Фармакокинетика - общая фармакология. Движение и превращение лекарства в организме Какие этапы проходит лекарственное вещество в организме

  • Возрастные этапы изменения функций сенсорных, моторных и висцеральных систем. Сенсорные особенности организма
  • Выделите из перечисленного этапы статистического исследования.
  • Глава 1. Основные этапы становления и развития неврологии в Медико-хирургической (Военно-медицинской) академии.
  • Глава 13 Рациональное использование лекарственных препаратов. Этапы рациональной фармакотерапии
  • I. Всасывание (абсорбция) - процесс поступления лекарства из места его введения в системный кровоток при внутрисосудистом введении.

    Скорость всасывания зависит от:

    1. Лекарственной формы препарата.

    2. От степени растворимости в жирах или в воде.

    3. От дозы или концентрации.

    4. От пути введения.

    5. От интенсивности кровоснабжения органов и тканей.

    Скорость всасывания при per os применении зависит от:

    1. РН среды в различных отделах ЖКТ.

    2. Характера и объёма содержимого желудка.

    3. От микробной обсеменённости.

    4. Активности пищевых ферментов.

    5. Состояния моторики ЖКТ.

    6. Интервала между приемом лекарства и пищей.

    Процесс всасывания характеризуется следующими фармакокинетическими параметрами:

    1. Биодоступность (f) – относительное количество препарата, которое поступает из места введения в кровь (%).

    2. Константа скорости всасывания (К 01) – это параметр, который характеризует скорость поступления ЛС из места введения в кровь (ч -1 , мин -1).

    3. Период полуабсорбции (t ½ α) – время, необходимое для всасывания из места введения в кровь ½ введенной дозы (ч, мин).

    4. Время достижения максимальной концентрации (t max) – это время, за которое достигается максимальная концентрация в крови (ч, мин).

    Процессы всасывания у детей достигают состояния абсорбции лекарственного уровня взрослых лишь к трём годам жизни. До трех лет абсорбция лекарств снижена главным образом из-за недостатка обсемененности кишечника, а также из-за недостатка желчеобразования. У людей старше 55 лет также снижена всасывательная способность. Им нужно лекарства дозировать с учетом возрастных особенностей.

    II. Биотранспорт – после всасывания лекарств в кровь они вступают в обратное взаимодействие с т.н. транспортными белками, к которым относятся белки сыворотки крови.

    Подавляющее число лекарства (90%) вступает в обратимые взаимодействия с человеческим сывороточным альбумином. А также взаимодействует с глобулинами, липопротеидами, гликопротеидами. Концентрация связанной с белком фракции соответствует свободной, т.е.: [С связ ] = [С своб ].

    Фармакологической активностью обладает лишь свободная, несвязанная с белком фракция, а связанная является своего рода резервом препарата в крови.

    Связанная часть ЛС транспортным белком определяет:

    1. Силу фармакологического действия лекарства.

    2. Продолжительность его действия.

    Места связывания белка являются общими для многих веществ.

    Процесс обратимого взаимодействия лекарств с транспортными белками характеризуется следующими фармакокинетическими параметрами:

    1. К асс (ЛС + белок) – характеризует степень сродства или силу обратимого взаимодействия препарата с белком сыворотки крови (моль -1).

    2. N – показатель, который свидетельствует о количестве мест фиксации на молекуле белка для молекулы конкретного препарата.

    III. Распределение лекарств в организме.

    Как правило, лекарства в организме распределяются по органам и тканям неравномерно с учетом их тропности (сродства).

    На характер распределения лекарств в организме влияют следующие факторы:

    1. Степень растворимости в липидах.

    2. Интенсивность регионарного или местного кровоснабжения.

    3. Степень сродства к транспортным белкам.

    4. Состояние биологических барьеров (стенок капилляров, биомембран, гематоэнцефалических и плацентарных).

    Основными местами распределения ЛС в организме являются:

    1. Внеклеточная жидкость.

    2. Внутриклеточная жидкость.

    3. Жировая ткань.

    Параметры:

    1. Объем распределения (Vd) - степень захвата ЛС тканями из крови (л, мл).


    IV. Биотрансформация.

    Один из центральных этапов фармакокинетики и основной путь детоксикации (обезвреживания) ЛС в организме.

    В биотрансформации принимают участие:

    5. Плацента

    Биотрансформация осуществляется в 2 фазы.

    Реакции 1 фазы:

    Гидроксилирование, окислительно-восстановтиельные реакции, дезаминарование, дезалкилирование и т.д. В процессе реакций этой фазы происходит изменение структуры молекулы препарата так, что он становится более гидрофильным. Это обеспечивает более легкую экскрецию из организма с мочой.

    Реакции I фазы осуществляются с помощью ферментов эндоплазматического ретикулума (микросомальные или ферменты монооксигеназной системы, основным из которых является цитохром Р450). Лекарства могут как усиливать, так и уменьшать активность этого фермента. ЛС, прошедшие I фазу, структурно подготовлены к реакциям II фазы.

    В процессе реакций II фазы образуются коньюгаты или парные соединения препарата с одним из эндогенных веществ (например, с глюкуроновой кислотой, глутатионом, глицином). Образование коньюгатов происходит при каталитической активности одного из одноименных ферментов, например (препарат +глюкуроновая кислота – образуется при помощи глюкуронидтрансферазы). Образовавшиеся коньюгаты являются фармакологически неактивными веществами и легко выводятся из организма с одним из экскретов. Однако не вся введенная доза ЛС подвергается биотрансформации, часть её выводится в неизмененном виде.

    Дата добавления: 2014-11-24 | Просмотры: 2937 | Нарушение авторских прав


    | | | 4 |

    В фармакокинетике лекарственных препаратов выделяют четыре основных этапа. Рассмотрим их поподробнее.

    1 этап - всасывание. Всасывание - это процесс проникновения лекарст­венного вещества через неповрежденные ткани организма в кровоток. Происхо­дит со всех поверхностей человеческого тела, но особенно интенсивно из желу­дочно-кишечного тракта, из легких, с поверхности слизистых оболочек.

    В основе всасывания лежат следующие основные механизмы:

    1. Пассивная диффузия молекул, которая идет в основном по градиенту концен­трации. Этот механизм лежит в основе всасывания подавляющего большинства лекарственных препаратов, молекулы которых являются электронейтральными. Интенсивность и полнота всасывания этим механизмом прямо пропорциональны липофильности, то есть жирорастворимое вещества, - чем больше липофильность, тем выше способность вещества всасываться (барбитураты, салицилаты,
    спирты).

    2. Фильтрация через поры клеточных мембран. Этот механизм может быть задействован только при всасывании низкомолекулярных соединений, размер которых не превышает размер клеточных пор (вода, многие катионы). Зависит от гидростатического давления.

    3. Активный транспорт обычно осуществляется с помощью специальных переносчиков, идет с затратой энергии, не зависит от градиента концентрации, харак­теризуется избирательностью и насыщаемостью (водорастворимые витамины, аминокислоты).

    4. Пиноцитоз характерен лишь для высокомолекулярных соединений (полимеров, полипептидов). Происходит с образованием и прохождением везикул через клеточные мембраны.

    Всасывание лекарственных веществ может осуществляться этими механиз­мами при различных путях введения (энтеральных и парентеральных), кроме внутривенного, при котором препарат сразу поступает в кровоток. Кроме того, перечисленные механизмы участвуют в распределении и выведении лекарств.

    2 этап - распределение. Этот процесс зависит от сродства лекарства различным органам и тканям. Кроме того, в организме есть определенные барьеры, регулирующие проникновение веществ в органы и ткани. Особенно важными являются гематоэнцефалический (ГЭБ) и гематоплацентарный (ГПБ) барьеры. Многие заряженные молекулы не действуют на ЦНС вследствие того, что не могут пройти ГЭБ. Во время беременности лекарственные препараты,
    принимаемые женщиной, могут проникать через ГПБ и оказать губительное или токсическое влияние на плод, то есть проявляется эмбриотоксическое или терато­генное действие. Широкую известность получила трагедия с препаратом талидомид. Он был внедрен в клинику как средство устранения нервного напряжения у беременных. На женщин он оказал прекрасное седативное действие, однако в последующем у них стали рождаться дети с чудовищными уродствами - ластообразными конечностями, серьезными дефектами лицевого и мозгового черепа. На распределение лекарственных веществ также влияет их способность связываться с белками крови, что обеспечивает задержку эффекта (латентный период) и де­понирование (кумуляция).

    Для некоторых препаратов характерно также перераспределение. Эти ле­карственные препараты, вначале накапливаясь в одной ткани, в последующем перемещаются в другой орган, являющийся мишенью для них. Например, сред­ство для неингаляционного наркоза тиопентал натрия вследствие своей высокой липофильности накапливается в жировой ткани и лишь потом начинает прони­кать в ЦНС и оказывать свое наркотическое действие.

    3 этап - метаболизм (превращение). Это процесс, при котором активное лекарственное вещество подвергается превращениям и становится, как правило, биологически неактивным. Этот процесс идет во многих тканях, но в наибольшей степени - в печени. Существуют два основных пути метаболизма лекарственных веществ в печени:

    ü биотрансформация (реакции метаболизма 1-й фазы), происходит под дей­ствием ферментов - окисление, восстановление, гидролиз.

    ü конъюгация (реакции метаболизма 2-й фазы), при которой происходит присоединение к молекуле вещества остатков других молекул (глюкуроновой, серной кислот, алкильных радикалов), с образованием неактивного комплекса, легко выводимого из организма с мочой или калом.

    Следует помнить, что в ряде случаев лекарственный препарат становится активным лишь после реакций метаболизма в организме, то есть он является пролекарством, превращающимся в лекарство только в организме. Например, ингибитор ангиотензинпревращающего фермента эналаприл приобретает свою активность лишь после метаболизма в печени и образования из него активного соединения эналаприлата.

    4 этап - выведение. Основным органом выведения являются почки, од­нако лекарства могут выводиться и кишечником, легкими, потовыми и молоч­ными железами. Способ выведения необходимо знать, чтобы правильно дозировать препарат при, например, заболеваниях почек или печени, для правильного лечения отравлений. Кроме того, знание способа выведения может повысить эффективность проводимой терапии. Например, антимикробное средство уросульфан выводится в неизменном виде почками, поэтому его назначают при ин­фекциях мочевыводящих путей, антибиотик тетрациклин выводится желчью, поэтому именно его назначают при инфекциях желчевыводящих путей; при бронхитах назначают камфару, которая, выделяясь легкими, разжижает мокроту и облегчает ее отхаркивание.

    Элиминация - это сумма всех процессов, связанных с метаболизмом и вы­ведением лекарственного препарата, то есть прекращением его действия. Сте­пень элиминации характеризуется периодом полужизни лекарственного вещества - это интервал времени, в течение которого концентрация активного лекарствен­ного вещества в крови снижается в два раза. Период полужизни может варьиро­вать в очень большом интервале времени, например, у пенициллина он 28 минут, а у витамина Д - 30 дней.

    Виды действия лекарственных веществ

    В зависимости от целей, путей и обстоятельств использования лекарствен­ных препаратов могут быть выделены различные виды действия в соответствии с различными критериями.

