Применение экономико-математического моделирования в логистических системах. Вероятность того, что канал свободен


Федеральное агентство по образованию Российской Федерации

РЕФЕРАТ

на тему: «Математическое моделирование логистического продвижения грузов»

Введение 4

1. Определение понятия логистики 7

2. Общая характеристика методов решения логистических задач 8

2.1. Моделирование в логистике 9

2.2. Экспертные системы в логистике 14

3. Транспортировка в логистике 16

3.1. Выбор перевозчика 17

4. Экономический эффект от использования логистики 22

Заключение 24

Список литературы 25

Введение

В транспортной логистике для управления материальными потоками в рамках смешанных перевозок используют несколько моделей задач.

Данная модель управления грузопотоками с учетом нескольких перевалок относится к задачам линейного программирования и решается с помощью ЭВМ.

Нередко в транспортной логистике для оптимизации продвижения материальных потоков по логистическим цепям на этапе планирования приходится решать задачи о кратчайшем пути. С точки зрения математического программирования это задача о нахождении на ориентированном графе пути наименьшей длины между двумя заданными его вершинами. Длиной пути такого графа называется сумма длин дуг, составляющих этот путь.

Задача о кратчайшем пути в логистике возникает не только при решении транспортных задач, но также дискретных задач динамического программирования и в других случаях. В задачах сетевых методов планирования и управления алгоритмы решения задач о кратчайшем пути используют для нахождении критического пути.

Известно несколько эффективных методов решения указанного типа задач. Для логистического же анализа транспортных сетей применяют алгоритм, основанный на методе последовательного анализа вариантов.

Большую роль в управлении материальными потоками в логистике играет маршрутизация транспортных средств. Определение рациональных маршрутов движения транспортных средств позволяет решить три важнейшие задачи:

    оптимизировать грузопотоки в логистических каналах и цепях;

    обеспечить максимальную производительность подвижного состава;

    обеспечить минимизацию себестоимости транспортировки грузов.

Особенно актуальной проблема маршрутизации является в автомобильном транспорте. Это объясняется тем, что автомобильный транспорт наиболее мобильный и гибкий по транспортным характеристикам. Именно на него приходится около 70% всех транспортных связей между предприятиями.

Развитие централизованных автомобильных перевозок, укрупнение автотранспортных предприятий, увеличение мощности грузопотоков, а также совершенствование процесса управления логистикой требуют применения таких способов организации продвижения материальных потоков, которые основывались бы не на субъективных качествах отдельных работников, а на принципах системной концепции – логистики, имеющих объективный характер. Эти способы отражают одновременно математические и экономические подходы к управлению потоковыми процессами.

В рыночных условиях в выборе наиболее оптимального варианта организации работы автомобильного транспорта уже нельзя полагаться на простейшие арифметические способы. Усложнение выбора оптимального варианта передвижения транспортных средств показательно на простом примере. Так, если имеется три поставщика и три потребителя, то число возможных вариантов продвижения грузопотоков в общей сложности может достигать 90, а при четырех поставщиках и четырех потребителях – 6256. Если число участников логистических процессов возрастает еще больше, то количество вариантов увеличивается до астрономических цифр.

Быстро и эффективно задачи выбора способов маршрутизации в логистике можно решить лишь с помощью математических методов и ЭВМ. Необходимо отметить, что по отношению к автомобильному транспорту методом линейного программирования можно:

    отыскивать оптимальное количество поездок автомобилей на маршрутах при установленном времени пребывания в наряде (задачи на минимизацию потерь рабочего времени);

    определять оптимальные варианты продвижения однородных грузопотоков от источников их генерации до пунктов назначения (задачи на минимизацию транспортных затрат);

    разрабатывать оптимальные стратегии по ориентации перевозчиков на определенную группу клиентов (на выделенный сегмент рынка логистических услуг);

    составлять рациональные маршруты работы подвижного состава с позиций увязки намечаемых ездок (задачи по минимизации холостых пробегов);

    выделять рациональные «развозочные» и «сборочные» маршруты (задачи на определение минимальных пробегов при объезде обусловленных грузопунктов).

    Эффективно распределять транспортные и погрузочно-разгрузочные средства по маршрутам логистических цепей (задачи на максимальное использование рабочего времени автомобилей и рабочего времени погрузочно-разгрузочных механизмов и др.).

Эти, а также другие подобные задачи можно решить не только в отношения автомобильного, но и других видов транспорта. В этой связи важно подчеркнуть, что высокая точность расчетов при решении логистических задач основывается на математическом моделировании изучаемого процесса. Другими словами, описание количественных закономерностей логистических процессов осуществляется с помощью соответствующих математических моделей.

1.Определение понятия логистики

Логистика (logistics) - наука о планировании, контроле и управлении транспортированием, складированием и другими материальными и нематериальными операциями, совершаемыми в процессе доведения сырья и материалов до производственного предприятия, внутризаводской переработки сырья, материалов и полуфабрикатов, доведения готовой продукции до потребителя в соответствии с интересами и требованиями последнего, а также передачи, хранения и обработки соответствующей информации.

