Регуляция тонуса сосудов. Регуляция системного артериального давления

После того как мы узнали классификацию и нормальные цифры артериального давления, так или иначе необходимо вернутся к вопросам физиологии кровообращения. Артериальное давление у здорового человека, несмотря на значительные колебания в зависимости от физических и эмоциональных нагрузок, как правило, поддерживается на относительно стабильном уровне. Этому способствует сложные механизмы нервной и гуморальной регуляции, которые стремятся вернуть артериальное давление к первоначальному уровню после окончания действия провоцирующих факторов. Поддержка артериального давления на постоянном уровне обеспечивается слаженной работой нервной и эндокринной систем, а также почек.

Все известные прессорные(повышающие давление) системы, в зависимости от длительности эффекта, подразделяются на системы:

  • быстрого реагирования(барорецепторы синокаротидной зоны, хеморецепторы, симпатоадреналовая система) — начинается в первые секунды и длится несколько часов;
  • средней длительности(ренин-ангиотензиновая) — включается через несколько часов, после чего ее активность может быть как повышенной, так и сниженной;
  • длительно действующие(натрий-объем-зависимая и альдостероновая) — могут действовать в течении продолжительного времени.

Все механизмы в определенной степени вовлечены в регуляцию деятельности системы кровообращения, как при естественных нагрузках, так и при стрессах. Деятельность внутренних органов — головного мозга, сердца и других в высокой степени зависит от их кровоснабжения, для которого необходимо поддерживать артериальное давление в оптимальном диапазоне. То есть, степень повышения АД и скорость его нормализации должны быть адекватны степени нагрузки.

При чрезмерно низком давлении человек склонен к обморокам и потере сознания. Это связано с недостаточным кровоснабжением головного мозга. В организме человека существует несколько систем слежения и стабилизации АД, которые взаимно подстраховывают друг друга. Нервные механизмы представлены вегетативной нервной системой, регуляторные центры которой расположены в подкорковых областях головного мозга и тесно связаны с так называемым сосудодвигательным центром продолговатого мозга.

Необходимую информацию о состоянии системы эти центры получают от своего рода датчиков — барорецепторов, находящихся в стенках крупных артерий. Барорецепторы находятся преимущественно в стенках аорты и сонных артериях, снабжающих кровью головной мозг. Они реагируют не только на величину АД, но и на скорость его прироста и амплитуду пульсового давления. Пульсовое давление — расчетный показатель, который означает разницу между систолическим и диастолическим АД. Информация от рецепторов поступает по нервным стволам в сосудодвигательный центр. Этот центр управляет артериальным и венозным тонусом, также силой и частотой сокращений сердца.

При отклонении от стандартных величин, например, при снижении АД, клетки центра посылают команду к симпатическим нейронам, и тонус артерий повышается. Барорецепторная система принадлежит к числу быстродействующих механизмов регуляции, ее воздействие проявляется в течении нескольких секунд. Мощность регуляторных влияний на сердце настолько велика, что сильное раздражение барорецепторной зоны, например, при резком ударе по области сонных артерий способно вызвать кратковременную остановку сердца и потерю сознания из-за резкого падения АД в сосудах головного мозга. Особенность барорецепторов состоит в их адаптации к определенному уровню и диапазону колебаний АД. Феномен адаптации состоит в том, что рецепторы реагируют на изменения в привычном диапазоне давления слабее, чем на такие же по величине изменения в необычном диапазоне АД. Поэтому, если по какой-либо причине уровень АД сохраняется устойчиво повышенным, барорецепторы адаптируются к нему, и уровень их активации снижается (данный уровень АД уже считается как бы нормальным). Такого рода адаптация происходит при артериальной гипертензии, и вызываемая под влиянием применения медикаментов резкое снижение АД уже будет восприниматься барорецепторами как опасное снижение АД с последующей активизацией противодействия этому процессу. При искусственном выключении барорецепторной системы диапазон колебаний АД в течении суток значительно увеличивается, хотя в среднем остается в нормальном диапазоне(благодаря наличию других регуляторных механизмов). В частности, столь же быстро реализуется действие механизма, следящего за достаточным снабжением клеток головного мозга кислородом.

Для этого в сосудах головного мозга имеются специальные датчики, чувствительные к напряжению кислорода в артериальной крови — хеморецепторы. Поскольку наиболее частой причиной снижения напряжения кислорода служит уменьшение кровотока из-за снижения АД, сигнал от хеморецепторов поступает к высшим симпатическим центрам, которые способны повысить тонус артерий, а также стимулировать работу сердца. Благодаря этому, АД восстанавливается до уровня, необходимого для снабжения кровью клеток головного мозга.