    1. В зависимости от локализации действия препарата выделяют:

    а) местное действие - проявляется на месте нанесения препарата. Часто ис­пользуется для лечения заболеваний кожи, ротоносоглотки, глаз. Местное дейст­вие может иметь разный характер - противомикробное при локальной инфекции, местноанестезирующее, противовоспалительное, вяжущее и др. Важно запом­нить, что основной лечебной характеристикой лекарства, назначаемого местно, является концентрация действующего вещества в нем. При использовании мест­ного действия лекарств важно минимализировать его всасывание в кровь. Для этой цели, например, в растворы местных анестетиков добавляют адреналина гидрохлорид, который, суживая сосуды и, тем самым, уменьшая всасывание в
    кровь, снижает отрицательное действие анестетика на организм и повышает дли­тельность его действия.

    б) резорбтивное действие - проявляется после всасывания лекарства в кровь и более или менее равномерного распределения в организме. Основной лечебной характеристикой лекарства, действующего резорбтивно, является доза. Доза - это количество лекарственного вещества, вводимого в организм для про­явления резорбтивного действия. Дозы могут быть разовыми, суточными, курсо­выми, терапевтическими, токсическими и др. Напомним, что, выписывая рецепт, мы всегда ориентируемся на средние терапевтические дозы препарата, которые
    всегда можно найти в справочниках.

    2. Когда лекарство попадает в организм, с ним контактируют большое ко­личество клеток и тканей, которые могут по-разному реагировать на это лекарство. В зависимости от сродства определенным тканям и по степени избирательно­сти выделяют следующие виды действия:

    а) избирательное действие - лекарственное вещество действует избира­тельно только на один орган или систему, совсем не затрагивая другие ткани. Это идеальный случай действия лекарств, который на практике встречается очень редко.

    б) преимущественное действие - действует на несколько органов или систем, но имеется определенное предпочтение одному из органов или тканей. Это наиболее часто встречающийся вариант действия лекарств. Слабая избиратель­ность лекарств лежит в основе их побочных эффектов.

    в) общеклеточное действие - лекарственное вещество действует в равной степени на все органы и системы, на любую живую клетку. Препараты подобного действия назначаются, как правило, местно. Примером такого действия является прижигающий эффект солей тяжелых металлов, кислот.

    3. Под действием лекарственного препарата функция органа или ткани мо­жет изменяться по-разному, поэтому по характеру изменения функции можно выделить следующие виды действия:

    а) тонизирующее - действие лекарственного вещества начинается на фоне сниженной функции, а под действием препарата она повышается, приходя к нор­мальному уровню. Примером такого действия является стимулирующий эффект холиномиметиков при атонии кишечника, которая довольно часто возникает в послеоперационном периоде при операциях на органах брюшной полости.

    б) возбуждающее - действие лекарственного вещества начинается на фоне нормальной функции и приводит к усилению функции этого органа или системы. Примером служит действие солевых слабительных веществ, используемых часто для очищения кишечника перед операцией на органах брюшной полости.

    в) седативное (успокаивающее) действие - лекарственный препарат снижа­ет чрезмерно повышенную функцию и приводит к ее нормализации. Часто используется в неврологической и психиатрической практике, есть особая группа препаратов, которая называется "седативные средства".

    г) угнетающее действие - лекарство начинает действовать на фоне нор­мальной функции и приводит к снижению ее активности. Например, снотворные средства ослабляют функциональную активность ЦНС и позволяют пациенту быстрее заснуть.

    д) паралитическое действие - лекарство приводит к глубокому угнетению функции органа вплоть до полного прекращения. Примером является действие средств для наркоза, которые приводят к временному параличу многих отделов ЦНС, кроме нескольких жизненно важных центров.

    4. В зависимости от способа возникновения фармакологического эффекта лекарственного препарата выделяют:

    а) прямое действие - результат непосредственного влияния лекарства на тот, орган, функцию которого он изменяет. Примером является действие сердечных гликозидов, которые, фиксируясь в клетках миокарда, оказывают влияние на обменные процессы в сердце, что приводит к терапевтическому эффекту при сердечной недостаточности.

    б) косвенное действие - лекарственное вещество оказывает влияние на оп­ределенный орган, в результате чего опосредованно, косвенно изменяется и функция другого органа. Например, сердечные гликозиды, оказывая прямое дей­ствие на сердце, косвенно облегчают дыхательную функцию за счет снятия за­стойных явлений, увеличивают диурез за счет интенсификации почечного крово­обращения, в результате чего исчезают одышка, отеки, цианоз.

    в) рефлекторное действие - лекарственный препарат, действуя на опреде­ленные рецепторы, запускает рефлекс, изменяющий функцию органа или систе­мы. Примером является действие нашатырного спирта, который при обморочных состояниях, раздражая обонятельные рецепторы, рефлекторно приводит к стиму­ляции дыхательного и сосудодвигательного центров в ЦНС и восстановлению сознания. Горчичники ускоряют разрешение воспалительного процесса в легких
    за счет того, что эфирные горчичные масла, раздражая рецепторы кожи, запус­кают систему рефлекторных реакций, приводящих к усилению кровообращения в легких.

    5. В зависимости от звена патологического процесса, на который действует лекарство, выделяют следующие виды действия, которые еще называют видами лекарственной терапии:

    а) этиотропная терапия - лекарственное вещество действует непосредст­венно на причину, вызвавшую заболевание. Типичный пример - действие анти­микробных средств при инфекционных заболеваниях. Это, казалось бы, идеаль­ный случай, однако это не совсем так. Довольно часто непосредственная причина заболевания, оказав свое действие, утратила актуальность, поскольку запустились процессы, течение которых уже не контролируется причиной заболевания. На­пример, после острого нарушения коронарного кровообращения, необходимо не столько ликвидировать его причину (тромб или атеросклеротическая бляшка),
    сколько нормализовать обменные процессы в миокарде и восстановить насосную функцию сердца. Поэтому в практической медицине чаще используется.

    б) патогенетическая терапия - лекарственное вещество влияет на патоге­нез заболевания. Это действие может быть достаточно глубоким, приводящим к излечению больного. Примером является действие сердечных гликозидов, кото­рые не влияют на причину, вызвавшую сердечную недостаточность (кардиодистрофия), но нормализуют обменные процессы в сердце таким образом, что сим­птомы сердечной недостаточности постепенно исчезают. Вариантом патогенетической терапии является заместительная терапия, например, при сахарном диабете назначается инсулин, который восполняет недостаток собственного гор­мона.

    в) симптоматическая терапия - лекарственное вещество влияет на опреде­ленные симптомы заболевания, часто не оказывая решающего влияния на течение заболевания. Примером является противокашлевое и жаропонижающее дей­ствие, снятие головной или зубной боли. Однако симптоматическая терапия мо­жет стать и патогенетической. Например, снятие сильной боли при обширных травмах или ожогах предупреждает развитие болевого шока, снятие чрезвычайно высокого артериального давления предупреждает возможность возникновения инфаркта миокарда или инсульта.

    6. С клинической точки зрения выделяют:

    а) желательное действие - главный лечебный эффект, на который рассчи­тывает врач, назначая определенное лекарственное средство. К сожалению, од­новременно с ним, как правило, возникает

    б) побочное действие - это действие лекарства, которое проявляется одно­временно с желательным действием при назначении его в терапевтических дозах.
    Является следствием слабой избирательности действия лекарств. Например, про­тивоопухолевые средства создаются так, чтобы они активнее всего влияли на интенсивно размножающиеся клетки. При этом, действуя на опухолевый рост, они также влияют на интенсивно размножающиеся половые клетки и клетки крови, в результате чего угнетается кроветворение и созревание половых клеток.

    7. По глубине воздействия лекарства на органы и ткани выделяют:

    а) обратимое действие - функция органа под действием лекарства меняется временно, восстанавливаясь при отмене препарата. Большинство лекарств дейст­вуют именно так.

    б) необратимое действие - более прочное взаимодействие лекарства и био­логического субстрата. Примером может быть угнетающее действие фосфорорганических соединений на активность холинэстеразы, связанное с образованием очень прочного комплекса. В результате этого активность фермента восстанав­ливается лишь за счет синтеза новых молекул холинэстеразы в печени.

    Способы введения лекарств в организм

    Все способы введения лекарств в организм принято разделять на две боль­шие группы - энтеральные, то есть через желудочно-кишечный тракт, и паренте­ральные, то есть минуя его. Этим самым подчеркивается важнейшая роль ЖКТ как основной системы проникновения лекарств в организм.

    1. Выделяют следующие энтеральные способы введения лекарств:

    а) пероральное введение - прием лекарства через рот в желудок. Самый удобный и простой, поэтому наиболее часто используемый метод. Эффект пре­парата, введенного внутрь, развивается через 20-40 минут, в зависимости от со­держимого желудка, липофильности лекарства, характера растворителя. Эффект спиртовых растворов препаратов наступает примерно в два раза быстрее, чем водных. Необходимо помнить, что все лекарства, введенные через рот, прежде чем попасть в системный кровоток, проходят через печень, где определенная часть их мегаболизируется и теряет свою активность (пресистемная элиминация). Характеристикой этого процесса является биодоступность - то есть отношение количества лекарства, находящегося в крови, к общему количеству лекарства, введенного в организм.

    б) сублингвальное введение - нанесение лекарства под язык. Подъязычная область чрезвычайно интенсивно кровоснабжается, имеет множество поверхно­стно расположенных капилляров, поэтому обладает высокой всасывательной способностью. Пресистемной элиминации лекарства при этом способе введения не происходит. Этот метод используется при экстренной терапии - например, нитроглицерин, принятый под язык, начинает оказывать свое действие уже через 1-2 минуты.

    в) ректальное введение - введение лекарств через прямую кишку в виде ле­карственных клизм или свеч. Достоинством этого метода является то, что всасы­вающиеся лекарства в основном минуют печеночный барьер и сразу поступают в кровоток. То есть биодоступность лекарств при этом пути введения выше, чем при пероральном.

    2. Наиболее распространенными парентеральными путями введения ле­карственных препаратов являются следующие:

    а) инъекции - введение стерильных лекарственных препаратов с нарушени­ем целостности кожного покрова. Виды инъекций:

    Подкожные - лекарства, не обладающие местнораздражающим действием,
    объем - 1-2 мл. Эффект наступает через 10-20 минут.

    Внутримышечные - объем - 1-5 мл. Эффект наступает через 5-10 минут.

    Внутривенные - используются для экстренной и интенсивной терапии. Объем - 10-20 мл, можно и больше, тогда это называется инфузии. Лекарства должныбыть изотоничны с кровью или разводиться изотоническими растворами, нельзя масляные растворы и эмульсии. Этот метод требует определенного умения, при невозможности введения этим методом можно вводить в уздечку языка – эффект будет тот же.

    Внутриартериальные - требуют специальной подготовки врача. Иногда ис­пользуется для терапии локальных опухолей - введение лекарства в артерию, питающую опухоль.

    Другие - внутриполостные, внутрикостные, внутрисуставные, в спинномозго­вой канал и проч. Используются по особым показаниям.

    б) ингаляции - введение лекарственных препаратов через дыхательные пути. Используются газы, летучие жидкости, испарения, мелкодисперсные аэрозоль­ные порошки. Как правило, используются с двумя целями:

    Оказать местное лечебное воздействие на дыхательные пути при их заболева­ниях (бронхиты, трахеиты, астма).

    Получить хорошо управляемый фармакологический эффект (ингаляционный наркоз).