Если рассмотреть в совокупности круг проблем, которые затрагивает логистика, то общим для них будут вопросы управления материальными и соответствующими им информационными потоками.

Как наука логистика ставит и решает следующие задачи:

    прогноз спроса и, на его основе, планирование запасов;

    определение необходимой мощности производства и транспорта;

    разработка научных принципов распределения готовой продукции на основе оптимального управления материальными потоками;

    разработка научных основ управления перегрузочными процессами и транспортно-складскими операциями в пунктах производства и у потребителей;

    построение различных вариантов математических моделей функционирования логистических систем;

    разработка методов совместного планирования, снабжения, производства, складирования, сбыта и отгрузки готовой продукции, а также ряд других задач.

2.Общая характеристика методов решения логистических задач

Объектом изучения логистики являются материальные и соответствующие им финансовые и информационные потоки. Эти потоки на своем пути от первичного источника сырья до конечного потребителя проходят различные производственные, транспортные, складские звенья. При традиционном подходе задачи по управлению материальными потоками в каждом звене решаются, в значительной степени, обособленно. Отдельные звенья представляют при этом так называемые закрытые системы, изолированные от систем своих партнеров технически, технологи чески, экономически и методологически. Управление хозяйственными процессами в пределах закрытых систем осуществляется с помощью общеизвестных методов планирования и управления производственными и экономическими системами. Эти методы продолжают применяться и при логистическом подходе к управлению материальными потоками. Однако переход от изолированной разработки в значительной степени самостоятельных систем к интегрированным логистическим системам требует расширения методологической базы управления материальными потоками.

К основным методам, применяемым для решения научных и практических задач в области логистики, следует отнести методы системного анализа, методы исследования операций, кибернетический подход и прогностику. Применение этих методов позволяет прогнозировать материальные потоки, создавать интегрированные системы управления и контроля за их движением, разрабатывать системы логистического обслуживания, оптимизировать запасы и решать ряд других задач.

Принятие решений по управлению материальными потоками до начала широкого применения логистики в значительной степени основывалось на интуиции квалифицированных снабженцев, сбытовиков, производственников, транспортников. Развивая методологический аппарат, современная логистика, наряду с разработкой и использованием формализованных методов принятия решений, изыскивает возможности широкого применения опыта названной категории профессионалов. С этой целью разрабатываются так называемые системы экспертной компьютерной поддержки (или экспертные системы), позволяющие персоналу, не имеющему глубокой подготовки в логистике, принимать быстрые и достаточно эффективные решения.

Широкое применение в логистике имеют различные методы моделирования, т. е. исследования логистических систем и процессов путем построения и изучения их моделей. При этом под логистической моделью понимается любой образ, абстрактный или материальный, логистического процесса или логистической системы, используемый в качестве их заместителя.

2.1.Моделирование в логистике

Моделирование основывается на подобии систем или процессов, которое может быть полным или частичным. Основная цель моделирования - прогноз поведения процесса или системы. Ключевой вопрос моделирования «ЧТО БУДЕТ, ЕСЛИ...?»

Существенной характеристикой любой модели является степень полноты подобия модели моделируемому объекту. По этому признаку все модели можно разделить на изоморфные и гомоморфные.

Изоморфные модели – это модели, включающие все характеристики объекта оригинала, способные, по существу, заменить его. Если можно создать и наблюдать изоморфную модель, то наши знания о реальном объекте будут точными. В этом случае мы сможем точно предсказать поведение объекта.

Гомоморфные модели. В их основе лежит неполное, частичное подобие модели изучаемому объекту. При этом некоторые стороны функционирования реального объекта не моделируются совсем. В результате упрощается построение модели и интерпретация результатов исследования. При моделировании логистических систем абсолютное подобие не имеет места. Поэтому в дальнейшем будут рассматриваться лишь гомоморфные модели, не забывая, однако, что степень подобия у них может быть различной.

Следующим признаком классификации является материальность модели. В соответствии с этим признаком все модели можно разделить на материальные и абстрактные.

Материальные модели воспроизводят основные геометрические, физические, динамические и функциональные характеристики изучаемого явления или объекта. К этой категории относятся, в частности, уменьшенные макеты предприятий оптовой торговли, позволяющие решить вопросы оптимального размещения оборудования и организации грузовых потоков.

Абстрактное моделирование часто является единственным способом моделирования в логистике. Его подразделяют на символическое и математическое.

К символическим моделям относят языковые и знаковые.

Языковые модели – это словесные модели, в основе которых лежит набор слов (словарь), очищенных от неоднозначности. Этот словарь называется «тезаурус». В нем каждому слову может соответствовать лишь единственное понятие, в то время как в обычном словаре одному слову могут соответствовать несколько понятий.

Знаковые модели. Если ввести условное обозначение отдельных понятий, т. е. знаки, а также договориться об операциях между этими знаками, то можно дать символическое описание объекта.

Математическим моделированием называется процесс установления соответствия данному реальному объекту некоторого математического объекта, называемого математической моделью. В логистике широко применяются два вида математического моделирования: аналитическое и имитационное.

Аналитическое моделирование – это математический прием исследования логистических систем, позволяющий получать точные решения. Аналитическое моделирование осуществляется в следующей последовательности.