Более медленно (в течении нескольких минут) действует третий механизм, чувствительный к изменениям АД — почечный. Его существование определяется условиями работы почек, требующих для нормальной фильтрации крови поддержание стабильного давления в почечных артериях. С этой целью в почках функционирует так называемый юкстагломерулярный аппарат (ЮГА). При снижении пульсового давления, вследствие тех или иных причин, происходит ишемия ЮГА и его клетки вырабатывают свой гормон — ренин, который преращается в крови в ангиотензин-1, который в свою очередь, благодаря ангиотензинпреращающему ферменту (АПФ), конвертируется в ангиотензин-2, который оказывает сильное сосудосуживающее действие, и АД повышается.

Ренин-ангиотензиновая система (РАС) регуляции реагирует не столь быстро и точно, нервная система, и поэтому даже кратковременное снижение АД может запустить образование значительного количества ангиотензина-2 и вызвать тем самым устойчивое повышение артериального тонуса. В связи с этим, значительное место в лечении заболеваний сердечно-сосудистой системы принадлежит препаратам, снижающим активность фермента, превращающего ангиотензин-1 в ангиотензин-2. Последний, воздействуя на, так называемые, ангиотензиновые рецепторы 1-го типа, обладает многими биологическими эффектами.

  • Сужение периферических сосудов
  • Выделение альдостерона
  • Синтез и выделение катехоламинов
  • Контроль гломерулярного кровообращения
  • Прямой антинатрийуретический эффект
  • Стимуляция гипертрофии гладкомышечных клеток сосудов
  • Стимуляция гипертрофии кардиомиоцитов
  • Стимуляция развития соединительной ткани (фиброз)

Одним из них является высвобождение альдостерона корковым веществом надпочечников. Функцией этого гормона является уменьшение выделения натрия и воды с мочой (антинатрийуретический эффект) и, соответственно, задержка их в организме, то есть, увеличение объема циркулирующей крови (ОЦК), что также повышает АД.

Ренин-ангиотензиновая система (РАС)

РАС, наиболее важная среди гуморальных эндокринных систем, регулирующих АД, которая влияет на две основные детерминанты АД — периферическое сопротивление и объем циркулирующей крови. Выделяют два вида этой системы: плазменная(системная) и тканевая. Ренин секретируется ЮГА почек в ответ на снижение давления в приносящей артериоле клубочков почек, а также при уменьшении концентрации натрия в крови.

Основное значение в образовании ангиотензина 2 из ангиотензина 1 играет АПФ, существует другой, независимый путь образования ангиотензина 2 — нециркулирующая «локальная» или тканевая ренин-ангиотензиновая паракринная система. Она находится в миокарде, почках, эндотелии сосудов, надпочечниках и нервных ганглиях и участвует в регуляции регионального кровотока. Механизм образования ангиотензина 2 в этом случае связан с действием тканевого фермента — химазы. В следствии чего может уменьшаться эффективность ингибиторов АПФ, не влияющих на этот механизм образования ангиотензина 2. Следует отметить также, что уровень активации циркулирующей РАС не имеет прямой связи с повышением АД. У многих больных (особенно пожилых) уровень ренина плазмы и ангиотензина 2 достаточно низкий.

Почему же, все-таки, возникает гипертензия?

Для того, чтобы это понять, нужно представить себе, что в организме человека есть, своего рода, весы на одной чаше которых находится прессорные(то есть повышающие давление) факторы, на другой — депрессорные(снижающие АД).

В случае, когда перевешивают прессорные факторы, давление повышается, когда депрессорные — снижается. И в норме у человека эти весы находятся в динамическом равновесии, благодаря чему давление и удерживается на относительно постоянном уровне.

Какова роль адреналина и норадреналина в развитии артериальной гипертензии?

Наибольшее значение в патогенезе артериальной гипертензии отводится гуморальным факторам. Мощной непосредственной прессорной и сосудосуживающей активностью активностью обладает катехоламины — адреналин и норадреналин , которые вырабатываются главным образом в мозговом веществе надпочечных желез. Они же являются нейромедиаторами симпатического отдела вегетативной нервной системы. Норадреналин воздействует на, так называемые альфа-адренорецепторы и действует достаточно долго. В основном сужаются периферические артериолы, что сопровождается повышением как систолического, так и диастолического АД. Адреналин возбуждая альфа- и бета-адренорецепторы(b1 — сердечной мышцы и b2 — бронхов), интенсивно, но кратковременно повышает АД, увеличивает содержание сахара в крови, усиливает тканевой обмен и потребность организма в кислороде, приводит к ускорению сердечных сокращений.

Вляние поваренной соли на АД

Кухонная или поваренная соль в избыточном количестве увеличивает объем внеклеточной и внутриклеточной жидкости, обуславливает отек стенки артерий, способствуя этим сужению их просвета. Повышает чувствительность гладких мышц к прессорным веществам и вызывает увеличение общего периферического сопротивления сосудов(ОПСС).

Какие существуют в настоящее время гипотезы возникновения артериальной гипертензии?

В настоящее время принята такая точка зрения, — причиной развития первичной (эссенциальной) является комплексное воздействие различных факторов, которые перечислены ниже.