    в) накожные аппликации - могут быть использованы для местного воздей­ствия - мази, пасты, линименты и прочее. В последние десятилетия накопился большой опыт применения накожных аппликаций для резорбтивного действия лекарств. Эти лекарственные формы называются "накожные терапевтические системы". Они представляют собой многослойный пластырь с резервуаром, со­держащим определенное количество лекарственного препарата. Этот пластырь прикрепляется на внутреннюю поверхность плеча, где кожа наиболее тонкая, что обеспечивает постепенное всасывание и стабильную концентрацию препарата в крови. Примером является препарат скоподерм - лекарство от морской болезни, содержащее скополамин. Другим известным примером является никорет - сред­ство, уменьшающее тягу к табакокурению.

    Роль рецепторов в действии лекарств

    Эффект большинства лекарств на организм есть результат взаимодействия их с определенными макромолекулярными комплексами, которые принято обо­значать понятием рецептор. В большинстве случаев рецепторы для лекарств образуют различные белки, при этом особый интерес представляют те из них, которые в норме являются рецепторами для эндогенных соединений. Вещество, которое специфически соединяется с рецептором, называется лигандом. Препа­рат, который соединяется с физиологическим рецептором и вызывает сходные эффекты с эндогенным лигандом, называется агонистом. Препарат, который, связываясь с рецептором, предупреждает действие лиганда или вызывает проти­воположный эффект, нежели эндогенный лиганд, называется антагонистом. Со­временная теоретическая фармакология уделяет большое внимание исследова­нию качественной и количественной характеристики взаимодействия лекарст­венных препаратов с рецепторами. На основе этих знаний в настоящее время создаются препараты с направленным механизмом действия, влияющие лишь на определенные рецепторы.

    Факторы, влияющие на эффект лекарственного препарата

    1. Способ введения препарата . Как правило, при парентеральном введении препарата его эффект в большинстве случаев проявится быстрее и будет сильнее выражен, чем при энтеральном введении. Однако различия могут касаться не только количественной характеристики эффекта, но и иногда качественной. На­пример, сульфат магния при введении внутривенно вызывает выраженный гипо­тензивный эффект, а при введении через рот является мощным слабительным средством, не оказывая влияния на АД.

    2. Возраст больного . Хорошо известно, что лекарственные препараты име­ют особенности действия на организм детей младшего возраста и пожилых лю­дей. Связано это в основном с тем, что у детей многие системы организма еще не до конца развиты, а у пожилых - начался естественный период угасания функций. Именно поэтому в последние годы сформировались две смежные дисциплины - педиатрическая фармакология и гериатрическая фармакология. В процессе изу­чения фармакологии мы будем касаться некоторых их аспектов.

    3. Пол больного . В большинстве случаев, при прочих равных условиях, ле­карства оказывают одинаковое влияние на организм мужчины и женщины. Одна­ко эффекты половых гормонов и некоторых родственных им соединений на ор­ганизм мужчины и женщины отличаются принципиально. Так, например, при опухоли молочной железы у женщин ее собственные (женские) половые гормоны являются стимуляторами роста опухоли, а мужские половые гормоны – тормозят рост опухоли. Поэтому для снижения активности опухолевого роста женщине в подобных случаях часто вводят мужские половые гормоны, и, наоборот, при
    опухолях простаты у мужчин им с той же целью вводят женские половые гормо­ны.

    4. Индивидуальная чувствительность . Вследствие ряда генетических (врож­денных) или приобретенных в течение жизни особенностей, некоторые люди могут необычным образом реагировать на введение определенного лекарствен­ного препарата. Это может быть связано с отсутствием каких-либо ферментов и рецепторов, играющих важную роль в действии этого препарата. Однако в боль­шинстве случаев это связано с аллергическими проявлениями при повторном введении лекарств, которые могут варьировать от незначительных кожных про­
    явлений до угрожающих жизни бронхоспазма, коллапса и шока. Вариантом ин­дивидуальной чувствительности человека является идиосинкразия, при которой на первое в жизни введение лекарственного препарата организм больного отве­чает совершенно необычно, бурно, вплоть до анафилактического шока. Предска­зать такую реакцию бывает невозможно.

    5. Особые состояния организма . Периоды полового созревания, беремен­ность, роды, половое угасание являются особыми состояниями организма чело­века, в которые действие некоторых лекарственных препаратов может значи­тельно изменяться. Например, при беременности действие ряда препаратов на организм женщины может ослабляться из-за того, что идет распределение и в организм плода, в том числе метаболизм в его печени. При этом надо учитывать и возможное побочное действие препарата на развивающийся плод.

    6. Наличие определенных условий . Некоторые препараты не оказывают своего действия без того, чтобы имелись ряд условий в организме. Например, жаропонижающие средства парацетамол) оказывают свое действие лишь при повышенной температуре, а на нормальную температуру они не влияют. Сердеч­ные гликозиды проявят свое кардиотоническое действие лишь при наличии сер­дечной недостаточности.

    7. Режим и диета могут значительно повлиять на действие лекарственного препарата. Обильная и богатая белком пища, как правило, затрудняет всасывание препарата, а значит - снижает скорость наступления и силу проявления эффекта. С другой стороны, растительные жиры и алкоголь значительно ускоряют процесс всасывания в кишечнике. Регулярность питания, правильное чередование труда и отдыха, физические упражнения, свежий воздух приводят организм человека к оптимальному состоянию для наилучшего действия лекарства.

    Явления, возникающие при повторном введении лекарства

    Чаще всего в лечебной практике лекарственные препараты назначаются многократно в течение определенного времени (курсовое лечение). При этом возможны следующие варианты ответной реакции организма:

    1. Фармакологический эффект препарата не изменяется при повторном применении. Наиболее часто встречающийся вариант и наиболее желательный. Все вновь создаваемые в настоящее время лекарственные препараты не должны изменять своего эффекта при повторных введениях.

    2. Эффект препарата усиливается при повторном применении. Это может происходить в результате следующих процессов;

    а) материальная кумуляция - при повторном введении одного и того же вещества в организме в результате снижения процессов элиминации накапливается лекарственный препарат, т.е. материальный субстрат. В результате материальной кумуляции эффект препарата при повторных введениях его становится все боль­ше и больше и может перерасти из терапевтического действия в токсическое. Примерами лекарственных препаратов, способных кумулироваться материально, являются сердечные гликозиды и непрямые антикоагулянты.

    б) функциональная кумуляция - при повторном введении одного и того же вещества накапливается не он сам, а его эффект. Примером такого действия яв­ляется длительное применение этилового спирта при алкоголизме, приводящее к токсическому действию на ЦНС в виде острого психоза, называемого "белая горячка".

    3. Ослабление фармакологического эффекта при повторном применении называется привыкание, или толерантность. Привыкание характеризуется посте­пенным ослаблением эффекта при длительном применении лекарственного пре­парата, в результате чего для достижения того же самого эффекта приходится повышать вводимую дозу лекарства. Привыкание может возникнуть в результате интенсификации элиминации препарата (повышение активности печеночных ферментов - характерно для барбитуратов) или при снижении чувствительности рецепторов к нему (уменьшение числа бета-адренорецепторов при длительном применении бета-адреномиметиков). Вариантом этого действия является тахифилаксия - то есть быстрое привыкание, при котором фармакологический эффект
    может полностью исчезнуть уже после нескольких последовательных введений. Примером тахифилаксии является эффект непрямого адреномиметика эфедрина. При первом введении эфедрин оказывает хорошее сосудосуживающее действие, а при нескольких последовательных введениях с небольшим интервалом эффект его пропадает. Механизм этого действия связан с тем, что эфедрин оказывает свой эффект за счет выброса из нервных окончаний медиатора норадреналина, а при истощении его запасов исчезает и его эффект.

    4. Лекарственная зависимость, или пристрастие. Некоторые химические соединения при повторном введении в организм определенным образом вмеши­ваются в обменные процессы и приводят к тому, что у человека возникает тяга к повторному их приему. Таким эффектом обладают лекарственные препараты с наркотическим типом действия (морфин, кодеин, этанол и др.), а также ряд неле­карственных наркотических средств (героин, кокаин, марихуана). При отмене препарата у человека, у которого возникла лекарственная зависимость к нему, проявляется специфический симптомокомплекс - абстинентный синдром (ломка, похмелье), который доставляет сильный дискомфорт человеку, иногда мучитель­ный, вплоть до угрожающих жизни состояний. Лекарственная зависимость может быть психическая, проявляющаяся в основном в психической сфере, и физиче­ская, проявляющаяся жалобами со стороны внутренних органов. Лекарственные препараты с наркотическим типом действия подлежат особому учету, хранению и отпуску. Лечение наркомании чрезвычайно сложная задача современной меди­цины, и положительные результаты этого лечения, к сожалению, бывают гораздо реже, чем отрицательные.

    5. Сенсибилизация. При введении в организм препарата, являющегося ан­тигеном, он стимулирует образование антител к нему, и при повторном введении возникает реакция антиген - антитело с типичными аллергическими проявления­ми. Это характерно в основном для белковых препаратов (инсулин) или крупно­молекулярных соединений (гормоны). Однако такая реакция может быть и на низкомолекулярные соединения, которые становятся полноценными антигенами, соединяясь с белками (альбуминами) крови.

    Взаимодействие лекарственных препаратов

    В настоящее время монотерапия, то есть терапия только одним каким-либо препаратом, встречается редко. В большинстве случаев больному назначаются два, три и более лекарств одновременно. Связано это бывает либо с тем, что пы­таются повысить эффект одного лекарства другим, либо пытаются уменьшить побочные эффекты препарата другим веществом. При этом препараты могут не оказывать никакого влияния друг на друга, а могут проявлять различные вариан­ты взаимодействия. Эти взаимодействия могут быть фармакодинамическими (влияние на механизм развития фармакологического эффекта) и фармакокинети-ческими (влияние на различные этапы фармакокинетики лекарства). При комби­нированной фармакотерапии возможны следующие варианты взаимодействия лекарств друг с другом:

    1. Синергизм - однонаправленное действие лекарств, то есть при совмест­ном применении эффект препаратов повышается. Синергизм может быть сле­дующих двух видов:

    а) суммирование - конечный эффект совместного применения препаратов равен сумме эффектов каждого из них в отдельности. Обычно по принципу сум­мирования действуют препараты, имеющие сходный механизм действия, единую точку приложения. Используют этот метод обычно для того, чтобы уменьшить дозу каждого препарата в комбинации с целью уменьшения вероятности появле­ния побочных эффектов.

    б) потенцирование - эффект комбинированного применения препаратов значительно больше, чем простая сумма эффектов каждого из них в отдельности. Таким образом действуют обычно препараты, вызывающие один и тот же эффект разными механизмами. Это действие используется, как правило, для получения более выраженного фармакологического эффекта.

    2. Антагонизм - противоположное действие лекарств, при совместном применении эффект какого-либо препарата из комбинации снижается. Очень часто используется для предупреждения или исключения побочных эффектов лекарства или при лекарственных и нелекарственных отравлениях. Возможными вариантами антагонизма являются:

    а) физико-химический антагонизм - взаимодействие лекарств происходит на уровне физического или химического взаимодействия и может происходить независимо от живого организма. Примером физического взаимодействия ле­карств является процесс адсорбции крупномолекулярных токсинов, попавших в желудок, на молекулах активированного угля, вместе с которым они и выводятся затем из организма. Примером химического взаимодействия является лечение растворами слабой кислоты при отравлении щелочами или, наоборот, раствора­ми слабых щелочей при отравлении кислотами (реакция нейтрализации).