Страница 16 из 26

Экономико-математическое моделирование в логистике

На практике использование и прогнозирование поведения логистических систем при тех или иных видах возмущающих и управляющих воздействий заменяется исследованием и прогнозиро­ванием поведения их моделей .

Под моделью в данном случае следует понимать любое отображение логистической системы, которое может быть использовано вместо нее для исследования ее свойств и прогнозирования возможных вариантов ее поведения.

Моделирование логистических систем можно проводить различным образом и приходить в итоге к разным моделям. Однако при построении моделей необходимо соблюдать следующие общие принципы :

– модель должна иметь поведение, структуру и функции, подобные таковым у моделируемой логистической системы или ее компонента;

– отклонения параметров модели в процессе ее функционирования от соответствующих пара­метров моделируемой логистической системы не должны выходить за рамки допустимой точности моделирования;

– на основании исследования модели и ее поведения должно быть возможным обнаружить новые свойства моделируемой логистической системы, не содержащиеся в исходном материале, использованном для составления данной модели;

– проводить исследования и эксперименты на модели должно быть более удобно, чем на реальной логистической системе.

Исследования, проводимые на модели, выполненной с соблюдением вышеназванных условий, представляют следующие качественно новые возможности :

– исследования могут проводиться до реализации логистической системы на этапе ее проекти­рования и определения целесообразности ее создания и применения;

– исследования могут проводиться без вмешательства в функционирование производственно-сбытовой системы, что могло бы оказаться слишком дорогим или иметь необратимые послед­ствия;

– если цель эксперимента состоит в определении предельно допустимых значений объемов материальных потоков или других статических и динамических параметров производственно-сбытовой системы, то исследования на модели можно проводить без риска разрушения модели­руемой системы.

Модели логистических систем бывают весьма разнообразными и могут быть классифици­рованы следующим образом (рис. 18).

Рис. 18. Классификационная структура моделей логистических систем

Все модели систем делятся на изоморфные и гомоморфные .

Изоморфные модели представляют собой полный эквивалент всем морфологическим и пове­денческим особенностям моделируемой системы и способны полностью заменить ее. Однако создать и исследовать изоморфную в полном смысле этого слова модель практически оказывается невозможным вследствие неполноты и несовершенства знаний о реальной системе и недоста­точной адекватности методов и средств такого моделирования.

Поэтому практически все модели, используемые в логистике, являются гомоморфными. Гомоморфные модели представляют собой модели, подобные изображаемому объекту лишь в некоторых отношениях, но в отношениях, характерных и важных для процесса моделирования. Другие аспекты строения и функционирования при гомоморфном моделировании не рассматри­ваются и игнорируются. Логистические модели моделируются исключительно с помощью гомо­морфных моделей, обеспечивающих подобие оригиналу только в некоторых отношениях, имею­щих значение для эффективного управления.

В свою очередь гомоморфные модели делятся на материальные и абстрактно-концепту­альные .

Материальные модели находят в логистическом управлении лишь ограниченное применение. Прежде всего это объясняется трудностью и дороговизной воспроизведения на такого рода моде­лях основных геометрических, физических и функциональных характеристик оригинала и крайне ограниченными возможностями варьирования их в процессе работы с моделью. Поэтому для логистики в подавляющем большинстве случаев используется абстрактно-концептуальное моде­лирование.

Абстрактно-концептуальные модели , в свою очередь, подразделяются на символические и математические.

Символические модели построены на основе различных, определенным образом организо­ванных знаков, символов, кодов, слов или массивов чисел, изображающих исследуемый оригинал. Для построения подобных моделей используются такие символы или коды, которые однозначно и не допускающим возможности различного толкования образом представляют моделируемые структуры и процессы. Так, для языкового описания моделей используются специальным образом построенные словари, в которых, в отличие от обычных толковых словарей, каждое слово имеет только одно определенное значение. Такой словарь принято называть «тезаурусом ».

Информацию, полученную с помощью использования символических моделей, неудобно обрабатывать (хотя это и возможно) для дальнейшего использования в системах логистического управления. Поэтому наибольшее распространение для создания и эксплуатации систем логисти­ческого управления получили математические модели .

Математическое моделирование бывает двух разновидностей – аналитическое и имитаци­онное .

При построении аналитических моделей закономерности строения и поведения объекта моде­лирования описываются в приемлемой форме точными аналитическими соотношениями. Эти соотношения могут быть получены как теоретически, так и экспериментально. Универсальным методом математического моделирования, «работающим» даже тогда, когда нет возможности ни теоретически, ни экспериментально получить аналитическое описание исследуемого объекта, является имитационное моделирование.

Имитационное моделирование – это компьютерное воспроизведение развертывания во времени функционирования моделируемой системы, то есть воспроизведение ее перехода из одного состояния в другое, осуществляемое в соответствии с однозначно определенными опера­ционными правилами. Как правило, изменения состояния логистических систем происходят дискретно и в дискретные моменты времени. Но и в этом случае остается в силе основной прин­цип имитационного моделирования: отображение изменений состояния моделируемой системы, развернутое во времени.