Немодифицируемые:

  • возраст(2/3 лиц в возрасте более 55 лет имеют АГ, а если АД нормальное, вероятность развития в дальнейшем 90%)
  • наследственная предрасположенность(до 40% случаев АГ)
  • внутриутробное развитие(низкий вес при рождении). Кроме повышенного риска развития АГ, также риск связанных с АГ метаболических аномалий: инсулинрезистентность, сахарный диабет, гиперлипидемия, абдоминальный тип ожирения.

Модифицируемые факторы образа жизни(80% АГ связанно с этими факторами) :

  • курение,
  • неправильное питание(переедание, низкое содержание калия, высокое содержание соли и животных жиров, низкое содержание молочных продуктов, овощей и фруктов),
  • избыточный вес и ожирение(индекс массы тела больше 25 кг/мт2, центральный тип ожирения — объем талии у мужчин более 102 см , у женщин более 88 см ),
  • психосоциальные факторы(морально-психологический климат на работе и дома),
  • высокий уровень стресса,
  • злоупотребление алкоголем,
  • низкий уровень физических нагрузок.

На артериальное давление в человеческом организме оказывают влияние огромное количество факторов: как внешних, так и внутренних.

По своей природе, регуляция артериального давления – это весьма сложная и многогранная вещь.

Но в данном материале, эта тема будет рассмотрена как можно подробнее.

Регуляция артериального давления и физиология – понятия, имеющие тесную связь.

В сегодняшней медицинской науке выделяют три основных механизма, которые приводят к росту АД:

  • происходит сужение почти всех артериол с большим кругом кровообращения;
  • сильно сужаются вены. Это приводит к сдвигу кровяных масс к сердцу. Такой объём заставляет полости сердца расширяться, растёт напряжение в сердечных мышцах, также увеличивается выброс крови в организм;
  • усиливается сердечная деятельность по команде симпатической нервной системы. А при наибольшей стимуляции, сердце человека способно перекачивать в целых два раза больше крови, чем в обычном и спокойном состоянии.

Физиологические механизмы регуляции артериального давления

АД формируется (и также удерживается) на своём нормальном уровне благодаря всего двум группам факторов:

  1. гемодинамической;
  2. нейрогуморальной.

Причём первые отвечают за сам уровень АД, а вторые оказывают регулирующее воздействие. Совместная работа этих двух механизмов позволяет .

К геодинамическим факторам, определяющим величину давления, относят:

  • минутный объём крови (другими словами, это количество крови, которое поступает в систему сосудов за одну минуту);
  • общую проходимость сосудов;
  • общую эластичность этих же сосудов;
  • кровяную вязкость и объём циркулирующей крови.

Наиболее важную роль среди всех факторов играют минутный объём и проходимость сосудов.

Приспособительные реакции

Любое давление в наших артериях регулируется при помощи краткосрочных, среднесрочных и долгосрочных реакций, которые осуществляются за счёт многих механизмов: почечных, гуморальных и нервных.

Принципы регуляции артериального давления:

  • краткосрочные - это немедленные реакции, которые и обеспечивают непрерывную регуляцию АД. Основаны на рефлексах в вегетативной системе нервов. Любые из изменений сразу воспринимаются в ЦНС и в периферии при помощи барорецепторов. Когда показатели падают, начинает расти симпатический тонус, увеличивается выработка адреналина, подавляется динамичность работы блуждающего нерва;
  • среднесрочные. Устойчивые изменения в уровнях АД оказывают огромное влияние на обмены жидкости в тканях, благодаря изменению давления в капиллярах. В то время, как артериальная гипертензия способствует смещению жидкостей из кровеносных сосудов в особый интерстиций, артериальная гипотензия работает в обратном направлении;
  • долгосрочные. Заметное влияние медленнодействующих механизмов в почках проявляется лишь в тех случаях, когда постоянное изменениеАД держится в течение нескольких часов подряд. В этом случае выравнивание кровяного давления происходит за счёт изменений процентного содержания натрия и обычной воды в организме человека. Артериальная гипотензия характерна задержкой этих веществ, в то время как при гипертензии увеличивается содержание натрия.

Значение и эффективность нервной регуляции при повышении АД

Для абсолютно любых нервных механизмов, отвечающих за смены уровней АД, крайне важна скорость их появления при ответной реакции. Обычно она начинается уже через пару секунд.

Нередко явление, когда всего за 5-10 секунд давление поднимается в два раза. И наоборот, резкое торможение способно за сравнительно короткий период (от 10 до 30 секунд) сбавить давление в сосудах. И именно поэтому, нервная регуляция - самая быстрая из всех остальных.

Наиболее наглядным примером способности нервной системы резко поднять АД могут послужить физические нагрузки на организм . Ведь физический труд требует для мышц много крови. В этом случае увеличение кровотока осуществляется за счёт расширения сосудов.

И кроме этого, подъём уровня АД начинается из-за симпатической стимуляции всего кровообращения. При особенно тяжёлых физических нагрузках кровяное давление может подниматься почти на 40%, что заставляет кровоток работать в два раза быстрее.

