомную ДНК.

Моногенным заболеваниям посвящены менее 10% исследований генной терапии, остальные же касаются ненаследственных патологий.

…и приобретенное

Приобретенные заболевания не связаны с врожденным дефектом в структуре и функции генов. Их генная терапия основывается на положении, что введенный в организм « терапевтический ген» должен привести к синтезу белка, который либо окажет лечебное действие, либо будет способствовать увеличению индивидуальной чувствительности к действию лекарственных средств.

Генная терапия может быть использована для предотвращения тромбообразования, восстановления сосудистой системы сердечной мышцы после инфаркта миокарда, профилактики и лечения атеросклероза, а также в борьбе с ВИЧ-инфекцией и онкологическими заболеваниями. Например, интенсивно развивается такой метод генной терапии опухолей, как повышение чувствительности опухолевых клеток к химиотерапевтическим препаратам, проводят клинические испытания с участием пациентов с плевральной мезотелиомой, раком яичников, глиобластомой. В 1999 г. был одобрен протокол лечения рака предстательной железы, подобраны безопасные дозы химиопрепаратов и продемонстрирован положительный лечебный эффект.

Безопасность и этика

Проведение генетических манипуляций с организмом человека предъявляет особые требования к безопасности: ведь любое введение в клетки чужеродного генетического материала может иметь отрицательныеотрицательные последствия. Неконтролируемое встраивание « новых» генов в те или иные участки генома больного может привести к нарушению функции « своих» генов, что, в свою очередь, может вызвать нежелательные изменения в организме, в частности образование раковых опухолей.

Помимо этого, негативные генетические изменения могут возникнуть в соматических и половых клетках. В первом случае речь идет о судьбе одного человека, где риск, связанный с генетической коррекцией несравнимо меньший, чем риск смертельного исхода от имеющегося заболевания. При введении же генных конструкций в половые клетки нежелательные изменения в геноме могут быть переданы будущим поколениям. Поэтому совершенно естественным представляется стремление запретить эксперименты по генетической модификации половых клеток не только из медицинских, но и из этических соображений.

Ряд морально-этических проблем связан с разработкой подходов к генному вмешательству в клетки развивающегося эмбриона человека, то есть с внутриматочной генной терапией (терапией in utero). В США возможность использования генной терапии in utero рассматривается только для двух тяжелейших генетических заболеваний: тяжелого комбинированного иммунодефицита, вызванного дефектом в гене фермента аденозиндезаминазы, и гомозиготной бета-талассемии — тяжелого наследственного заболевания, связанного с отсутствием всех четырех глобиновых генов или мутациями в них. Уже разработан и готовится к предварительным испытаниям ряд генных конструкций, доставка которых в организм, как предполагается, приведет к компенсации генетических дефектов и устранению симптомов этих болезней. Однако риск возникновения отрицательных генетических последствий таких манипуляций достаточно велик. Поэтому этичность внутриматочной генной терапии также остается спорной.

В январе этого года в США опять были временно запрещены эксперименты по генной терапии. Причиной стали опасные осложнения, возникшие у двух детей после генной терапии наследственного иммунодефицита. Несколько месяцев назад во Франции у одного из детей, считавшихся излеченными благодаря генной терапии, был обнаружен лейкозоподобный синдром. Эксперты не исключают, что именно использование в ходе терапии векторов на основе ретровирусов может быть причиной развития осложнений у детей. Теперь представители Управления по контролю пищевых продуктов и лекарственных препаратов (FDA) будут рассматривать вопрос о продолжении экспериментов по генной терапии в индивидуальном порядке, причем лишь в том случае, если других способов лечения заболевания не существует.

Не панацея, но — перспектива

Нельзя отрицать, что реальные успехи генной терапии в лечении конкретных больных довольно скромны, а сам подход все еще находится на стадии накопления данных и разработки технологий. Генная терапия не стала и, очевидно, никогда не станет панацеей. Регуляторные системы организма настолько сложны и так мало изучены, что простое введение гена в большинстве случаев не вызывает необходимого лечебного эффекта.

Однако при всем этом перспективность генной терапии трудно переоценить. Есть все основания надеяться на то, что прогресс в сфере молекулярной генетики и генно-инженерных технологий приведет к несомненным успехам в лечении заболеваний человека с помощью генов. И, в конце концов, генная терапия по праву займет свое место в практической медицине.

Судя по всему, генная терапия может получить несколько неожиданное применение. По прогнозам ученых, в 2012 г. состоятся Олимпийские игры, где выступят трансгенные суперспортсмены. « ДНК-допинг» даст несомненные преимущества
в развитии силы, выносливости и скорости. Можно не сомневаться, что в условиях жесткой спортивной конкуренции найдутся атлеты, готовые к генетической модификации, даже учитывая возможный риск, связанный с применением новой технологии.