Процесс разработки имитационной модели начинается с уточнения понимания проблемы и формулировки целей исследования, что само по себе является развернутым во времени последова­тельным приближением. Затем производится статическое описание системы, в котором задаются ее элементы и их параметры, а затем и ее динамическое описание, в котором задаются взаимодей­ствия этих элементов, в результате чего происходит изменение состояний системы.

Рассмотренная классификация моделей структур и поведения исходных систем касается форм и методов представления и описания характеристик моделируемого объекта в целом.

Построение внутренних зависимостей для каждого отдельного компонента моделируемой системы, которые могут быть затем использованы для построения того или иного вида модели системы, производится экономико-математическими методами . Классификация этих методов приведена на рис. 19.

Рис. 19. Классификация экономико-математических методов

Методы, с помощью которых формируются все эти виды экономико-математических моде­лей, разделяются на алгоритмические и эвристические .

Алгоритмические модели регулярными методами устанавливают связи между входными и выходными параметрами описываемого компонента, скоростями их изменения и скоростями изменения этих скоростей (то есть, ускорениями). Для дискретных элементов скорости и уско­рения заменяются приращениями значений параметров и изменениями этих приращений за единицу времени.

Применяемые при этом методы разделяют на экономико-статистические и эконометрические .

Первые используют описания характерных элементов, основанные на математической и экономической статистике, в том числе и статистические методы математического планирования многофакторного эксперимента, которые уже упоминались. Вторые базируются на математи­ческом описании происходящих экономических процессов. Например, общий фонд заработной платы однозначно математически связан с числом работающих и их распределением по разрядам.

Эвристические методы (их название происходит от восклицания Архимеда «eurica» –
«я догадался») представляют собой не правила преобразования некоторых исходных положений, а набор «рецептов», обеспечивающих пусть и не оптимальную, но вполне работоспособную проце­дуру получения описаний, пригодных для дальнейшего построения моделей.

Эвристические методы в свою очередь делятся на методы, основанные на стремлении к полу­чению оптимальных решений (а в более широком смысле – методы исследования операций), и методы экономической кибернетики .

Последние, в свою очередь, подразделяются на методы теории экономических систем и моде­лей, методы теории экономической информации теории управляющих систем . и методы

Экономико-математические методы приводят к построению экономико-математических моделей. Такие модели представляют собой отображение экономических характеристик объекта в виде совокупности математических выражений. Это отображение составляется таким образом, чтобы его можно было использовать для дальнейших исследований.

Основным для исследования экономико-математической модели является ее целевая функция . Экстремальному значению целевой функции для конкретной модели соответствует наилучшее управленческое решение для моделируемого объекта.

Описаниями, составляющими неотъемлемую часть подобной модели, являются также ограни­чения значений ее параметров. Обычно в математических моделях такие ограничения задаются в виде системы равенств и неравенств. Таким способом формализуются те или иные свойства моде­лируемого компонента.

Все экономико-математические модели, используемые в логистике, могут быть классифици­рованы по различным признакам (рис. 20).

Ранее рассматривались различные виды моделирования экономической деятельности, резуль­таты которых могут быть использованы для логистического проектирования будущей производ­ственно-сбытовой системы или для управления функционированием уже имеющейся системы такого рода.

Теперь следует рассмотреть, какими методами и средствами обеспечивается возможность достаточно оперативно строить необходимые модели и выполнять соответствующие расчеты, удовлетворяющие задачам логистики.

Рис. 20. Классификация экономико-математических моделей

Все виды обеспечения логистического управления следует разделить на программно-мате­матическое , лингвистическое и техническое обеспечение .

Говоря о программно-математическом обеспечении , можно считать, что в настоящее время отработаны и имеются в распоряжении пользователей ряд пакетов проблемно-ориентированных компьютерных программ, решающих конкретные задачи управления.

К этим задачам , в частности, относятся:

1. Рациональная организация продуцентов.

2. Распределение транспорта по маршрутам.

4. Рационализация схем доставки продукции к потребителям

5. Организация выпуска однотипной продукции при нескольких технологических способах ее производства.

6. Организация выпуска разнотипной продукции при едином технологическом способе ее производства.

7. Рационализация выбора продуцентов.

8. Распределение капитальных вложений.

Названные примеры далеко не исчерпывают всего объема пакетов прикладных программ, на которые может в настоящее время рассчитывать пользователь. Для полного знакомства с такими пакетами следует обращаться к специальной литературе.

Лингвистическое обеспечение принятия логистических решений представляет собой совокупность языковых средств общего программного обеспечения, которые предоставляют поль­зователю возможность задавать компьютеру исходную информацию и определять процедуру ее обработки.

Кроме общеизвестных проблемно-ориентированных языков, таких как Фортран, Кобол, Бэйсик и др., для задач, связанных с экономической деятельностью, важное значение имеют также системы документирования и выпуска табуляграмм, позволяющие просматривать и сравнивать различные варианты решений.