А рост давления крови (при тех же нагрузках) происходит дальнейшим образом.

Когда возбуждаются двигательные центры головного мозга, заодно активируется и часть стволовой ретикулярной формации, за ними просыпается и сосудорасширяющая система, стимулирующая симпатическое влияние на скорость биения сердца. Параллельно растёт и АД (по мере нагрузок на организм).

Но не только физический труд вызывает рост АД. , вызванный разными причинами, также оказывает сильное влияние.

Когда мы испытываем страх, наше артериальное давление может подскочить в два раза (по сравнению со своей нормой). И происходит это, опять же, за несколько секунд. Начинается «реакция тревоги», из-за которой рост АД оказывает непосредственное влияние на кровоток в мышцах, что позволяет убежать от опасности.

Роль хеморецепторов

Все вышеописанные процессы не могут происходить сами по себе. Для того, чтобы они могли адекватно реагировать на запросы организма, к ним должна поступать соответствующая информация. А роль поставщиков такой информации исполняют «хеморецепторы».

Отделы сосудодвигательного центра мозга

Именно хеморецепторы способны реагировать на недостаток кислорода в крови, а также на переизбыток углекислого газа с ионами водорода, окисление крови. Хеморецепторы распространяются по всей нашей сосудистой системе, но особенно их много в зонах сонной артерии и аорты.

Импульсы от этих рецепторов идут по нервным волокнам и поступают в СДЦ (сосудодвигательный центр мозга). Сам СДЦ состоит из нейронов, что регулируют показатель сосудистого тонуса, а также мощность и частоту сердечных сокращений. В совокупности это и есть АД.

Как уже говорилось, СДЦ состоит целиком из нейронов. Эти нейроны бывают трёх видов:

  • прессорные . Их возбуждение увеличивает тонус симпатической ВНС, но уменьшает таковой у парасимпатической. Всё это поднимает сосудистый тонус, частоту и силу сердцебиения, другими словами – поднимает давление в артериях;
  • депрессорные снижают возбуждение прессорных. А значит, расширяют сосуды, тем самым ;
  • сенсорные нейроны – зависят от информации рецепторов, задействуют вышеназванные виды нейронов.

Стоит отметить, что работа прессорных и депрессорных нейронов контролируется не только СДЦ, но и прочими нейронами в головном мозге. Их задействуют сильные эмоции (горе, страх, большая радость, сильное волнение и так далее).

Прессорные районы могут возбуждаться сами, но только если пребывают в состоянии ишемии (недостатка кислорода). В данном случае, АД быстро поднимается.

Другие факторы, влияющие на АД

По своей природе, АД – это весьма непостоянная величина. . И вышеперечисленные – лишь немногие из них.

К дополнительным факторам можно отнести:

  • психологическое (эмоциональное) состояние;
  • время суток;
  • приём веществ, которые способны менять уровень АД (к таким веществам относятся, например, или особые лекарства и препараты, регулирующие артериальное давление);
  • нагрузки на организм.

Видео по теме

Стабилизация давления – верный способ избежать опасных осложнений. Возьмите себе на заметку пару и будет гипертония под контролем:

Нельзя забывать о том, что изменения в кровяном давлении могут быть симптомами разных заболеваний. При малейших недомоганиях стоит проверять это давление, что поможет вовремя снизить/повысить его, нормализовав работу организма. Помимо этого, всем рекомендуется ведение здорового образа жизни для предупреждения серьёзных сердечно-сосудистых заболеваний.

Подробности

Система регуляции артериального давления сложна и многокомпонентна. В данном материале мы в комплексе рассмотрим эту тему.

1. Регуляция кровообращения.

Механизмы регуляции давления подразделяются на системные и локальные:

2. Мозговые артерии – артерии мышечного типа.
Особенности их строения:
Значительно меньшая толщина стенок при более мощном развитии внутренней эластической мембраны, чем в артериях др. органов;
Наличие в области развилки артерий своеобразных мышечно-эластических образований – подушек ветвления , участвующих в регуляции мозгового кровообращения.
Вены имеют очень тонкую стенку, без мышечного слоя и эластических волокон.

  • На головной мозг приходится 20% сердечного выброса
  • В среднем мозговой кровоток составляет 50 – 60 мл/100 г. в мин.
  • Критическое значение мозгового кровотока, при котором в мозгу наступают необратимые изменения, - 18-20 мл/100 г. в мин.
  • Мозг потребляет 35 – 45 мл/100 г. в мин. кислорода и 115 г. глюкозы в сутки
  • Объем крови практически постоянен и составляет 75мл.

3. СИМПАТИЧЕСКАЯ ИННЕРВАЦИЯ СОСУДОВ.

Источник иннервации - верхний шейный узел симпатического ствола
Эффект - снижение внутричерепного давления, обёма крови и продукции ликвора
Медиаторы - норадреналин, нейропептид Y, АТФ.

а) Если уровень активности органа не изменяется, то кровоток через него поддерживается (более или менее) постоянным, несмотря на изменения артериального давления.

