Артериальная гипертензия у детей и подростков с эндокринной патологией. Регуляция артериального давления крови

Для того, чтобы механизмы, регулирующие артериальное давление адекватно реагировали на потребности организма к ним должна поступать информация об этих потребностях.

Эту функцию выполняют хеморецепторы. Хеморецепторы реагируют на недостаток кислорода в крови, избыток углекислого газа и ионов водорода, сдвиг реакции крови (pH крови) в кислую сторону. Хеморецепторы находятся по всей сосудистой системе. Особенно много этих клеток в общей сонной артерии и в аорте.

Недостаток кислорода в крови, избыток углекислого газа и ионов водорода, сдвиг pH крови в кислую сторону возбуждают хеморецепторы. Импульсы от хеморецепторов по нервным волокнам поступают в сосудодвигательный центр головного мозга (СДЦ). СДЦ состоит из нервных клеток (нейронов), которые регулируют тонус сосудов, силу, частоту сердечных сокращений, объём циркулирующей крови, то есть - артериальное давление. Своё влияние на тонус сосудов, силу и частоту сердечных сокращений, объём циркулирующей крови нейроны СДЦ реализуют через нейроны симпатической и парасимпатической вегетативной нервной системы (ВНС), которые непосредственно влияют на тонус сосудов, силу и частоту сердечных сокращений.

СДЦ состоит из прессорных, депрессорных и сенсорных нейронов. Увеличение возбуждения прессорных нейронов увеличивает возбуждение (тонус) нейронов симпатической ВНС и уменьшает тонус парасимпатической ВНС. Это приводит к увеличению тонуса сосудов (спазму сосудов, уменьшению просвета сосудов), к увеличению силы и частоты сердечных сокращений, то есть - к увеличению АД. Депрессорные нейроны уменьшают возбуждение прессорных нейронов и, таким образом, косвенно способствуют расширению сосудов (уменьшению тонуса сосудов), уменьшают силу и частоту сердечных сокращений, то есть - снижению АД.

Сенсорные (чувствительные) нейроны в зависимости от поступившей к ним информации от рецепторов, оказывают возбуждающее действие на прессорные или депрессорные нейроны СДЦ.

Функциональная активность прессорных и депрессорных нейронов регулируется не только сенсорными нейронами СДЦ, но и другими нейронами головного мозга. Опосредовано через гипоталамус нейроны двигательной зоны коры головного мозга оказывают возбуждающее действие на прессорные нейроны.

Нейроны коры головного мозга влияют на СДЦ через нейроны гипоталамической области.

Сильные эмоции: гнев, страх, тревога, волнение, большая радость, горе могут вызывать возбуждение прессорных нейронов СДЦ. Прессорные нейроны возбуждаются самостоятельно, если находятся в состоянии ишемии (состоянии недостаточного поступления к ним кислорода с кровью). При этом АД повышается очень быстро и очень сильно. Волокна симпатической ВНС густо оплетают сосуды, сердце, заканчиваются многочисленными разветвлениями в различных органах и тканях организма, в том числе, и около клеток, которые называются трансдукторами. Эти клетки в ответ на повышение тонуса симпатической ВНС начинают синтезировать и выделять в кровь вещества, влияющие на повышение АД.

Трансдукторами являются:

  • 1. Хромаффинные клетки мозгового слоя надпочечников;
  • 2. Юкст-гломерулярные клетки почек;
  • 3. Нейроны гипоталамических супраоптического и паравентрикулярного ядер.

Хромаффинные клетки мозгового слоя надпочечников.

Эти клетки при увеличении тонуса симпатической ВНС начинают синтезировать и выделять в кровь гормоны: адреналин и норадреналин. Эти гормоны в организме оказывают те же эффекты, что и симпатическая ВНС. В отличие от влияния симпатической ВНС системы эффекты адреналина и норадреналина надпочечников более продолжительные и распространённые.

Юкст-гломерулярные клетки почек.

Эти клетки при увеличении тонуса симпатической ВНС, а также при ишемии почек (состоянии недостаточного поступления к тканям почек кислорода с кровью) начинают синтезировать и выделять в кровь протеолитический фермент ренин.

Ренин в крови расщепляет другой белок ангиотензиноген с образованием белка ангиотензина 1. Другой фермент крови - АПФ (Ангиотензин превращающий фермент) расщепляет ангиотензин 1 с образованием белка ангиотензина 2.