    б) физиологический - этот вариант антагонизма может происходить только в организме в результате воздействия препаратов на определенные функции. Раз­личают следующие варианты физиологического антагонизма:

    По точке приложения выделяют

    ü прямой антагонизм - два вещества действуют противоположно на одну и ту же систему, на один и тот же рецептор, место действия. Пример: влияние на то­нус гладких мышц кишечника пилокарпина (М-холиномиметик) и атропина (М-холиноблокатор).

    ü непрямой антагонизм - два вещества оказывают противоположные эффекты за счет воздействия на разные точки приложения, разные рецепторы, разные системы организма. Пример: влияние на ритм сердечных сокращений адреналина (адреномиметик) и атропина (холиноблокатор). По направленности действия выделяют

    ü двухсторонний (конкурентный) антагонизм, в основе конкурентное взаимо­отношение лекарств за одну и ту же точку приложения. Препараты взаимно сни­мают эффекты друг друга при повышении концентрации какого-либо из них возле точки приложения. По этому принципу работают сульфаниламидные пре­параты, которые оказывают свое антибактериальное действие за счет конкурент­ного антагонизма с парааминобензойной кислотой, необходимой микробу для синтеза клеточной стенки.

    ü односторонний антагонизм: один из препаратов оказывает более сильное влияние, поэтому способен снимать и предупреждать действие второго, но не наоборот. Атропин является антагонистом пилокарпина, но пилокарпин не явля­ется антагонистом атропина.

    По выраженности различают:

    ü полный антагонизм, когда все эффекты одного препарата, снимаются или
    предупреждаются другим, и... .,

    ü частичный антагонизм, когда препарат снимает или предупреждает лишь часть эффектов другого препарата. Например, наркотический анальгетик морфин кроме сильного обезболивающего действия обладает спазмогенным действием на гладкую мускулатуру, что может привести к резкому сужению желче- и мочевыводящих путей. Для предупреждения этого эффекта вместе с морфином вводят атропин, который не влияет на обезболивающее действие морфина, но преду­преждает его спазмогенный эффект.

    3. Несовместимость лекарств, то есть нецелесообразность совместного применения данных лекарств, поскольку в результате резко изменяются свойства одного из них или обоих. Несовместимость может быть в результате химическо­го взаимодействия препаратов в одной лекарственной форме (выпадение осадков, образование не всасывающихся комплексов и др.). Несовместимость может быть и биологическая, например, при применении глазной ртутной мази одновременно с препаратами йода последний, выделяясь слизистой конъюнктивы, образует токсическое соединение - двуйодистую ртуть, которая нарушает прозрачность роговой оболочки глаза.

    ФАРМАКОЛОГИЯ ПЕРИФЕРИЧЕСКОЙ НЕРВНОЙ СИСТЕМЫ

    Периферическая нервная система (ПНС) делится на два больших отдела - на афферентную, или чувствительную, несущую импульсы с периферии в ЦНС, и эфферентную, или двигательную, несущую импульсы из ЦНС на периферию. Каждый из этих отделов ПНС имеет свою особую функцию, которую в обобщен­ном виде можно определить следующим образом. Для афферентной иннервации - это снабжение ЦНС информацией со всех поверхностей и органов тела (кожа, слизистые, кишечник, сердце, скелетные мышцы и т.д.) об их состоянии и функ­ционировании. Для эфферентной иннервации - это управление всеми органами и тканями на основании информации, полученной через афферентные нервы.

    В большинстве случаях передача импульса с нервной клетки на другую нервную клетку или эффекторный орган происходит посредством химических посредников - медиаторов. Медиаторы выделяются в определенном количестве в межклеточное пространство и, достигая поверхности другой клетки, вступают во взаимодействие со специфическими белками - рецепторами, возбуждают их, что и обеспечивает контакт. Используя лекарственные препараты, которые усилива­ют или ослабляют действие медиаторов, активируют или блокируют рецепторы, мы можем избирательно влиять на функционирование тех или иных органов или систем.

    Глава 4. КЛИНИЧЕСКАЯ ФАРМАКОКИНЕТИКА

    Глава 4. КЛИНИЧЕСКАЯ ФАРМАКОКИНЕТИКА

    Ответить на вопрос, как ЛС будет действовать на организм человека, невозможно без информации о том, как этот препарат усваивается организмом, распределяется в органах и тканях, а в последующем разрушается и выводится. От каждого из этих процессов зависит выраженность и продолжительность эффекта ЛС, кроме того, его излишнее накопление может быть причиной НЛР.

    Существует четкая связь между концентрацией препарата в крови, других тканях организма и его эффектом. Для большинства ЛС определена так называемая терапевтическая концентрация, при которой препарат оказывает оптимальное лечебное действие. В середине ХХ в. появилась возможность измерять концентрации препаратов в крови больного. Это позволяет выбрать оптимальную индивидуальную дозу и избежать нежелательных (токсических) эффектов, связанных с излишним накоплением препарата в организме.

    Изучением процессов, которые происходят с препаратом в организме больного, занимается клиническая фармакокинетика (от греч. pharmakon - лекарственное вещество и kinein - движение) - раздел клинической фармакологии, изучающий пути поступления, биотрансформацию, связь с белками плазмы и других тканей организма, распределение и выведение ЛС.

    4.1. ОСНОВНЫЕ ФАРМАКОКИНЕТИЧЕСКИЕ ПАРАМЕТРЫ

    Измерить концентрацию ЛС непосредственно в ткани органа (например, антиаритмического препарата в сердечной мышце или диуретика в тканях почек) у человека обычно невозможно. Однако, зная концентрацию препарата в крови, можно с высокой точностью предсказать его концентрацию непосредственно в области рецепторов. Именно поэтому клиническая фармакокинетика изучает преимущественно концентрации препаратов в плазме крови, хотя иногда определяют концентрацию ЛС и в других жидкостях орга-

    низма, например в моче или мокроте. Определить концентрацию ЛС в плазме крови можно при помощи жидкостной или газожидкостной хроматографии, радиоиммунологического, ферментохимического или спектрофотометрического анализа. Проведя серию измерений концентрации ЛС в плазме крови через определенные промежутки времени, можно построить график «концентрация - время», получивший название фармакокинетической кривой.

    ЛС, попадающие в организм человека, подвергаются абсорбции (проникают из просвета ЖКТ в кровь), затем распределяются по организму, попадая в различные органы и ткани, разрушаются под воздействием специализированных ферментов (метаболизма) и выводятся в неизмененном виде или в виде метаболитов (экскреции). На этом основании выделяют фазы абсорбции, распределения и экскреции, хотя обычно эти три процесса протекают практически одновременно: едва поступив в организм, часть препарата сразу же подвергается метаболизму и выводится.

    В большинстве случаев скорость всех этих процессов пропорциональна концентрации препарата, например чем больше доза принятого ЛС, тем быстрее нарастает его концентрация в плазме крови (рис. 4-1). Скорость метаболизма и экскреции также зависит от концентрации препарата. Процессы абсорбции, распределения и экскреции подчиняются закону действующих масс, согласно которому скорость химической реакции или процесса пропорциональна массе реагирующих веществ.

    Рис. 4-1. Формы фармакокинетических кривых при приеме препарата внутрь

    КЛИНИЧЕСКАЯ ФАРМАКОКИНЕТИКА

    Процессы, скорость которых пропорциональна концентрации, получили название процессов первого порядка. При этом скорость элиминации ЛС пропорциональна его концентрации и соответствует кинетике первого порядка. Большинство ЛС подчиняются законам кинетики первого порядка. Скорость процессов (метаболизма или элиминации) при этом непостоянна во времени, но пропорциональна концентрации препарата, а график «концентрация - время» представляет собой кривую: чем выше концентрация ЛС, тем быстрее его метаболизм и выведение из организма (рис. 4-2).

    Рис. 4-2. Фармакокинетическая кривая (кинетика первого порядка)

    Если ЛС подчиняется законам кинетики первого порядка, при увеличении его дозы (например, в 2 раза) происходит пропорциональное увеличение концентрации препарата в плазме, а период времени, за которое концентрация ЛС снижается наполовину (период полувыведения), - постоянная величина.

    Если скорость элиминации не зависит от концентрации препарата (например, скорость метаболизма ЛС ограничена количеством участвующего в этом процессе фермента), то элиминация происходит в соответствии с кинетикой нулевого порядка (кинетика насыщения). При этом скорость выведения препарата постоянна, а график «концентрация - время» представляет собой прямую. Кинетика нулевого порядка характерна для алкоголя, фенитоина и нестероидных противовоспалительных средств (НПВС) в высоких дозах. Так, этанол

    (алкоголь) в организме человека трансформируется в ацетальдегид при участии дегидрогеназ. Этот процесс происходит в соответствии с кинетикой первого порядка. Однако если концентрация этанола в крови превышает 100 мг/л, наступает насыщение ферментов и скорость его метаболизма больше не изменяется по мере увеличения концентрации в крови. Таким образом, при высоких концентрациях алкоголя его элиминация подвержена кинетике нулевого порядка.

    Порядок кинетики представляет собой взаимосвязь между скоростью элиминации и концентрацией ЛС. При кинетике нулевого порядка за равные промежутки времени из организма выводится одинаковое количество препарата (например, по 20 мг в час), а при кинетике первого порядка - одинаковая доля препарата (например, по 20% каждый час).

    После однократного внутривенного введения ЛС его концентрация в крови быстро (в течение нескольких секунд) повышается. Затем концентрация быстро снижается путем перераспределения ЛС в тканях и жидкостях организма (фаза распределения), которое сменяется более медленным снижением концентрации в процессе экскреции препарата (фаза элиминации) (рис. 4-3).

    Рис. 4-3. Динамика концентрации препарата в крови после внутривенного введения

    Для анализа особенностей фармакокинетики используют условную модель, в которой организм представлен в виде камеры. ЛС поступает в эту камеру (равномерно распределяясь по всему ее объему) и затем постепенно выводится согласно законам кинетики

    первого порядка. Понятие камеры условно, так как за ним не стоит какое-либо анатомически ограниченное пространство. В некоторых случаях для фармакокинетических расчетов применяют многокамерные модели. При этом за центральную (обычно меньшую) камеру принимают плазму крови и органы с хорошим кровоснабжением (сердце, легкие, печень, почки, эндокринные железы), а за периферическую - органы и ткани (мышцы, кожу, жировую ткань) с низкой скоростью кровотока.

    В однокамерной модели после введения ЛС начинается его элиминация согласно законам кинетики первого порядка. Снижение концентрации препарата на 50% происходит за равные промежутки времени, получившие название периода полуэлиминации ЛС в плазме (Т 1/2) (рис. 4-4). Период полуэлиминации ЛС - наиболее важный из математических параметров, с помощью которых описывают фар-макокинетику и рассчитывают концентрацию препарата.

    Рис. 4-4. Период полувыведения

    Несколько другая картина отмечена при продолжительной внутривенной инфузии или после повторных назначений ЛС (как внутривенно, так и внутрь). В этом случае концентрация препарата повышается линейно при длительной инфузии (рис. 4-5) или скачкообразно при многократных назначениях (рис. 4-6). Концентрация ЛС увеличивается до тех пор, пока не будет достигнуто равновесие между поступлением препарата и скоростью его элиминации. Такое состояние (поступление препарата в организм равно его элиминации) называют равновесным. При назначении препарата в виде отдельных

    доз колебания концентрации сохраняются и при равновесном состоянии, но средняя концентрация остается неизменной.