б) Распределение уровня кровотока: «Более» - в почке и в головном мозге, «Менее» - в брыжейке, желудочно-кишечном тракте, жировой ткани.

в) Обеспечивает независимость кровотока через орган от колебаний системного АД

Механизмы:

1. Метаболический (наиболее характерендля головного мозга)

2. Миогенный (наиболее характерен для почки)

Ауторегуляция кровотока в мозговых артериях (CBF) в стабильном состоянии. Точечная линия - изменения под воздействием симпатической нервной системы.

5. Распределение кровотока по легким.

Гипоксическая вазоконстрикция. Наблюдается в легких.
Возможный механизм:
снижение кислорода --> блокируются К-каналы --> деполяризация --> вход ионов кальция --> сокращение гладких мышц сосудов и пролиферации стенок сосудов.

6. Распределение кровотока в сердце.

Механические факторы играют существенную роль в коронарном кровотоке.

Динамика изменения работы сердца при возрастающей нагрузке.

7. Комплексная схема регуляции давления и сосудистого тонуса.

8. МЕХАНИЗМЫ РЕГУЛЯЦИИ АРТЕРИАЛЬНОГО ДАВЛЕНИЯ.

Барорецепторный контроль артериального давления.

Афферентные пути от барорецепторов высокого давления.

А – иннервация каротидного синуса; Б – иннервация дуги аорты и аортальных телец.

Ответ барорецепторов на повышение АД

Барорецепторы дуги аорты и каротидного синуса («рецепторы высокого давления»)

Свободные нервные окончания, воспринимают растяжение стенки сосуда.

Взаимоотношения между давлением крови и импульсацией от единичного афферентного нервного волокна, идущего от каротидного синуса, при различных уровнях среднего артериального давления.

Cнижение пульсового давления в перфузируемых каротидных синусах уменьшает импульсную активность от барорецепторов.

Афферентные и эфферентные пути барорефлекторной регуляции сердечно-сосудистой системы.

Влияние изменений давления в изолированных каротидных синусах на активность сердечных нервных волокон блуждающего и симпатического нервов собаки, находящейся под анестезией.

Немедленные реакции сердечно-сосудистой системы, вызванные снижением артериального давления.

9. Буферная роль барорефлекса: уменьшение отклонений артериального давления от среднего уровня («снижение вариабельности АД»).

10. Хеморецепторный контроль сердечно-сосудистой системы.

Слева – при отсутствии компенсации дыханием. Справа – при компенсации дыханием развивается тахикардия.

11. Нейроны гипоталамуса и коры головного мозга принимают участие в регуляции артериального давления.

12. Пример типичного синдрома белого халата - повышение больного у пациента при виде врача (зафиксировано суточным мониторированием артериального давления).

13. Суточная вариабельность артериального давления.

14. Механизмы кратковременной регуляции АД.

  • реализуются с участием автономной нервной системы;
  • «срабатывают» быстро (в течение нескольких секунд);
  • если уровень АД отклоняется надолго, адаптируются и начинают регулировать АД на этом новом, измененном уровне
  1. Артериальный барорецепторный рефлекс
  2. Хеморефлекс
  3. Реакция на ишемию ЦНС (Реакция Кушинга)

15. РЕНИН-АНГИОТЕНЗИН- АЛЬДОСТЕРОНОВАЯ СИСТЕМА.

ЭФФЕКТЫ АНГИОТЕНЗИНА II

АТ 1 -рецепторы

АТ 2 -рецепторы

  • Вазоконстрикция
  • Стимуляция симпатической нервной системы
  • Стимуляция продукции альдостерона
  • Гипертрофия кардиомиоцитов
  • Пролиферация гладких мышц сосудов
  • Вазодилатация
  • Натрийуретическое действие
  • Уменьшение пролиферации кардиомиоцитов и гладких мышц сосудов

Компенсаторное влияние ренин-ангиотензиновой системы на уровень артериального давления после тяжелой кровопотери (компенсаторная фаза геморрагического шока).

Ответы предсердных рецепторов низкого давления А- и В- типов.
Рецепторы типа А расположены преимущественно в полости правого предсердия; рецепторы типа В локализованы в устье нижней и верхней полой вен.

Кардио-висцеральные рефлексы с рецепторов низкого давления.

16. Влияние различных гормонов на артериальное давление.

17. Долговременная регуляция АД осуществляется почечным механизмом.

Зависимость объёма мочи, выделяемого изолированной почкой, от величины артериального давления.

Длительно АД может иметь только такой уровень, при котором скорость мочеотделения равна скорости поступления жидкости в организм.

Сравнительные возможности различных механизмов регуляции АД в разные временные периоды от начала резкого изменения уровня давления.
Возможности почечного механизма контроля над уровнем жидкости в организме не ограничены временными рамками, действие фактора начинается через несколько недель.

Эффективность почечного регуляторного механизма стремится к бесконечности.

Для того, чтобы механизмы, регулирующие артериальное давление адекватно реагировали на потребности организма к ним должна поступать информация об этих потребностях.