Генная терапия – одна из стремительно развивающихся областей медицины, которая предполагает лечение человека посредством введения в организм здоровых генов. Причем, как утверждают ученые, с помощью генной терапии можно добавить недостающий ген, исправить или заменить его, улучшив тем самым работу организма на клеточном уровне и нормализовав состояние больного.

По словам ученых, потенциальными кандидатами для генной терапии на сегодняшний день являются 200 млн. жителей планеты, причем эта цифра неуклонно растет. И очень отрадно, что несколько тысяч пациентов уже получили лечение от неизлечимых недугов в рамках проводимых испытаний.

В данной статье расскажем о том, какие задачи ставит перед собой генная терапия, какие заболевания можно лечить этим методом и с какими проблемами приходится сталкиваться ученым.

Где применяется генотерапия

Изначально генная терапия была задумана для борьбы с тяжелыми наследственными заболеваниями, такими как болезнь Хантингтона, муковисцидоз (кистозный фиброз) и некоторыми инфекционными заражениями. Однако 1990-й год, когда ученым удалось скорректировать дефектный ген, и, введя его в организм больного, победить муковисцидоз, стал поистине революционным в области генной терапии. Миллионы людей во всем мире получили надежду на лечение заболеваний, которые прежде считались неизлечимыми. И пусть такая терапия находится у самых истоков развития, ее потенциал вызывает удивление даже в научном мире.

Так, например, кроме кистозного фиброза, современные ученые добились успехов борьбе с такими наследственными патологиями, как гемофилия, энзимопатия и иммунодефицит. Более того, лечение генами позволяет бороться с некоторыми онкологическими заболеваниями, а также с патологиями сердца, болезнями нервной системы и даже травмами, к примеру, с повреждениями нервов. Таким образом, генная терапия занимается заболеваниями с крайне тяжелым протеканием, которые приводят к ранней смертности и, зачастую, не имеют другого лечения, кроме терапии генами.

Принцип лечения генами

В качестве действующего вещества врачи используют генетическую информацию, а если быть точным, молекулы, которые являются носителями такой информации. Реже для этого применяют нуклеиновые кислоты РНК, а чаще – клетки ДНК.

Каждая такая клетка обладает так называемым «ксероксом» – механизмом, при помощи которого она переводит генетическую информацию в белки. Клетка, у которой имеется правильный ген и без сбоев работает «ксерокс», с точки зрения генной терапии является здоровой клеткой. У каждой здоровой клетки имеется целая библиотека оригинальных генов, которые она использует для правильной и слаженной работы всего организма. Однако если по какой-либо причине важный ген утерян, восстановить такую потерю не представляется возможным.

Это становится причиной развития серьезных генетических заболеваний, таких как миодистрофия Дюшена (при ней у больного прогрессирует мышечный паралич, и он в большинстве случаев не доживает до 30 лет, умирая от остановки дыхания). Или менее фатальная ситуация. К примеру, «поломка» определенного гена приводит к тому, что белок перестает выполнять свои функции. И это становится причиной развития гемофилии.

В любом из перечисленных случаев на помощь приходит генная терапия, задачей которой является доставить нормальную копию гена в больную клетку и подложить в её в клеточный «ксерокс». В этом случае наладится работа клетки, а может быть, восстановится функционирование всего организма, благодаря чему человек избавится от тяжелого недуга и сможет продлить свою жизнь.

Какие болезни лечит генная терапия

Насколько реально помогает человеку генная терапия? По подсчетам ученых, в мире насчитывается около 4200 заболеваний, которые возникают в результате неправильной работы генов. В этом плане потенциал у данного направления медицины просто невероятный. Однако гораздо важнее то, чего на сегодняшний день удалось добиться медикам. Безусловно, на этом пути хватает трудностей, однако уже сегодня можно выделить ряд локальных побед.

К примеру, современные ученые разрабатывают подходы к лечению ишемической болезни сердца посредством генов. А ведь это невероятно распространенное заболевание, которое поражает гораздо больше людей, чем врожденные патологии. В конечном итоге, человек, столкнувшийся с ишемической болезнью, оказывается в таком состоянии, когда единственным спасением для него может стать генная терапия.

Более того, на сегодняшний день при помощи генов лечатся патологии, связанные с поражением центральной нервной системы. Это такие заболевания, как боковой амиотрофический склероз, болезнь Альцгеймера или болезнь Паркинсона. Что интересно, для лечения перечисленных недугов используются вирусы, которые имеют свойство атаковать нервную систему. Так, при помощи вируса герпеса в нервную систему доставляют цитокины и факторы роста, замедляющие развитие заболевания. Это яркий пример того, как патогенный вирус, который обычно вызывает болезнь, обрабатывается в лабораторных условиях, лишаясь белков, несущих заболевание, и используется как кассета, которая доставляет в нервы целебные вещества и тем самым действует во благо здоровья, продлевая жизнь человека.