    Рис. 4-5. Концентрация препарата в плазме при длительной инфузии

    Рис. 4-6. Достижение равновесной концентрации ЛС при многократном приеме

    Для достижения равновесной концентрации требуется время, равное примерно пяти периодам полуэлиминации. Время достижения равновесной концентрации зависит только от величины Т 1/2 и не зависит ни от дозы ЛС, ни от частоты его назначения. При применении различных доз одного и того же препарата равновесие

    наступает в одно и то же время, хотя равновесные концентрации различаются.

    Равновесная концентрация ЛС имеет большое практическое значение, она обеспечивает постоянство фармакологического эффекта ЛС. Зная величину Т 1/2 , можно не только рассчитать время наступления равновесного состояния, но и предсказать снижение концентрации препарата в плазме после прекращения его введения. Препараты с малым Т 1 / 2 (несколько минут) имеют высокую управляемость: уже спустя 10 мин после отмены добутамина или лидокаина их концентрация в плазме становится ничтожной, и действие прекращается. Очевидно, что назначать эти ЛС можно только в виде постоянных внутривенных инфузий. Препараты с длительным периодом полуэлиминации (фенобарбитал - 85 ч, дигитоксин - 150 ч, амиода-рон - 700 ч) сохраняют свои эффекты даже через несколько суток после прекращения введения, что следует учитывать при их назначении. В частности, после отмены барбитуратов или бензодиазепинов несколько суток сохраняются снижение внимания и сонливость, соответственно в этот период больные должны отказаться от управления автомобилем и выполнения работы, требующей повышенного внимания.

    Если после достижения равновесного состояния потребовалось увеличить или уменьшить дозу ЛС, равновесие нарушается. Концентрация препарата в плазме изменяется (уменьшается или увеличивается) до тех пор, пока равновесие не будет достигнуто вновь, но уже на другом уровне концентрации. Для достижения нового равновесия также требуется время, равное пяти периодам полуэлиминации препарата. Естественно, что быстрая реакция организма больного на увеличение или уменьшение дозы возможна только при коротком периоде полуэлиминации ЛС (хорошо управляемые препараты).

    Иногда равновесная концентрация может изменяться, даже если режим дозирования ЛС не был изменен. В частности, при применении аминогликозидных антибактериальных препаратов возможно развитие почечной недостаточности (побочный эффект ЛС этой группы), при этом скорость элиминации ЛС уменьшается, а их концентрация в плазме возрастает (как и токсическое действие). Известны ЛС, которые вызывают индукцию (усиление активности) или ингибирование (подавление активности) ферментов микросомального окисления в печени. Например, на фоне применения циметидина или эритромицина (ингибиторы цитохрома Р-450) концентрация теофиллина в плазме может существенно увеличиваться.

    Показатель Т 1 / 2 - один из важнейших фармакокинетических параметров. Основываясь на величине Т 1 /2 , можно рассчитать время наступления равновесного состояния, время полной элиминации препарата или предсказать концентрацию ЛС в любой момент (если препарат обладает кинетикой первого порядка).

    Однако существуют и другие фармакокинетические параметры, речь о которых пойдет ниже.

    Максимальная концентрация (С mах). Применение препарата безопасно только тогда, когда величина С mах находится в пределах терапевтического диапазона данного ЛС.

    Время наступления максимальной концентрации (Т mах) часто (но не всегда) совпадает с максимумом фармакологического действия ЛС при однократном назначении.

    Площадь под фармакокинетической кривой (AUC) - величина, пропорциональная общему количеству препарата в системном кровотоке.

    Среднее время удержания препарата в организме (МRТ).

    Биодоступность (F) - доля препарата (процент общей дозы), достигшая системного кровотока.

    При внутривенном введении весь препарат достигает системного кровотока, о биодоступности говорят лишь тогда, когда препарат назначают каким-либо другим путем (внутрь, внутримышечно, ректально). Эта величина определяется как отношение AUC после внесосудистого введения к AUC после внутривенного введения: F = (AUC внутрь/AUC внутривенно) ? 100%, где F - биодоступность, AUC - площадь под фармакокинетической кривой.

    Общий клиренс (С1) - объем плазмы или крови, который полностью очищается от препарата в единицу времени. Этот параметр отражает элиминацию препарата из организма и выражается в миллилитрах в минуту или в литрах в час.

    Клиренс можно выразить так: С1 = D/AUC, где D - доза, AUC - площадь под фармакокинетической кривой.

    ЛС выводятся в основном почками и печенью, и общий клиренс представляет собой главным образом сумму почечного и печеночного клиренса (под печеночным клиренсом подразумевается метаболический клиренс в печени и выведение препарата с желчью). Так, почечный клиренс циметидина составляет примерно 600 мл/мин, метаболический - 200 мл/мин, желчный - 10 мл/мин, следовательно, общий клиренс равен 810 мл/мин. Другие пути выведения или внепеченочный метабо-

    лизм не имеют существенного практического значения и при расчете общего клиренса их во внимание обычно не принимают.

    Величину клиренса в основном определяют функциональное состояние важных систем организма, а также объем и скорость кровотока в органе. Например, клиренс лидокаина, который подвергается интенсивному действию ферментов печени, зависит прежде всего от скорости его доставки к печени (от объема притекающей к печени крови). При снижении печеночного кровотока на фоне сердечной недостаточности клиренс лидокаина снижается. В то же время клиренс других препаратов может зависеть в основном от функционального состояния метаболизирующих ферментов. При поражении печени клиренс многих ЛС резко снижается, а концентрация в крови возрастает.

    Объем распределения (Vd) - это гипотетический объем жидкости организма, необходимый для равномерного распределения всей введенной дозы ЛС в концентрации, аналогичной концентрации в плазме крови.

    Таким образом:

    где D - доза, С о - начальная концентрация.

    Высокие значения объема распределения свидетельствуют о том, что препарат максимально проникает в биологические жидкости и ткани. Если ЛС активно связывается (например, жировой тканью), его концентрация в крови может быть очень низкой, а объем распределения будет достигать нескольких сотен литров, намного превышая реальный объем организма человека. Из-за этого Vd также называют кажущимся объемом распределения. На основании объема распределения можно рассчитать нагрузочную дозу, необходимую для создания эффективной концентрации ЛС в крови (чем больше Vd, тем большей должна быть нагрузочная доза: D = Vd-C).

    Объем распределения зависит от многих факторов (молекулярная масса ЛС, его ионизация и полярность, растворимость в воде и жирах). Возраст, пол, беременность пациентов, общее количество жира в организме также влияют на величину объема распределения. Объем распределения изменяется при некоторых патологических состояниях, особенно при заболеваниях печени, почек и сердечнососудистой системы.

    Существует взаимосвязь между периодом полуэлиминации, объемом распределения и общим клиренсом, которая выражается формулой:

    Уровень равновесной концентрации (Css) также можно рассчитать математически. Эта величина прямо пропорциональна дозе ЛС [вернее, произведению дозы на биодоступность (F) - реальному количеству препарата, поступившему в организм], величине T 1 / 2 -Css и обратно пропорциональна объему распределения:

    где t - интервал времени.

    4.2. КОНТРОЛЬ КОНЦЕНТРАЦИИ ЛЕКАРСТВЕННЫХ СРЕДСТВ В КЛИНИЧЕСКОЙ ПРАКТИКЕ

    Представление о фармакокинетических параметрах ЛС позволяет предсказать концентрацию ЛС в плазме в любой момент времени, но в ряде случаев полученные расчеты могут оказаться неточными. Например, больной неаккуратно принимал назначенное ЛС (пропуски приема, ошибки в дозах) или существуют факторы, влияющие на концентрацию ЛС, значение которых не поддается математическому моделированию (одновременный прием нескольких препаратов, различные заболевания, способные изменять показатели фармакокинетики). Из-за этого часто приходится прибегать к экспериментальному исследованию концентрации ЛС в крови.

    Необходимость экспериментальных исследований также возникает при внедрении в клиническую практику новых ЛС или их форм, а также при исследовании биоэквивалентности препаратов различных производителей.

    В клинической практике к измерению концентрации ЛС прибегают только в некоторых случаях.

    Когда концентрация в плазме четко коррелирует с клиническим эффектом ЛС, но его эффективность трудно оценить клинически. Например, если препарат назначен для профилактики редких проявлений заболевания (эпилептический припадок или пароксизм аритмии). При этом более целесообразно однократно оценить уровень концентрации ЛС, чем ожидать клинического эффекта или неудачи лечения неопределенно

    долгое время. Иногда оценка клинического эффекта может быть затруднена из-за неадекватного контакта с больным.

    Когда трудно отличить клиническое и нежелательное действие одного и того же препарата. Например, дигоксин, назначенный для профилактики аритмий, при превышении терапевтической концентрации сам способен вызвать у больного аритмию. В этом случае тактика дальнейшего лечения (отмена дигоксина или увеличение его дозы для достижения большего противоаритмиче-ского эффекта) полностью зависит от концентрации препарата в крови.

    При наличии у препарата потенциально опасных побочных эффектов (аминогликозиды, цитостатики).

    При отравлениях и передозировке ЛС (для оценки тяжести и выбора тактики лечения).

    При нарушениях, связанных с метаболизмом или элиминацией ЛС [печеночная или хроническая почечная недостаточность

    (ХПН)].

    Необходимость в исследовании концентрации ЛС отсутствует в следующих ситуациях:

    В тех случаях, когда ЛС представляется вполне безопасным и обладает большим терапевтическим диапазоном;

    Если эффект ЛС легко поддается клинической оценке;

    Если эффект ЛС мало зависит от концентрации и /или продолжается длительное время после того, как препарат полностью выводится из плазмы [гормональные препараты, некоторые средства, используемые для лечения рака, ингибиторы моноаминоксидазы (МАО) и ацетилхолинэстеразы];

    Если действие ЛС происходит путем образования активных метаболитов;

    У ЛС, для действия которых более важна их тканевая концентрация (некоторые антибактериальные препараты).

    В настоящее время существует возможность оценить эффективность лечения исходя из концентрации ЛС в моче (антибактериальные препараты при мочевой инфекции), мокроте, а также определить концентрацию ЛС непосредственно в тканях и органах человека радионуклидными методами. Однако эти способы исследования фармакокинетики используют только в научных исследованиях и пока не вводят в клиническую практику.

    4.3. ФАКТОРЫ, ВЛИЯЮЩИЕ НА ВСАСЫВАНИЕ,

    РАСПРЕДЕЛЕНИЕ И ВЫВЕДЕНИЕ ЛЕКАРСТВЕННЫХ

    СРЕДСТВ

    Общая скорость всасывания зависит от морфологической структуры органа, в который вводят ЛС, и прежде всего от величины абсорбирующей поверхности. Наибольшую абсорбирующую поверхность имеет ЖКТ благодаря ворсинкам (около 120 м 2), несколько меньшую - легкие (70-100 м 2). Кожа имеет малую абсорбирующую поверхность (в среднем 1,73 м 2), кроме того, всасывание ЛС через кожу затруднено из-за особенностей ее анатомического строения.

    Для большинства препаратов проникновение в область рецепторов связано с прохождением нескольких барьеров:

    Слизистую оболочку кишечника (или полости рта при сублинг-вальном приеме), эпителий кожи (при наружном применении препарата), эпителий бронхов (при ингаляциях);

    Стенку капилляров 1 ;

    Специфические капиллярные барьеры 2:

    Между системным кровотоком и системой кровоснабжения головного мозга (гематоэнцефалический барьер);

    Между организмом матери и плода (плацента 3).