Эту функцию выполняют хеморецепторы. Хеморецепторы реагируют на недостаток кислорода в крови, избыток углекислого газа и ионов водорода, сдвиг реакции крови (pH крови) в кислую сторону. Хеморецепторы находятся по всей сосудистой системе. Особенно много этих клеток в общей сонной артерии и в аорте.

Недостаток кислорода в крови, избыток углекислого газа и ионов водорода, сдвиг pH крови в кислую сторону возбуждают хеморецепторы. Импульсы от хеморецепторов по нервным волокнам поступают в сосудодвигательный центр головного мозга (СДЦ). СДЦ состоит из нервных клеток (нейронов), которые регулируют тонус сосудов, силу, частоту сердечных сокращений, объём циркулирующей крови, то есть - артериальное давление. Своё влияние на тонус сосудов, силу и частоту сердечных сокращений, объём циркулирующей крови нейроны СДЦ реализуют через нейроны симпатической и парасимпатической вегетативной нервной системы (ВНС), которые непосредственно влияют на тонус сосудов, силу и частоту сердечных сокращений.

СДЦ состоит из прессорных, депрессорных и сенсорных нейронов. Увеличение возбуждения прессорных нейронов увеличивает возбуждение (тонус) нейронов симпатической ВНС и уменьшает тонус парасимпатической ВНС. Это приводит к увеличению тонуса сосудов (спазму сосудов, уменьшению просвета сосудов), к увеличению силы и частоты сердечных сокращений, то есть - к увеличению АД. Депрессорные нейроны уменьшают возбуждение прессорных нейронов и, таким образом, косвенно способствуют расширению сосудов (уменьшению тонуса сосудов), уменьшают силу и частоту сердечных сокращений, то есть - снижению АД.

Сенсорные (чувствительные) нейроны в зависимости от поступившей к ним информации от рецепторов, оказывают возбуждающее действие на прессорные или депрессорные нейроны СДЦ.

Функциональная активность прессорных и депрессорных нейронов регулируется не только сенсорными нейронами СДЦ, но и другими нейронами головного мозга. Опосредовано через гипоталамус нейроны двигательной зоны коры головного мозга оказывают возбуждающее действие на прессорные нейроны.

Нейроны коры головного мозга влияют на СДЦ через нейроны гипоталамической области.

Сильные эмоции: гнев, страх, тревога, волнение, большая радость, горе могут вызывать возбуждение прессорных нейронов СДЦ. Прессорные нейроны возбуждаются самостоятельно, если находятся в состоянии ишемии (состоянии недостаточного поступления к ним кислорода с кровью). При этом АД повышается очень быстро и очень сильно. Волокна симпатической ВНС густо оплетают сосуды, сердце, заканчиваются многочисленными разветвлениями в различных органах и тканях организма, в том числе, и около клеток, которые называются трансдукторами. Эти клетки в ответ на повышение тонуса симпатической ВНС начинают синтезировать и выделять в кровь вещества, влияющие на повышение АД.

Трансдукторами являются:

  • 1. Хромаффинные клетки мозгового слоя надпочечников;
  • 2. Юкст-гломерулярные клетки почек;
  • 3. Нейроны гипоталамических супраоптического и паравентрикулярного ядер.

Хромаффинные клетки мозгового слоя надпочечников.

Эти клетки при увеличении тонуса симпатической ВНС начинают синтезировать и выделять в кровь гормоны: адреналин и норадреналин. Эти гормоны в организме оказывают те же эффекты, что и симпатическая ВНС. В отличие от влияния симпатической ВНС системы эффекты адреналина и норадреналина надпочечников более продолжительные и распространённые.

Юкст-гломерулярные клетки почек.

Эти клетки при увеличении тонуса симпатической ВНС, а также при ишемии почек (состоянии недостаточного поступления к тканям почек кислорода с кровью) начинают синтезировать и выделять в кровь протеолитический фермент ренин.

Ренин в крови расщепляет другой белок ангиотензиноген с образованием белка ангиотензина 1. Другой фермент крови - АПФ (Ангиотензин превращающий фермент) расщепляет ангиотензин 1 с образованием белка ангиотензина 2.

Ангиотензин 2:

  • - оказывает на сосуды очень сильное и продолжительное сосудосуживающее действие. Своё действие на сосуды ангиотензин 2 реализует через ангиотензин-рецепторы (АТ);
  • - стимулирует синтез и выделение в кровь клетками клубочковой зоны надпочечников альдостерона, который задерживает натрий, а, значит, и воду в организме. Это приводит: к увеличению объёма циркулирующей крови, задержка натрия в организме приводит к тому, что натрий проникает в эндотелиальные клетки, покрывающие кровеносные сосуды изнутри, увлекая за собой внутрь клетки воду. Эндотелиальные клетки увеличиваются в объёме. Это приводит к сужению просвета сосуда. Уменьшение просвета сосуда увеличивает его сопротивление. Увеличение сопротивления сосуда увеличивает силу сердечных сокращений. Задержка натрия повышает чувствительность ангиотензин-рецепторов к ангиотензину 2. Это ускоряет и усиливает сосудосуживающее действие агиотензина 2;
  • -стимулирует клетки гипоталамуса на синтез и выделение в кровь антидиуретического гормона вазопрессина и клетками аденогипофиза адренокортикотропного гормона (АКТГ). АКТГ стимулирует синтез клетками пучковой зоны коркового слоя надпочечников глюкокортикоидов. Наибольшим биологическим действием обладает кортизол. Кортизол потенцирует увеличение АД.