Для работы с персональными компьютерами пользователю предлагается широкий выбор средств общего программного обеспечения, которые можно отнести к специальным языковым средствам. Среди них следует назвать:

– оболочковые системы или коммандеры и управляемые ими операционные системы
(NC, MS-DOS и др.);

– средства редактирования и работы с текстами (Microsoft Word и др.);

– электронные таблицы (Microsoft Excel и др.);

– системы управления базами данных (СУБД);

– интерактивные графические экранные средства (Windows и др.).

Техническое обеспечение базируется на большом разнообразии предоставляемых пользова­телю:

– компьютерных устройств различного уровня;

– сетевых средств, позволяющих объединять эти устройства в локальные вычислительные сети;

– средств построения гиперсетей, позволяющих объединять локальные вычислительные сети;

– средств выхода на различные уровни межсетевого, в том числе международного информа­ционного обмена, например, с помощью сети Интернет;

– терминальных устройств для ввода, вывода и визуализации информации в текстовой, графи­ческой и других формах.

Достигнутый технический уровень работы с большими объемами экономической информации позволил приступить к практической работе по созданию и использованию логистических систем. Более подробно различные аспекты представления, хранения, поиска, переработки и использо­вания информации, необходимой для логистического управления, рассматриваются далее.



Оглавление

ЭКОНОМИКО-МАТЕМАТИЧЕСКИЕ МЕТОДЫ В ЛОГИСТИКЕ

Методические указанияк изучению дисциплины и выполнениюконтрольной работы

для студентов заочной формы обучения

Специальность080500 – Менеджмент

Специальность080506 – Логистика и управление цепями поставок

Санкт-Петербург

Допущено

редакционно-издательским советом СПбГИЭУ

в качестве методического издания

Составители

д-р экон. наук, проф. Е.И. Зайцев

канд. техн. наук, доц. Е.В. Носкова

Подготовлено на кафедре

логистики и организации перевозок

представленного составителями

© СПбГИЭУ, 2012


1. Общие положения.................................................................
2. Методические указания по изучению дисциплины.......
3. Методические указания к выполнению контрольной работы……………………………………………………….
4. Контрольные задания……………………………………..
5. Требования к объёму, оформлению и срокам выполнения контрольной работы………….……………
6.Список литературы................................... …………………………………………
Приложение 1. Содержание дисциплины (Извлечение из рабочей программы дисциплины)....................................................... ………...
Приложение 2. Пример оформления титульного листа контрольной работы.................................
Приложение 3. Перечень контрольных вопросов для про­верки знаний по дисциплине…………........................................... .................................................................. 16

ОБЩИЕ ПОЛОЖЕНИЯ

Целью дисциплины «Экономико-математические методы в логистике» является формирование у специалиста в области логистики объективного представления о роли и месте экономико-математического моделиро­ва­ния в управлении логистичес­ки­ми системами, научить его выполнять прогнозные расчёты и решать задачи на оптимальность из разных функциональных областей логистики с применением современных инструментальных средств.

Самостоятельный практикум призван укрепить теоретические знания и способствовать приобретению навыков выработки управленческих решений в логистике стратегического характера на основе конкретных, экономически обоснованных расчётных моделей и алгоритмов.

В задачи дисциплины входит изучение студентами методов и алгоритмов моделирования логистических процессов с экономическими критериями эффективности в связной форме и закрепление знаний путём практических расчётов на ЭВМ, ознакомление студентов с современными подходами к моделированию и оптимизации цепей поставок, освоение студентами инструментальных средств моделирования и поиска оптимальных решений. Это, в свою очередь, предполагает знакомство с современным математическим программным обеспечением, с практикой экономико-математического моделирования цепей поставок современных дистрибьюторских компаний, а также с современными подходами к проблеме принятия экономически обоснованных решений в условиях неопределённости.

Дисциплина «Экономико-математические методы в логистике» является логическим продолжением таких курсов, как «Математика», «Экономико-математические методы и модели в социально-экономических исследованиях» и «Информатика». В то же время её понятийно-методологическим базисом является дисциплина «Основы логистики». Объектами изучения являются логистические цепи, системы и их элементы в формализованном виде. Предметом изучения дисциплины являются математические методы, модели логистических задач и алгоритмы их решения средствами вычислительной техники.

Уровень освоения материалов курса должен быть достаточным для свободного владения инструментарием прогнозирования и оптимизации с использованием средств поиска решений из универсальных математических пакетов. Теоретическая подготовка должна отвечать требованиям к специалисту по статистическому моделированию и аналитическим исследованиям бизнес-процессов в логистике. Практическая подготовка должна быть на уровне, обеспечивающем свободное владение компьютером и стандартными средствами автоматизации расчётов.

В целом, результате изучения дисциплины студенты должны знать :

¾ Основные методы исследования экономических процессов средствами прикладной математики.

¾ Способы построения математических моделей задач управления и принятия решений в логистике.

¾ Методы моделирования и оптимизации бизнес-процессов.

Они также должны уметь пользоваться прикладными математическими программами для решения классических задач анализа, моделирования и оптимизации в логистике.

Самостоятельная работа предполагает подготовку к практическим и лабораторным работам, а также более детальное освоение тем предмета и знакомство с современными программными инструментами обработки данных и поиска оптимальных решений.