    Некоторые препараты взаимодействуют со своими рецепторами на поверхности клеток, другие должны преодолеть клеточную мембрану (глюкокортикоиды), мембрану ядра (фторхинолоны) или мембраны клеточных органелл (макролиды).

    Состояние сердечно-сосудистой системы - определяющий фактор в распределении ЛС. Так, при шоке или сердечной недостаточности кровоснабжение большинства органов уменьшается, что ведет

    1 Капилляры - мельчайшие кровеносные сосуды, через которые главным образом и происходят обмен веществ и поступление ЛС в ткани и органы человека. Препараты попадают в системный кровоток через капиллярную сеть кишечника, бронхов (ингаляционный путь введения), полости рта (при сублингвальном применении), кожи (трансдермальный путь введения) и подкожной жировой клетчатки (внутримышечный путь введения). Для достижения органа-мишени ЛС должно вновь преодолеть стенку капилляра.

    2 Эти барьеры образованы двойной системой капилляров, например кровь, поступающая в головной мозг, распределяется по капиллярам, из которых кислород и питательные вещества не поступают напрямую к клеткам, а адсорбируются в другую (внутреннюю) капиллярную систему.

    3 Со способностью ЛС проникать через плаценту связано, как правило, нежелательное действие препаратов на плод.

    к снижению почечного и печеночного клиренса ЛС. В результате концентрация ЛС в плазме крови, особенно после внутривенного введения, будет возрастать.

    ЛС способны преодолевать клеточные оболочки, не нарушая их целостности, с помощью ряда механизмов.

    Диффузия - пассивный транспорт ЛС в ткани под воздействием градиента концентраций. Скорость диффузии всегда пропорциональна разнице между концентрациями ЛС снаружи и внутри клетки и подчиняется законам кинетики первого порядка. Процесс диффузии не требует энергетических затрат. Однако преодолеть клеточные оболочки, состоящие из гидрофобных липидов, способны только жирорастворимые ЛС.

    Фильтрация позволяет ЛС поступать в организм через особые водные каналы в эпителиальных оболочках. Путем фильтрации в организм поступают только некоторые водорастворимые ЛС.

    Активный транспорт - перемещение некоторых ЛС в организме независимо от градиента концентраций (при этом используется энергия АТФ). Активный транспорт может происходить быстрее, чем диффузия, но это потенциально насыщаемый механизм: молекулы сходного химического строения конкурируют между собой за ограниченное число молекул-переносчиков. С использованием этого механизма в организм поступают только те ЛС, которые по химическому строению близки к естественным веществам (препараты железа, фторурацил).

    Для абсорбции и транспорта ЛС в организме имеют значение растворимость, химическая структура и молекулярная масса ЛС. Переход препарата через клеточную оболочку определяется в первую очередь его растворимостью в липидах. Растворимость в жирах - свойство всей молекулы в целом, хотя ионизация молекулы ЛС способна уменьшать ее липофильность. Растворимость в воде увеличивается при наличии в ЛС спиртовой группы (-ОН), амидной группы (-CO-NH 2), карбоксильной группы (-СООН), конъюгатов с глюкуроновым радикалом и конъюгатов с сульфатным радикалом. Растворимость в липидах увеличивается при наличии в молекуле ЛС бензольного кольца, стероидного ядра, галогеновых групп (-Вг, -С1, -F). Способность молекулы к ионизации характеризуется константой ионизации (Ка), которую выражают в виде отрицательного логарифма (рКа). При рН раствора, равном рКа, 50% вещества находится в ионизированном состоянии.

    Особенности выведения ЛС также могут быть связаны со степенью ионизации: рН мочи может варьировать в значительных пределах

    (от 4,6 до 8,2), обратное всасывание ЛС из первичной мочи 1 в значительной степени зависит от ее рН. В частности, ацетилсалициловая кислота становится более ионизированной при щелочном рН мочи и в этом случае почти не подвергается реабсорбции. Это обстоятельство используют при лечении передозировки салицилатами: в этом случае назначают ЛС, увеличивающие рН мочи, что способствует более быстрому выделению салицилатов.

    Некоторые ЛС (например, дигоксин и хлорамфеникол) вообще не имеют ионизируемых групп, и их транспорт не зависит от рН среды, другие (гепарин натрия) обладают химической структурой с настолько выраженной ионизацией, что остаются ионизированными практически при любых значениях рН. Некоторые патологические состояния способны изменять внутреннюю среду организма, например среда в полостях абсцессов кислая, что может повлиять на эффективность антибактериальных препаратов с высокой гидро-фильностью.

    4.4. ПУТИ ВВЕДЕНИЯ ЛЕКАРСТВЕННЫХ СРЕДСТВ

    Стремление влиять на параметры кинетики препаратов отразилось в многообразии путей введения ЛС. Применяя различные пути введения, можно:

    Обеспечить разную скорость развития эффекта и его различную продолжительность у одного и того же ЛС;

    Значительно увеличить концентрацию ЛС в органе-мишени (например, при применении бронхорасширяющих препаратов в ингаляциях);

    Увеличить системную концентрацию ЛС при внутривенном введении или ректальном применении по сравнению с приемом внутрь (для ЛС с эффектом первого прохождения через печень);

    Уменьшить выраженность НЛР (наружное применение глю-кокортикоидов, парентеральное введение ЛС, раздражающих слизистую оболочку желудка).

    1 В структурной единице почек - нефроне - первоначально образуется большое количество так называемой первичной мочи (до 150 л/сут), состав которой (за исключением белков) близок к составу плазмы крови. Большая часть этой жидкости с растворенными в ней веществами подвергается обратному всасыванию (реабсорбция) в канальцах нефрона.

    Энтеральное введение ЛС. К энтеральному пути введения ЛС относится прием препаратов внутрь, буккальный и ректальный путь введения. При этом объем и скорость всасывания ЛС из ЖКТ зависит, с одной стороны, от физико-химических свойств препаратов (водо- и жирорастворимости, константы диссоциации, молекулярной массы), особенностей лекарственной формы (препараты с медленным высвобождением), а с другой - от функционального состояния ЖКТ (рН и присутствия пищеварительных ферментов в просвете кишечника, скорости перемещения пищи, кровотока в стенке кишечника). Кроме того, некоторым ЛС свойствен метаболизм в стенке кишечника или под действием кишечной микрофлоры. Некоторые ЛС при одновременном назначении могут взаимодействовать в ЖКТ между собой (инактивация одного ЛС другим или конкуренция за всасывание).

    Прием препаратов внутрь. Преимущества этого пути введения заключаются в простоте и удобстве для пациента. Обычно антибактериальные препараты рекомендуют принимать до еды (абсорбция многих из них зависит от пищи), гипогликемические средства назначают до еды или во время еды, препараты, раздражающие слизистую оболочку желудка (НПВС), - после еды.

    Недостатки приема ЛС внутрь:

    Абсорбция многих ЛС зависит от приема пищи, функционального состояния ЖКТ и множества других факторов, которые на практике с трудом поддаются учету;

    Не все ЛС способны хорошо всасываться в ЖКТ;

    Некоторые ЛС (препараты инсулина, антибактериальные препараты пенициллинового ряда) разрушаются в желудке;

    Часть ЛС оказывает нежелательные действия на ЖКТ - вызывают изъязвления (НПВС, доксициклин, калия хлорид) или отрицательно влияют на моторику желудка и кишечника (некоторые антациды);

    Наконец, ЛС нельзя назначать внутрь больным в бессознательном состоянии и пациентам с нарушением глотания.

    На абсорбцию (всасывание) ЛС при приеме внутрь влияют следующие факторы.

    Моторика ЖКТ, от которой зависит продолжительность пребывания ЛС в его различных отделах. Так, у пациентов с мигренью моторика желудка замедлена, его опорожнение наступает позже, чем в норме. В результате этого при приеме НПВС у этих больных снижается абсорбция, а эффекты НПВС становятся отсроченными.

    Эту проблему можно преодолеть, если одновременно с НПВС назначить средство, повышающее моторику желудка, - метоклопрамид.

    Кислотность в желудке способна изменяться в довольно широких пределах, влияя на абсорбцию ЛС. Например, слабые органические основания (эритромицин, хинидин, теофиллин) в кислой среде подвергаются ионизации, препятствующей их всасыванию. Такие ЛС лучше принимать натощак и /или запивать слабощелочными растворами.

    У больных с высокой кислотностью желудочного сока замедляется опорожнение желудка, что также влияет на всасывание препаратов. В этом случае перед приемом ЛС можно назначать вещества, нейтрализующие избыточную кислотность (молоко, минеральные воды). При антацидном (сниженная кислотность) состоянии опорожнение желудка наступает быстро и ЛС быстрее поступают в тонкую кишку.

    Ферменты в просвете кишечника. В кишечнике находится большое количество ферментов с высокой липолитической и протеолити-ческой активностью. Ряд ЛС белковой и полипептидной природы, гормональные препараты (десмопрессин, кортикотропин, инсулины, прогестерон, тестостерон) в этих условиях почти полностью дезактивируются. Компоненты желчи способствуют растворению липофиль-ных препаратов, а также растворяют оболочки таблеток и капсул с кишечно-растворимым покрытием.

    Пища. При одновременном приеме пищи и ЛС адсорбция препаратов может замедляться или ускоряться. Например, яйца уменьшают всасывание железа; молоко, богатое ионами кальция, инактивиру-ет тетрациклин и фторхинолоны, образуя с их молекулами хелат-ные комплексы. Абсорбция изониазида, леводопы и эритромицина уменьшается независимо от характера пищи. При приеме синтетических пенициллинов после еды их всасывание замедляется, а всасывание пропранолола, метопролола и гидралазина, напротив, ускоряется (но абсорбция и биодоступность остаются прежними). Всасывание гризеофульвина увеличивается в несколько раз при приеме жирной пищи.

    Некоторые ЛС, особенно при длительном применении, могут нарушать всасывание ряда ингредиентов пищи и в итоге вызывать различные патологические состояния. Так, гормональные оральные контрацептивы нарушают всасывание фолиевой и аскорбиновой кислот, рибофлавина, антикоагулянты непрямого действия подавляют

    всасывание витамина К, слабительные средства - всасывание жирорастворимых витаминов и т.д.

    Лекарственная форма. Скорость и полнота всасывания ЛС в ЖКТ зависят также от лекарственной формы. Лучше всего всасываются растворы, затем следуют суспензии, капсулы, простые таблетки, таблетки в оболочке и, наконец, лекарственные формы с замедленным высвобождением. ЛС любой формы лучше всасывается, если его принимают через 2-3 ч после еды и запивают 200-250 мл воды.

    Иногда внутрь назначают ЛС, которые почти не всасываются в ЖКТ (аминогликозидные антибиотики, противогельминтные ЛС). Это позволяет лечить некоторые заболевания кишечника, избегая нежелательных системных эффектов препаратов.

    Буккальное применение ЛС. Слизистая оболочка рта активно кровос-набжается, и при применении препаратов буккально (или сублинг-вально) действие ЛС начинается быстро. При таком пути введения препарат не вступает во взаимодействие с желудочным соком, скорость всасывания не зависит от приема пищи или одновременного назначения других ЛС, кроме того, препараты, всасывающиеся в полости рта, не подвержены пресистемному метаболизму 1 .

    Спектр ЛС, применяемых буккально, невелик и включает в себя нитроглицерин и изосорбида динитрат (при стенокардии), нифеди-пин, каптоприл и клофелин (при гипертоническом кризе) и эрго-тамин (при мигрени). Действие препарата можно прервать в любой момент.