Всё это в частности и в совокупности приводит к увеличению АД.Нейроны гипоталамических супраоптического и паравентрикулярного ядер синтезируют антидиуретический гормон вазопрессин. Через свои отростки нейроны выделяют вазопрессин в заднюю долю гипофиза, откуда он поступает в кровь. Вазопрессин оказывает сосудосуживающее действие, задерживает воду в организме.

Это приводит к увеличению объёма циркулирующей крови и к повышению АД. Кроме того, вазопрессин усиливает сосудосуживающее действие адреналина, норадреналина и ангиотензина 2.

Информация об объёме циркулирующей крови и силе сердечных сокращений поступает в СДЦ от барорецепторов и рецепторов низкого давления. Барорецепторы - это разветвления отростков чувствительных нейронов в стенке артериальных сосудов. Барорецепторы преобразуют раздражения от растяжения стенки сосуда в нервный импульс. Барорецепторы находятся по всей сосудистой системе.

Наибольшее их количество в дуге аорты и в каротидном синусе. Барорецепторы возбуждаются от растяжения. Увеличение силы сердечных сокращений увеличивает растяжение стенок артериальных сосудов в местах нахождения барорецепторов. Возбуждение барорецепторов увеличивается прямо пропорционально увеличению силы сердечных сокращений. Импульсация от них поступает к сенсорным нейронам СДЦ. Сенсорные нейроны СДЦ возбуждают депрессорные нейроны СДЦ, которые уменьшают возбуждение прессорных нейронов СДЦ. Это приводит к уменьшению тонуса симпатической ВНС и к повышению тонуса парасимпатической ВНС, что приводит к уменьшению силы и частоты сердечных сокращений, расширению сосудов, то есть - к понижению АД. Наоборот, уменьшение силы сердечных сокращений ниже нормальных показателей уменьшает возбуждение барорецепторов, уменьшает импульсацию от них к сенсорным нейронам СДЦ. В ответ на это сенсорные нейроны СДЦ возбуждают прессорные нейроны СДЦ.

Это приводит к увеличению тонуса симпатической ВНС и к уменьшению тонуса парасимпатической ВНС, что приводит к увеличению силы и частоты сердечных сокращений, сужению сосудов, то есть - к повышению АД. В стенках предсердий и лёгочной артерии находятся рецепторы низкого давления, которые возбуждаются при уменьшении АД в связи с уменьшением объёма циркулирующей крови.

При кровопотере уменьшается объём циркулирующей крови, АД снижается. Возбуждение барорецепторов уменьшается, а возбуждение рецепторов низкого давления увеличивается.

Это приводит к повышению АД. По мере того, как АД приближается к норме возбуждение барорецепторов увеличивается, а возбуждение рецепторов низкого давления уменьшается.

Это предохраняет от увеличения АД больше нормы. При кровопотере восстановление объёма циркулирующей крови достигается переходом крови из депо (селезёнка, печень) в кровяное русло. Примечание: В селезёнке депонировано около 500 мл. крови, а в печени и в сосудах кожи около 1 литра крови.

Объём циркулирующей крови контролируется и поддерживается почками за счёт образования количества мочи. При систолическом АД меньше 80 мм. рт. ст. моча не образуется вовсе, при нормальном АД - нормальное образование мочи, при повышенном АД мочи образуется прямо пропорционально больше (гипертензивный диурез). При этом увеличивается выведение с мочой натрия (гипертензивный натрийурез), а вместе с натрием выводится и вода.

При увеличении объёма циркулирующей крови больше нормы, нагрузка на сердце увеличивается. В ответ на это кардиомициты предсердий отвечают синтезом и выделением в кровь белка - предсердного натрийуретического пептида (ANP), который увеличивает выведение с мочой натрия, а, значит, и воды. Клетки организма могут сами регулировать поступление к ним с кровью кислорода и питательных веществ.

В условиях гипоксии (ишемии, недостаточного поступления кислорода) клетки выделяют вещества (например, аденозин, оксид азота NO, простациклин, углекислый газ, аденозинфосфаты, гистамин, ионы водорода (молочная кислота), ионы калия, магния), которые расширяют прилегающие к ним артериолы, тем самым, увеличивая к себе приток крови, а, соответственно, кислорода и питательных веществ.