Форма контроля по дисциплине – письменный экзамен, который проводится после успешной сдачи контрольной работы, выполнения и защиты лабораторных работ и промежуточного тестирования на практических занятиях, в ходе которого преподаватель проверяет, в том числе, и результаты самостоятельной работы студента при изучении дисциплины. Экзаменационные билеты содержат закрытые и открытые тесты, задачу и теоретический вопрос.

В соответствии с учебным планом дисциплины студент заочной формы обучения должен выполнить одну контрольную работу с заданиями расчетного и реферативного характера. Выполнению контрольной работы должна предшествовать углубленная проработка теоретического материала курса. Номер варианта контрольной работы выбирается по двум последним цифрам шифра зачетной книжки (см. табл.0.1). Положительно оцененная контрольная работа является необходимым условием допуска к сдаче экзамена по дисциплине. Незачтенные контрольные работы с замечаниями преподавателя возвращаются студенту на доработку.

2. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ИЗУЧЕНИЮ ДИСЦИПЛИНЫ

Для освоения курса студент, прежде всего, должен сформировать список необходимых информационных источников из рекомендуемого перечня. Базовую литературу можно найти в библиотеках(п.6). Интересные современные сведения можно также найти в Интернете. Для закрепления и систематизации знаний по предмету желательно конспектировать прочитанное. При оформлении контрольной работы ссылки на первоисточники обязательны.

Тема 1 . Введение в ЭММ. Предмет и задачи дисциплины

Раздел вводный и при его изучении следует разобраться в основных терминах и понятиях, связанных с моделями и моделированием. Прежде всего, необходимо определить место и роль ЭММ в управлении современной логистической компанией, особенно компанией, работающей на активном и высококонкурентном рынке. Следуем понять, почему на рынке потребителя растёт значимость принятия правильных в экономическом смысле решений. Далее, нужно рассмотреть подходы к построению моделей логистических систем с позиций целостности, опираясь на принцип взаимозависимости базовых функциональных областей логистики.

Тема 2. Виды моделей и особенности моделирования в логистике

Необходимо рассмотреть разные типы моделей с точки зрения их применимости в логистике. Классификация моделей предполагает их группировку по источникам данных, типу, динамике изменения, принадлежности к функциональной области. Следует разобраться в том, что отличает неопределенность от случайности и какова природа рисков в логистике. Особое внимание в самостоятельной проработке темы следует обратить внимание на рекомендуемые советом по цепям поставок модели бизнес-процессов, используя Интернет-источники и периодику.

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ» (УрГУПС)

АКАДЕМИЯ КОРПОРАТИВНОГО ОБРАЗОВАНИЯ (АКО)

ИНСТИТУТ ДОПОЛНИТЕЛЬНОГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ (ИДПО)

В.С.Тарасян

«Математическое моделирование в логистике»

Учебно-методическое пособие для слушателей ИДПО

Согласовано

Руководитель УЦ « »

(должность)

(подпись) (ФИО)

Екатеринбург

Введение…………………………………………………………………..…….....3 1. Моделирование в логистике…………………………….……..…...…………4 2. Многокритериальная оптимизация в логистике…..…….………………….10 3. Транспортная задача…………………………….…….……………………...16 4. Базовые понятия теории графов.………………..………….………………..21 5. Сетевое планирование и управление.…………..……….…….….……........29 6. Задачи прокладки коммуникаций……………...……………………….……35 7. Задачи поиска оптимальных путей…..………………………………………41 8. Задачи размещения…………………………....……………..………………..48 9. Задачи объезда………………………………………………….……………..54 Вопросы для самоконтроля…………………..…………………………………60 Список использованной литературы………….……………………………….61

Введение

Математическое моделирование имеет важное значение в логистических системах. Применение математических моделей и методов при решении задач логистики позволяет выбрать оптимальную конфигурацию, модернизировать инфраструктуру системы. Моделирование логистических процессов позволяет существенно снизить издержки на всех этапах жизненного цикла логистических систем.

Цель дисциплины : сформировать у слушателей общие представления о методах математического моделирования, применяемых при моделировании и исследовании логистических систем.

В результате освоения данного курса слушатель должен:

иметь представление :

О методах математического моделирования в логистических системах;

Об основных методах решения логистических задач в сетевой постановке;

знать :

Основные методы математического моделирования логистических процессов;

Основные математические модели и методы, применяемые в логистике;

Основные понятия теории графов и математического программирования;

уметь :

На основе математического подхода в комплексе решать оптимизационные стратегические и тактические задачи логистики;

Ставить логистические оптимизационные задачи в терминах математического моделирования;

владеть:

Методами математического описания и моделирования логистических процессов.

1. Моделирование в логистике

1.1. Классификация моделей

Моделирование основывается на подобии систем или процессов, которое может быть полным или частичным. Основная цель моделирования – прогноз поведения процесса или системы. Ключевой вопрос моделирования «ЧТО БУДЕТ, ЕСЛИ...?»

Существенной характеристикой любой модели является степень полноты подобия модели моделируемому объекту. По этому признаку все модели можно разделить на изоморфные и гомоморфные (рис. 1).