Еще одним тяжелым наследственным заболеванием является холестеринемия, которая приводит организм человека к неспособности регулировать холестерин, вследствие чего в его организме скапливаются жиры, и возрастает риск инфарктов и инсультов. Чтобы справиться с этой проблемой, специалисты удаляют больному часть печени и исправляют поврежденный ген, останавливая дальнейшее накопление холестерина организмом. После этого исправленный ген помещают в обезвреженный вирус гепатита, и с его помощью отправляют обратно в печень.

Читайте также:

Имеются положительные подвижки и в борьбе со СПИДом. Не секрет ведь, что СПИД вызывается вирусом иммунодефицита человека, который разрушает иммунную систему и открывает ворота к организму смертельно опасным заболеваниям. Современные ученые уже знают, каким образом изменить гены, чтобы они перестали ослаблять иммунную систему, а начали укреплять ее для противодействия вирусу. Такие гены вводятся через кровь, посредством ее переливания.

Работает генная терапия и против раковых заболеваний, в частности, против рака кожи (меланомы). Лечение таких пациентов предполагает введение генов с факторами некроза опухоли, т.е. генов, которые содержат противоопухолевый белок. Более того, сегодня проводятся испытания по лечению рака мозга, где больным пациентам вводят ген, содержащий информацию по увеличению чувствительности злокачественных клеток к применяемым препаратам.

Болезнь Гоше представляет собой тяжелейшее наследственное заболевание, которое вызывается мутацией гена, подавляющего производство особого фермента – глюкоцереброзидазы. У лиц, страдающих от этого неизлечимого недуга, увеличена селезенка и печень, а с прогрессированием недуга начинают разрушаться кости. Ученым уже сегодня удались опыты по введению в организм таких пациентов гена, содержащего информацию по выработке данного фермента.

А вот еще один пример. Не секрет, что ослепший человек на всю оставшуюся жизнь лишается возможности воспринимать зрительные образы. Одной из причин врожденной слепоты считается так называемая атрофия Лебера, которая, по сути, является генной мутацией. На сегодняшний день ученые вернули 80 слепым людям зрительные способности, посредством модифицированного аденовируса, который доставил «рабочий» ген в ткани глаза. К слову, несколько лет назад ученым удалось вылечить дальтонизм у подопытных обезьян, путем внедрения в сетчатку глаза животного здорового человеческого гена. А совсем недавно такая операция позволила вылечить дальтонизм первым пациентам.

Что характерно, метод доставки генной информации при помощи вирусов является самым оптимальным, так как вирусы сами находят свои цели в организме (вирус герпеса обязательно найдет нейроны, а вирус гепатита – печень). Однако у данного метода доставки генов есть существенный недостаток – вирусы иммуногены, а значит, при попадании в организм могут быть уничтожены иммунитетом до того, как успеют сработать, а то и вызовут мощные иммунные ответы организма, лишь ухудшив состояние здоровья.

Существует и другой способ доставки генного материала. Это кольцевая молекула ДНК или плазмида. Она отлично спирализуется, становясь очень компактной, что позволяет ученым «упаковать» ее в химический полимер и внедрить в клетку. В отличие от вируса, плазмида не вызывает иммунной реакции организма. Однако этот способ менее подходящий, т.к. спустя 14 дней плазмида удаляется из клетки и продукция белка останавливается. То есть, таким способом ген необходимо вводить на протяжении длительного времени, пока клетка будет «выздоравливать».

Таким образом, у современных ученых есть два мощных метода доставки генов к «больным» клеткам, причем использование вирусов выглядит более предпочтительным. В любом случае окончательное решение по выбору того или иного метода выбирает врач, исходя из реакции организма пациента.

Проблемы, с которыми сталкивается генотерапия

Можно сделать определенный вывод о том, что генная терапия – малоизученная область медицины, которая сопряжена с большим количеством неудач и побочных эффектов, и в этом ее огромный недостаток. Однако есть еще и этический вопрос, ведь многие ученые выступают категорически против вмешательства в генетическое строение человеческого организма. Именно поэтому, сегодня существует международный запрет на использование в генотерапии половых клеток, а также доимплантационных зародышевых клеток. Сделано это для того, чтобы предотвратить нежелательные генные изменения и мутации у наших потомков.

В остальном же, генная терапия не нарушает никаких этических норм, ведь она призвана бороться с тяжелыми и неизлечимыми заболеваниями, в которых официальная медицина попросту бессильна. И в этом самое главное преимущество лечения генами.
Берегите себя!