В почках, например, при ишемии клетки мозгового слоя почек начинают синтезировать и выделять в кровь кинины и простагландины, которые обладают сосудорасширяющим действием. В результате - артериальные сосуды почек расширяются, кровоснабжение почек увеличивается. Примечание: при избыточном употреблении соли с пищей синтез клетками почек кининов и простагландинов уменьшается.

Кровь устремляется прежде всего туда, где артериолы больше расширены (в место наименьшего сопротивления). Хеморецепторы запускают механизм повышения АД, чтобы ускорить доставку клеткам кислорода и питательных веществ, которых клеткам не хватает. По мере того, как состояние ишемии устранено, клетки перестают выделять вещества, расширяющие прилегающие артериолы, а хеморецепторы прекращают стимулировать повышение АД.

Артериальное давление регулируется краткосрочными, среднесрочными и долгосрочными приспо-собительными реакциями, осуществляющимися сложными нервными, гуморальными и почечными механизмами.

А. Краткосрочная регуляция.

Немедленные реакции, обеспечивающие непрерывную регуляцию АД, опосредованы главным образом рефлексами вегетативной нервной системы. Изменения АД воспринимаются как в ЦНС (гипоталамус и ствол мозга), так и на периферии специализированными сенсорами (барорецепторами). Снижение АД повышает симпатический тонус, увеличивает секрецию адреналина надпочечниками и подавляет активность блуждающего нерва. В результате возникает вазоконстрикция сосудов большого круга кровообращения, увеличивается ЧСС и сократимость сердца, что сопровождается повышением АД. Артериальная гипертензия, наоборот, угнетает симпатическую импульсацию и повышает тонус блуждающего нерва.

Периферические барорецепторы расположены в области бифуркащш общей сонной артерии и в дуге аорты. Рост АД увеличивает частоту им-пульсации барорецепторов, что угнетает симпатическую вазоконстрикцию и повышает тонус блуждающего нерва (барорецепторный рефлекс). Снижение АД приводит к уменьшению частоты импульсации барорецепторов, что вызывает вазоконстрикцию и снижает тонус блуждающего нерва. Каротидные барорецепторы посылают афферентные импульсы к вазомоторным центрам в продолговатом мозге по нерву Геринга (ветвь языкоглоточного нерва). От барорецепторов дуги аорты афферентные импульсы поступают по блуждающему нерву. Физиологическое значение каротидных барорецепторов больше, чем аортальных, потому что именно они обеспечивают стабильность АД при резких функциональных сдвигах (например, при изменении положения тела). Каротидные барорецепторы лучше приспособлены к восприятию АДср в пределах от 80 до 160 мм рт. ст. К резким изменениям АД адаптация развивается в течение

1-2 дней; поэтому данный рефлекс неэффективен с точки зрения долгосрочной регуляции.

Все ингаляционные анестетики подавляют физиологический барорецепторный рефлекс, самые слабые ингибиторы - изофлюран и десфлюран. Стимуляция сердечно-легочных рецепторов растяжения, расположенных в предсердиях и в легочных сосудах, также способна вызывать вазодилатацию.

Б. Среднесрочная регуляция. Артериальная гипотензия, сохраняющаяся в течение нескольких минут, в сочетании с повышенной симпатической импульсацией приводит к активации системы "ре-нин-ангиотензин-альдостерон" (гл. 31), увеличению секреции антидиуретического гормона (АДГ, синоним - аргинин-вазопрессин) и изменению транскапиллярного обмена жидкости (гл. 28). AH-гиотензин II и АДГ - мощные артериолярные ва-зоконстрикторы. Их немедленный эффект заключается в увеличении ОПСС. Для секреции АДГ в количестве, достаточном для обеспечения вазо-констрикции, требуется большее снижение АД, чем для появления соответствующего эффекта ангио-тензина П.

Устойчивые изменения АД влияют на обмен жидкости в тканях за счет изменения давления в капиллярах. Артериальная гипертензия вызывает перемещение жидкости из кровеносных сосудов в интерстиций, артериальная гипотензия - в обратном направлении. Компенсаторные изменения ОЦК способствуют уменьшению колебаний АД, особенно при дисфункции почек.

В. Долгосрочная регуляция. Влияние медленнодействующих почечных механизмов регуляции проявляется в тех случаях, когда устойчивое изменение АД сохраняется в течение нескольких часов. Нормализация АД почками осуществляется за счет изменения содержания натрия и воды в организме. Артериальная гипотензия чревата задержкой натрия (и воды), в то время как при артериальной гипертензии увеличивается экскреция натрия.

Еще по теме Регуляция артериального давления:

  1. Нарушение механизмов регуляции артериального давления
  2. 23.АРТЕРИАЛЬНОЕ ДАВЛЕНИЕ. МЕТОДИКА ОПРЕДЕЛЕНИЯ (Н.С. КОРОТКОВ). АРТЕРИАЛЬНОЕ ДАВЛЕНИЕ В НОРМЕ И ПРИ ПАТОЛОГИИ. ДИАГНОСТИЧЕСКОЕ ЗНАЧЕНИЕ