Рис. 1. Классификация моделей

Изоморфные модели – это модели, включающие все характеристики объекта оригинала, способные, по существу, заменить его. Если можно создать и наблюдать изоморфную модель, то наши знания о реальном объекте будут точными. В этом случае мы сможем точно смоделировать поведение объекта.

Гомоморфные модели – модели, основе которых лежит неполное, частичное подобие модели изучаемому объекту. При этом некоторые стороны функционирования реального объекта не моделируются совсем. В результате упрощается построение модели и интерпретация результатов исследования. При моделировании логистических систем абсолютное подобие не имеет места в силу высокой сложности систем. Поэтому в дальнейшем мы будем рассматривать лишь гомоморфные модели, не забывая, что степень подобия у них может быть различной.

Следующим признаком классификации является материальность модели. В соответствии с этим признаком все модели можно разделить на материальные и абстрактные .

Материальные модели воспроизводят основные геометрические, физические, динамические и функциональные характеристики изучаемого явления или объекта. К этой категории относятся, например, уменьшенные макеты предприятий, позволяющие решить вопросы оптимального размещения оборудования и организации грузовых потоков.

Абстрактное моделирование часто является единственным способом моделирования в логистике. Его подразделяют на символическое и математическое .

К символическим моделям относят языковые и знаковые .

Языковые модели – это описательные словесные модели, в основе которых лежит набор слов (словарь), очищенных от неоднозначности. Этот словарь называется «тезаурус». В нем каждому слову может соответствовать лишь единственное понятие, в то время как в обычном словаре одному слову могут соответствовать несколько понятий.

Знаковыми называются модели, использующие специально оговоренную систему обозначений (знаков), а также систему специально введенных операций. Таким образом можно дать символическое описание объекта.

Математическим моделированием называется процесс установления соответствия данному реальному объекту некоторого математического объекта, называемого математической моделью. В логистике широко применяются два вида математического моделирования: аналитическое и имитационное .

Аналитическое моделирование – это математический прием исследования логистических систем, позволяющий получать точные решения. Аналитическое моделирование осуществляется в следующей последовательности.

1. Формулируются математические законы, связывающие объекты системы. Эти законы записываются в виде некоторых функциональных соотношений (алгебраических, дифференциальных уравнений, неравенств и пр.),

2. Решение уравнений, получение теоретических результатов.

3. Сопоставление полученных теоретических результатов с практикой (проверка на адекватность).

Наиболее полное исследование процесса функционирования системы можно провести, если известны явные зависимости, связывающие искомые характеристики с начальными условиями, параметрами и переменными системы. Однако такие зависимости удается получить только для сравнительно простых систем. При усложнении систем исследование их аналитическими методами сталкивается с существенными трудности, что является существенным недостатком метода. В этом случае, чтобы использовать аналитический метод, необходимо существенно упростить первоначальную модель, чтобы иметь возможность изучить хотя бы общие свойства системы.

К достоинствам аналитического моделирования относят большую силу обобщения и многократность использования.

Другим видом математического моделирования является имитационное моделирование.

Как уже отмечалось, логистические системы функционируют в условиях высокой неопределенности окружающей среды. При управлении материальными потоками должны учитываться факторы, многие из которых носят вероятностный характер. В этих условиях создание аналитической модели, устанавливающей четкие количественные соотношения между различными составляющими логистических процессов, может оказаться либо невозможным, либо слишком дорогим.

При имитационном моделировании закономерности, определяющие характер количественных отношений внутри логистических процессов, остаются непознанными. В этом плане логистический процесс остается для экспериментатора «черным ящиком».

Процесс работы с имитационной моделью, в первом приближении, можно сравнить с настройкой телевизора простым телезрителем, не имеющим представления о принципах работы этого аппарата. Телезритель просто вращает разные ручки, добиваясь четкого изображения, не имея при этом представления о том, что происходит внутри «черного ящика».

Точно так же экспериментатор «вращает ручки» имитационной модели, меняя при этом условия протекания процесса и наблюдая получаемый результат. Определение условий, при которых результат удовлетворяет требованиям, является целью работы с имитационной моделью.

Имитационное моделирование включает в себя два основных процесса: первый – конструирование модели реальной системы, второй – постановка экспериментов на этой модели.

При этом могут преследоваться следующие цели:

а) смоделировать поведение логистической системы в различных условиях;

б) построить стратегию, обеспечивающую наиболее эффективное функционирование логистической системы.

Как правило, имитационное моделирование осуществляется с помощью компьютеров и соответствующих пакетов программ. Условия, при которых рекомендуется применять имитационное моделирование, приведены в работе Р. Шеннона «Имитационное моделирование систем – наука и искусство». Перечислим основные из них:

1. Не существует законченной математической постановки данной задачи, либо еще не разработаны аналитические методы решения сформулированной математической модели.

2. Аналитические модели имеются, но процедуры настолько сложны и трудоемки, что имитационное моделирование дает более простой способ решения задачи.

3. Аналитические решения существуют, но их реализация невозможна вследствие недостаточной математической подготовки имеющегося персонала.

Таким образом, основным достоинством имитационного моделирования является то, что этим методом можно решать более сложные задачи. Имитационные модели позволяют достаточно просто учитывать случайные воздействия и другие факторы, которые создают трудности при аналитическом исследовании.