    Ректальное назначение ЛС. Кровь от нижних отделов прямой кишки также поступает в системный кровоток, минуя печень. Этот путь введения используют для препаратов с высоким пресистемным метаболизмом. Кроме того, ректально назначают некоторые ЛС, раздражающие слизистую оболочку желудка (НПВС). К ректальному введению препаратов прибегают при рвоте, морской болезни, у детей грудного возраста. Дозы ЛС при ректальном применении, как правило, равны (или незначительно превосходят) дозы для приема внутрь. Ректально также назначают ЛС для местного лечения (при заболеваниях прямой кишки).

    1 Кровь, оттекающая от желудка и кишечника (исключая прямую кишку), собирается в воротную вену, в результате чего весь объем ЛС, принятого внутрь, первоначально проходит через печень, где может подвергнуться пресистемному (до поступления в системный кровоток) метаболизму. Из-за этого ЛС с преимущественным метаболизмом в печени не следует назначать внутрь. От слизистой оболочки рта кровь, минуя печень, поступает сразу в системный кровоток (через верхнюю полую вену).

    Недостатки этого пути введения заключаются в неприятных для пациента психологических моментах, кроме того, всасывание может замедляться, если прямая кишка содержит каловые массы.

    Парентеральное введение ЛС. К парентеральному пути введения ЛС относят внутрисосудистое, внутримышечное, подкожное введение препаратов, кроме того, ингаляционное, эндотрахеальное введение, местное применение ЛС и трансдермальные системы.

    Внутрисосудистое (обычно внутривенное) введение ЛС обеспечивает быстрое поступление ЛС в кровь, быстрое создание высокой системной концентрации и возможность управлять ей. Таким путем можно назначать ЛС, разрушающиеся в ЖКТ (пенициллины, инсулины), раздражающие ЖКТ или не всасывающиеся в нем (аминогликозид-ные антибиотики). Внутрисосудисто вводят большинство препаратов для лечения неотложных состояний. К недостаткам этого пути введения относят технические сложности сосудистого доступа, риск развития инфекции в месте инъекций, быстрое нарастание концентрации препарата, тромбозы вен в месте введения ЛС (эритромицин) и болевые ощущения (калия хлорид).

    Препараты с длительным периодом элиминации вводят струй-но (болюсно), с коротким периодом полуэлиминации (лидокаин, окситоцин) - в виде длительных инфузий. Некоторые ЛС способны адсорбироваться на стенках систем для переливания (инсулин).

    Внутримышечное введение. При внутримышечном введении всасывание препарата в кровь занимает около 10-30 мин. Принципиальных преимуществ этот путь введения ЛС не имеет. Следует помнить о риске развития местных осложнений (абсцессы), особенно при использовании концентрированных растворов препаратов.

    Подкожно вводят препараты инсулина и гепарин натрия. После соответствующего обучения больной может делать инъекции самостоятельно. Повторные инъекции инсулинов вызывают атрофию жировой ткани в месте введения, что сказывается на скорости всасывания ЛС.

    Ингаляционно назначают препараты для лечения заболеваний легких и бронхов. Ингаляционный путь обеспечивает быстрое начало действия этих ЛС и их высокую концентрацию в области рецепторов. Биодоступность большинства ЛС при этом способе введения не превышает 15-40% (из-за всасывания ЛС в полости рта и со слизистой оболочки крупных бронхов). Это обстоятельство позволяет ослабить нежелательные системные эффекты бронхолитиков и глюкокорти-коидов.

    Эндотрахеально ЛС назначают в реанимационной практике. Ряд ЛС (эпинефрин, атропин, налоксон) можно вводить больному в критическом состоянии через интубационную трубку, не дожидаясь создания внутрисосудистого доступа. Эти ЛС хорошо и очень быстро всасываются в трахее, а эндотрахеальное введение не уступает по скорости развития эффекта внутривенному.

    Кроме вышеперечисленных способов введения, иногда ЛС назначают местно (при лечении кожных, глазных, гинекологических заболеваний). Некоторые ЛС (нитраты, препараты для лечения морской болезни, половые гормоны) выпускают в виде пластырей с медленным трансдермальным высвобождением действующего вещества.

    4.5. РАСПРЕДЕЛЕНИЕ ЛЕКАРСТВЕННЫХ СРЕДСТВ

    В ОРГАНИЗМЕ

    ЛС циркулируют в плазме крови частично в свободном виде, а частично в связанном с транспортными белками 1 . При этом фармакологически активна только фракция, не связанная с белками. Свободная и связанная фракции находятся в состоянии равновесия: молекулы ЛС быстро (Т 1 / 2 связи ЛС с молекулой альбумина составляет около 20 мс) переходят из одной фракции в другую.

    Основной белок плазмы крови, связывающий ЛС (главным образом со свойствами кислот), - альбумин. Он обладает отрицательным зарядом. Альбумина в плазме настолько много, что полное насыщение каким-либо ЛС всех молекул альбумина происходит очень редко. Например, для насыщения всех белковых связей феноксиметилпе-нициллином этот препарат нужно вводить в чрезвычайно высоких дозах - 50-100 млн ЕД/сут 2 . Насыщение связи с альбумином может быть актуальным при применении клофибрата® и дизопирамида®.

    Помимо альбумина, за связь с ЛС отвечают липопротеины и а 1 -кис-лый гликопротеин (с этими переносчиками связываются ЛС, имеющие свойства оснований). Концентрация гликопротеина увеличивается при стрессе, ИМ и некоторых других заболеваниях. Некоторые ЛС связываются с поверхностью эритроцитов и других форменных элементов крови (хинидин, аминазин).

    1 Транспортные белки плазмы переносят кортизон, дигоксин, железо, медь и многие другие вещества.

    2 Стандартная доза феноксиметилпенициллина при лечении тяжелых инфекций не превышает 12 млн ЕД.

    Функцию связывающих веществ могут выполнять практически все белки, а также форменные элементы крови. Набор связывающих компонентов в тканях еще больше. ЛС могут связываться с одним или несколькими белками. Например, тетрациклин на 14% связывается с альбуминами, на 38% - с различными липопротеинами и на 8% - с другими белками сыворотки крови. Обычно, когда идет речь о связывании ЛС с белками плазмы, имеется в виду суммарная связь данного вещества с белками и другими фракциями сыворотки.

    Ряд тканевых структур также активно связывает определенные химические вещества. Например, ткань щитовидной железы накапливает соединения йода и меди, костная ткань - тетрациклины и т.д.

    Чаще всего белок выполняет функцию депо и участвует в регуляции баланса между связанным препаратом и его активной формой. Каждая удаленная из циркуляции (связь с рецептором, выведение из организма) молекула активного препарата возмещается путем диссоциации очередного белкового комплекса. Однако если сродство препарата к белкам и жирам тканей выше, чем к белкам плазмы, то его концентрация в плазме низкая, а в тканях высокая. В частности, некоторые антибактериальные препараты накапливаются в тканях в большей (5-10 раз и более) концентрации, чем в плазме (макролиды, фторхи-нолоны). Многие НПВС (диклофенак, фенилбутазон) имеют высокое сродство к белкам синовиальной жидкости, и уже через 12 ч после введения они практически отсутствуют в плазме крови, а их концентрация в ткани сустава остается на высоком уровне.

    Связывание ЛС с белками крови может изменяться при нарушении функций почек, печеночной недостаточности, некоторых формах анемии и при снижении концентрации альбумина в плазме.

    4.6. МЕТАБОЛИЗМ ЛЕКАРСТВЕННЫХ СРЕДСТВ

    ЛС, как и другие чужеродные вещества, независимо от своей структуры могут подвергаться биотрансформации. Биологическая цель этого процесса заключается в создании субстрата, удобного для последующей утилизации (в качестве энергетического или пластического материала), или в ускорении выведения этих веществ из организма.

    Биотрансформация происходит под воздействием нескольких ферментных систем, локализованных как в межклеточном пространстве, так и внутри клеток. Наиболее активно эти процессы проходят

    в печени, стенке кишечника, плазме крови и в области рецепторов (например, удаление избытка медиатора из синаптической щели).

    Все процессы метаболизма в организме человека подразделяются на две фазы. Реакции I фазы биотрансформации ЛС обычно несинтетические, II фазы - синтетические.

    Метаболизм I фазы включает в себя изменение структуры ЛС путем его окисления, восстановления или гидролиза. Метаболизму I фазы подвергается этанол (окисляется до ацетальдегида), лидокаин (гидролизируется до моноэтилглицилксилидида и глицилксилиди-да) и большинство других ЛС. Реакции окисления при метаболизме I фазы подразделяют на реакции, катализируемые ферментами эндо-плазматической сети (микросомальные ферменты), и реакции, катализируемые ферментами, локализованными в других местах (немикро-сомальные).

    Метаболизм II фазы включает в себя связывание молекул ЛС - сульфатирование, глюкуронидацию, метилирование или ацетили-рование. Часть ЛС подвергается метаболизму II фазы сразу, другие препараты предварительно проходят через реакции I фазы. Конечные продукты реакций II фазы лучше растворимы в воде и благодаря этому легче выводятся из организма.

    Продукты реакций I фазы имеют различную активность: чаще всего метаболиты ЛС не обладают фармакологической активностью или их активность снижена по сравнению с исходным веществом. Однако в некоторых случаях метаболиты могут сохранять активность или даже превосходить по активности исходное ЛС: так, кодеин в организме человека трансформируется до морфина. Процессы биотрансформации могут приводить к образованию токсичных веществ (метаболиты изониазида, лидокаина, метронидазола и нитрофуранов) или метаболитов с противоположными фармакологическими эффектами, например метаболиты неселективных Р 2 -адреномиметиков обладают свойствами блокаторов этих же рецепторов. В противоположность этому метаболит фенацетина® парацетамол не оказывает присущего фенацетину® токсического действия на почки и постепенно заменил его в клинической практике.

    Если ЛС имеет более активные метаболиты, они постепенно вытесняют предыдущие препараты из употребления. Примеры ЛС, первоначально известных в качестве метаболитов других препаратов, - оксазепам, парацетамол, амброксол. Существуют и про-лекарства, которые исходно не дают полезных фармакологических эффектов, но в процессе биотрансформации превращаются в актив-

    ные метаболиты. Например, леводопа, проникая через гематоэн-цефалический барьер, превращается в мозгу человека в активный метаболит допамин. Благодаря этому удается избежать нежелательных эффектов допамина, которые наблюдаются при его системном применении. Некоторые пролекарства лучше всасываются в ЖКТ (талампициллин* 3).

    На биотрансформацию ЛС в организме влияют возраст, пол, характер питания, сопутствующие заболевания, факторы внешней среды. Поскольку метаболизм ЛС происходит преимущественно в печени, любое нарушение ее функционального состояния отражается на фармакокинетике препаратов. При заболеваниях печени клиренс ЛС обычно уменьшается, а период полувыведения возрастает.

    Пресистемный метаболизм (или метаболизм первого прохождения). Под этим термином понимают процессы биотрансформации до поступления ЛС в системный кровоток. Реакции пресистемного метаболизма проходят в просвете кишечника. Некоторые ЛС подвергаются действию неспецифических ферментов кишечного сока (феноксиметилпенициллин, аминазин). Биотрансформация мето-трексата, леводопы, допамина в кишечнике обусловлена ферментами, выделяемыми кишечной флорой. В стенке кишечника моноамины (тирамин ®) частично метаболизируются моноаминоксидазой, а хлор-промазин сульфатируется в кишечной стенке. Эти реакции проходят также и в легких (при ингаляционном введении), и в печени (при приеме внутрь).

    Печень имеет низкую способность к экстракции (метаболизм + выведение с желчью) диазепама, дигитоксина, изониазида, парацетамола, фенобарбитала, фенитоина, прокаинамида, теофиллина, толбу-тамида, варфарина, промежуточную - ацетилсалициловой кислоты, кодеина, хинидина, высокую - пропранолола, морфина, лидокаина, лабеталола ® , нитроглицерина, эрготамина. Если в результате активного пресистемного метаболизма образуются вещества с меньшей фармакологической активностью, чем исходное ЛС, предпочтительнее парентеральное введение такого препарата. Пример ЛС с высоким пресистемным метаболизмом - нитроглицерин, который высокоактивен при сублингвальном приеме или внутривенном введении, однако при приеме внутрь полностью утрачивает свое действие. Пропранолол оказывает одинаковое фармакологическое действие при внутривенном введении в дозе 5 мг или при приеме внутрь в дозе около 100 мг. Высокий пресистемный метаболизм полностью исключает прием внутрь гепарина натрия или препаратов инсулина.

    Микросомальное окисление. Большое значение в реакциях биотрансформации I фазы имеют два микросомальных фермента: НАДФ-Н-цитохром С-редуктаза и цитохром Р-450. Существует более 50 изоферментов цитохрома Р-450, сходных по физико-химическим и каталитическим свойствам. Большая часть цитохрома Р-450 в организме человека содержится в клетках печени. Различные ЛС подвергаются биотрансформации с участием различных изоферментов цитохрома Р-450 (подробнее см. на компакт-диске в табл. 4-1).

    Активность ферментов микросомального окисления может изменяться под воздействием некоторых ЛС - индукторов и ингибиторов микросомального окисления (подробнее см. на компакт-диске). Это обстоятельство следует учитывать при одновременном назначении нескольких ЛС. Иногда происходит полное насыщение определенного изофермента цитохрома Р-450, что влияет на фармакокинетику препарата.

    Цитохром Р-450 способен биотрансформировать практически все известные человеку химические соединения и связывать молекулярный кислород. В результате реакций биотрансформации, как правило, образуются неактивные или малоактивные метаболиты, быстро выводящиеся из организма.

    Курение способствует индукции ферментов системы цитохро-ма Р-450, в результате чего ускоряется метаболизм ЛС, подвергающихся окислению с участием изофермента CYP1A2 (подробнее см. на компакт-диске). Влияние табачного дыма на активность гепато-цитов сохраняется до 12 мес после прекращения курения. У вегетарианцев биотрансформация ЛС замедлена. У лиц пожилого возраста и детей до 6 мес активность микросомальных ферментов также может быть снижена.

    При высоком содержании в пище белков и интенсивной физической нагрузке метаболизм ускоряется.

    4.7. ВЫВЕДЕНИЕ ЛЕКАРСТВЕННЫХ СРЕДСТВ

    ИЗ ОРГАНИЗМА

    ЛС выводятся из организма как в неизмененном виде, так и в виде метаболитов. Большинство ЛС выводятся из организма почками, в меньшей степени - легкими, а также с грудным молоком, через потовые железы, печень (с желчью выводятся хлорамфеникол, морфин, рифампицин, тетрациклин) и слюнные железы.

    Выведение ЛС почками происходит посредством следующих механизмов.

    Клубочковая фильтрация (в клубочках нефронов 1 каждую минуту фильтруется из крови около 120 мл жидкости, содержащей ионы, продукты метаболизма и ЛС). Преимущественно путем клубочко-вой фильтрации из организма удаляются дигоксин, гентамицин, прокаинамид, метотрексат. Скорость клубочковой фильтрации (СКФ) определяют по величине клиренса креатинина. Клиренс препаратов, выводящихся из организма только путем клубочко-вой фильтрации, равен произведению СКФ на долю препарата, которая находится в плазме в несвязанном виде (f): С 1 = f-СКФ.

    Пассивная реабсорбция в канальцах. Из клубочков первичная моча попадает в канальцы нефрона, где часть жидкости и растворенных в ней веществ может всасываться обратно в кровь. При этом клиренс ЛС меньше СКФ: С 1 < f-СКФ. Процесс реабсорбции зависит от рН первичной мочи и ионизации ЛС. Например, при рН первичной мочи более 7 слабые кислоты (ацетилсалициловая кислота) будут реабсорбироваться хуже, так как в этом случае увеличивается их ионизация. При этих же условиях увеличится реабсорбция слабых оснований (амфетамин).

    Активная секреция в почечных канальцах (например, фенокси-метилпенициллин). При этом клиренс ЛС всегда больше СКФ: С 1 >f ? СКФ.

    Нефрон - структурная единица почек, в которой происходит образование мочи.

    Клиническая фармакология и фармакотерапия: учебник. - 3-е изд., перераб. и доп. / под ред. В. Г. Кукеса, А. К. Стародубцева. - 2012. - 840 с.: ил.


    Фармакокинетика - раздел клинической фармакологии, изучающий поведение лекарственного средства в организме: поступление, всасывание, распределение, связывание, биотрансформация, выведение (от греч.pharmakon- лекарство, kineo- двигатель).
    Для клинической анестезиологии и интенсивной терапии важнейший фар- макокинетический принцип - взаимоотношение между дозой лекарственного средства, концентрацией его в тканях и продолжительностью действия. Следует помнить, что фармакокинетические характеристики препаратов, изученные у здоровых добровольцев, могут значительно отличаться от таковых у больных с тяжелыми заболеваниями (особенно с патологией почек и печени) и значительно варьировать в зависимости от возраста, волемического и нутритивного статуса, массы скелетной мускулатуры.
    Зависимость между дозой лекарства и его эффектом была известна еще со времен Парацельса (XVI век). Однако современное развитие фармакокинетики стало возможным лишь благодаря внедрению высокочувствительных методов химического анализа - газовой и газожидкостной хроматографии, радиоиммунологической, ферментно-химической методологии, а также математического моделирования фармакокинетических процессов.
    Знание фармакокинетики позволяет определить дозы, оптимальный путь введения, режим дозирования и продолжительность действия лекарственных средств. Эта информация особенно важна у пациентов с сопутствующими заболеваниями (особенно тех органов, которые участвуют в биотрансформации препаратов), а также при одновременном применении различных средств, что характерно для анестезиологической и реаниматологической практики.
    К фармакокинетическим факторам, определяющим поведение лекарственных средств в организме, относят абсорбцию, распределение по органам и тканям и элиминацию путем биотрансформации и экскреции.
    АБСОРБЦИЯ
    Абсорбция - всасывание лекарственного средства из места введения в крово-ток, что возможно энтеральным и парентеральным путем.
    Энтеральный путь
    Энтеральный путь включает введение лекарственного средства внутрь, сублингвально, буккально и ректально. На биодоступность препарата при введении внутрь влияют растворимость и концентрация действующего вещества в лекарственной форме, состояние перфузии, рН и площадь поверхности всасывания, секреторная и моторная функции ЖКТ, интенсивность метаболизма в печени (так называемый эффект первичного пассажа), взаимодействие с другими лекарственными средствами. Абсорбируется, главным образом, неионизированная фракция препарата, поэтому в кислой среде лучше всасываются лекарственные средства-кислоты, а в щелочной - лекарственные средства-основания.
    Первичный пассаж
    Первичный пассаж, или пресистемный метаболизм, - биотрансформация лекарственного средства в результате поступления в печень через портальный кровоток после всасывания в желудке или кишечнике. Высокая степень пресистем- ного метаболизма характерна для антагонистов кальция, |3-адреноблокаторов, нитратов, ингибиторов ангиотензинпревращающего фермента, ацетилсалициловой кислоты, изопротеренола1", папаверина, пентазоцина", пентоксифиллина.
    Препарат из сосудов полости рта поступает в верхнюю полую вену, поэтому сублингвальное и буккальное введение лекарственного средства исключает эффект первичного пассажа, поскольку действующее вещество в этом случае минует печень. Венозная кровь из прямой кишки поступает в нижнюю полую вену, также минуя печень. Следовательно, при ректальном введении биодоступность препарата выше, чем при пероральном введении. Основной недостаток ректального пути введения (кроме дискомфорта и раздражения) - индивидуальные колебания скорости и степени всасывания.
    Парентеральный путь
    Парентеральные пути введения, при которых лекарственное средство минует пищеварительный тракт, включают чрескожный; подкожный; внутривенный; внутриартериальный; интратекальный; перидуральный; местный (внутрибрю- шинный, внутриплевральный, в полость абсцесса, субконъюнктивальный, интра- назальный и т.д.).
    Чрескожный путь введения редко применяют для получения системного действия лекарственного средства. Иногда с этой целью назначают специальные трансдермальные формы, регулирующие всасывание препарата. Таким способом, в частности, назначают нитроглицерин, нестероидные противовоспалительные средства (НПВС), наркотические анальгетики. Очень широко в анестезиологиче-ской практике известны мази, содержащие местные анестетики, но не для систем-ного, а для местного применения.
    При подкожном и внутримышечном введении скорость всасывания лекарственных средств будет зависеть, главным образом, от васкуляризации тканей и водорастворимости применяемого препарата.
    При внутривенном или внутриартериальном введении этап всасывания исключается из фармакокинетического процесса, лекарственное средство полностью и непосредственно поступает в кровоток. При ингаляционном пути введения (ингаляционные анестетики) попадание "екарственного средства в кровоток будет зависеть от трех основных факторов: его Епыхаемой (ингалируемой) концентрации, альвеолярной вентиляции и интенсивности поглощения (потребления) анестетика в крови. Существует эффект первого прохождения лекарственного средства через легкие, заключающийся в захвате -ипофильных аминов-оснований (лидокаин, пропранолол, фентанил) легочной тканью. Этот эффект может влиять на пиковую концентрацию препарата в артериальной крови. Легкие способны впоследствии высвобождать связанные препараты в системный кровоток.
    Факторы, влияющие на абсорбцию ингаляционных анестетиков:
    о- факторы, связанные с наркозным аппаратом, - подаваемая концентрация анестетика, мертвое пространство аппарата, растворимость препарата в конструкциях наркозного аппарата (растворимость в пластических материалах и резине);
    альвеолярная концентрация;
    о факторы, определяющие поступление анестетика в кровь, - сердечный выброс и системный кровоток, растворимость анестетика в крови, альвеолярный кровоток и вентиляция (вентиляционно-перфузионное отношение), потребление анестетика тканями (градиент концентрации анестетика в альвеолярном газе и венозной крови).
    Основные механизмы всасывания (абсорбции) лекарственных средств:
    пассивная диффузия, характерная для липофильных лекарственных средств;
    о активный транспорт, специфичен для некоторых лекарственных средств и
    соединений: аминокислот, Сахаров, витаминов, метилдопы;
    о фильтрация, характерная для водорастворимых лекарственных средств с низкой молекулярной массой; играет незначительную роль в абсорбционных процессах;
    пиноцитоз, способный обеспечить абсорбцию лишь некоторых макромоле- кулярных соединений.
    Показатели абсорбции:
    полнота всасывания - количество (%) всасываемого вещества;
    время достижения максимальной концентрации (Тш|х);
    константа скорости абсорбции (Ка), характеризующая скорость поступления лекарственного средства в кровь из места введения;
    период полуабсорбции (Т}