При имитационном моделировании воспроизводится процесс функционирования системы во времени. Причем имитируются элементарные явления, составляющие процесс с сохранением их логической структуры и последовательности протекания во времени. Модели не решают, а осуществляют прогон программы с заданными параметрами, меняя параметры, осуществляя прогон за прогоном.

Имитационное моделирование имеет ряд существенных недостатков, которые также необходимо учитывать.

1. Исследования с помощью этого метода обходятся достаточно дорого.

    для построения модели и экспериментирования на ней необходим высококвалифицированный специалист-программист;

    необходимо большое количество машинного времени, поскольку метод основывается на статистических испытаниях и требует многочисленных прогонов программ;

    модели разрабатываются для конкретных условий и, как правило, не тиражируются.

2. Существует возможность ложной имитации. Процессы в логистических системах носят вероятностный характер и поддаются моделированию только при введении определенного рода допущений. Например, разрабатывая имитационную модель товароснабжения района и принимая среднюю скорость движения автомобиля на маршруте, равную 25 км/ч, мы исходим из допущения, что дорожные условия хорошие. В действительности может случиться какая-нибудь непредвиденная ситуация, например, погода может испортиться и, в результате наступившего гололеда, скорость на маршруте упадет до 15 км/ч. В этом случае реальный процесс пойдет несколько иначе и будут получены другие результаты.

Описание достоинств и недостатков имитационного моделирования можно завершить словами Р. Шеннона: «Разработка и применение имитационных моделей в большей степени искусство, чем наука. Следовательно, успех или неудача в большей степени зависит не от метода, а от того, как он применяется».

1. Методы и задачи, применяемые для расчетов в логистических системах.

При проведении логистического анализа в фирмах применяется широкая гамма различных методов и приемов. Для повышения точности и достоверности анализа используется большое количество различных математических и экономико-математических методов и моделей, составляющих научную базу логистики. Среди наиболее распространенных в логистическом менеджменте методов и технических приемов анализа можно указать: - методы математической статистики (факторный, индексный, кластерный, дисперсионный анализ, множественные корреляционно– регрессионные модели, спектральный анализ и др.); - функционально – стоимостный анализ; - методы статистического имитационного моделирования на ЭВМ; - различные эконометрические методы и модели; - методы экспертных оценок. СИСТЕМНОГО АНАЛИЗА В ЛОГИСТИКЕ Проведение системного анализа строится на использовании определенного инструментария. Основу данного инструментария составляют методы системного анализа. Метод представляет собой путь познания, который опирается на определенную совокупность ранее полученных общих знаний (принципов). При проведении системного анализа могут использоваться следующие методы: 1) методы типа мозговой атаки. Главное предназначение данных методов состоит в поиске новых идей, их широком обсуждении, конструктивной критике; 2) метод сценариев. Представляет собой средство первичного упорядочения выявленной проблемы в области обслуживания потребителя, получения и сбора информации о взаимосвязях решаемой логистической проблемы с другими, о возможных и вероятных направлениях будущего развития системы; 3) методы экспертных оценок. Данные методы основаны на различных формах экспертного опроса с последующим оцениванием и выбором по выбранным критериям наиболее предпочтительного варианта; 4) методы типа «Дельфи». Основой данного метода является мозговая атака. Цели данного метода – обратная связь, ознакомление экспертов с результатами предшествующего этапа анализа и учет этих результатов при оценке значимости экспертами; 5) методы типа дерева целей. Дерево целей является связным графом, вершины которого рассматриваются как цели логистической системы, а ребра или дуги – как связи между ними. Экспертам предлагается оценить структуру модели исследуемой логистической системы в целом и дать предложения по поводу включения в нее неучтенных связей; 6) морфологические методы. Главная идея морфологического подхода состоит в систематическом нахождении всех возможных вариантов решения логистической проблемы с помощью комбинирования выделенных элементов или их признаков; 7) матричные формы представления и анализа данных. Они не являются специфическим инструментом анализа исследуемых логистических систем, но широко применяются на разных этапах анализа логистической системы в качестве вспомогательного средства; 8) программно-целевой метод. Представляет собой разработку и выполнение перспективных задач, ориентированных на достижение определенной цели независимо от установленных рамок. Он предполагает последовательную реализацию комплекса технических, организационных и экономических мероприятий; 9) метод анализа систем. Данный метод используется для оценки альтернативных курсов действий при распределении ресурсов в соответствии с целями логистических подсистем. Если цели установлены, для решения определенных задач предлагаются различные программы. В процессе анализа проводится оценка альтернативных планов. Потребность в анализе логистических систем возникает в следующих случаях: 1) при решении логистических задач: – когда определяется, что нужно знать и понимать специалистам службы логистики и других функциональных подразделений предприятия; – когда требуется увязка цели логистической системы со множеством средств ее достижения; – когда элементы логистической системы имеют разветвленные связи, которые могут вызывать отдаленные последствия в различных звеньях цепи поставок, и решения по ним требуют учета общих затрат по цепи поставок продукции; – когда имеют место трудно сравниваемые варианты решений или достижения комплекса целей.