Ангиотензин 2:

  • - оказывает на сосуды очень сильное и продолжительное сосудосуживающее действие. Своё действие на сосуды ангиотензин 2 реализует через ангиотензин-рецепторы (АТ);
  • - стимулирует синтез и выделение в кровь клетками клубочковой зоны надпочечников альдостерона, который задерживает натрий, а, значит, и воду в организме. Это приводит: к увеличению объёма циркулирующей крови, задержка натрия в организме приводит к тому, что натрий проникает в эндотелиальные клетки, покрывающие кровеносные сосуды изнутри, увлекая за собой внутрь клетки воду. Эндотелиальные клетки увеличиваются в объёме. Это приводит к сужению просвета сосуда. Уменьшение просвета сосуда увеличивает его сопротивление. Увеличение сопротивления сосуда увеличивает силу сердечных сокращений. Задержка натрия повышает чувствительность ангиотензин-рецепторов к ангиотензину 2. Это ускоряет и усиливает сосудосуживающее действие агиотензина 2;
  • -стимулирует клетки гипоталамуса на синтез и выделение в кровь антидиуретического гормона вазопрессина и клетками аденогипофиза адренокортикотропного гормона (АКТГ). АКТГ стимулирует синтез клетками пучковой зоны коркового слоя надпочечников глюкокортикоидов. Наибольшим биологическим действием обладает кортизол. Кортизол потенцирует увеличение АД.

Всё это в частности и в совокупности приводит к увеличению АД.Нейроны гипоталамических супраоптического и паравентрикулярного ядер синтезируют антидиуретический гормон вазопрессин. Через свои отростки нейроны выделяют вазопрессин в заднюю долю гипофиза, откуда он поступает в кровь. Вазопрессин оказывает сосудосуживающее действие, задерживает воду в организме.

Это приводит к увеличению объёма циркулирующей крови и к повышению АД. Кроме того, вазопрессин усиливает сосудосуживающее действие адреналина, норадреналина и ангиотензина 2.

Информация об объёме циркулирующей крови и силе сердечных сокращений поступает в СДЦ от барорецепторов и рецепторов низкого давления. Барорецепторы - это разветвления отростков чувствительных нейронов в стенке артериальных сосудов. Барорецепторы преобразуют раздражения от растяжения стенки сосуда в нервный импульс. Барорецепторы находятся по всей сосудистой системе.

Наибольшее их количество в дуге аорты и в каротидном синусе. Барорецепторы возбуждаются от растяжения. Увеличение силы сердечных сокращений увеличивает растяжение стенок артериальных сосудов в местах нахождения барорецепторов. Возбуждение барорецепторов увеличивается прямо пропорционально увеличению силы сердечных сокращений. Импульсация от них поступает к сенсорным нейронам СДЦ. Сенсорные нейроны СДЦ возбуждают депрессорные нейроны СДЦ, которые уменьшают возбуждение прессорных нейронов СДЦ. Это приводит к уменьшению тонуса симпатической ВНС и к повышению тонуса парасимпатической ВНС, что приводит к уменьшению силы и частоты сердечных сокращений, расширению сосудов, то есть - к понижению АД. Наоборот, уменьшение силы сердечных сокращений ниже нормальных показателей уменьшает возбуждение барорецепторов, уменьшает импульсацию от них к сенсорным нейронам СДЦ. В ответ на это сенсорные нейроны СДЦ возбуждают прессорные нейроны СДЦ.

Это приводит к увеличению тонуса симпатической ВНС и к уменьшению тонуса парасимпатической ВНС, что приводит к увеличению силы и частоты сердечных сокращений, сужению сосудов, то есть - к повышению АД. В стенках предсердий и лёгочной артерии находятся рецепторы низкого давления, которые возбуждаются при уменьшении АД в связи с уменьшением объёма циркулирующей крови.

При кровопотере уменьшается объём циркулирующей крови, АД снижается. Возбуждение барорецепторов уменьшается, а возбуждение рецепторов низкого давления увеличивается.

Это приводит к повышению АД. По мере того, как АД приближается к норме возбуждение барорецепторов увеличивается, а возбуждение рецепторов низкого давления уменьшается.

Это предохраняет от увеличения АД больше нормы. При кровопотере восстановление объёма циркулирующей крови достигается переходом крови из депо (селезёнка, печень) в кровяное русло. Примечание: В селезёнке депонировано около 500 мл. крови, а в печени и в сосудах кожи около 1 литра крови.

Объём циркулирующей крови контролируется и поддерживается почками за счёт образования количества мочи. При систолическом АД меньше 80 мм. рт. ст. моча не образуется вовсе, при нормальном АД - нормальное образование мочи, при повышенном АД мочи образуется прямо пропорционально больше (гипертензивный диурез). При этом увеличивается выведение с мочой натрия (гипертензивный натрийурез), а вместе с натрием выводится и вода.

При увеличении объёма циркулирующей крови больше нормы, нагрузка на сердце увеличивается. В ответ на это кардиомициты предсердий отвечают синтезом и выделением в кровь белка - предсердного натрийуретического пептида (ANP), который увеличивает выведение с мочой натрия, а, значит, и воды. Клетки организма могут сами регулировать поступление к ним с кровью кислорода и питательных веществ.

В условиях гипоксии (ишемии, недостаточного поступления кислорода) клетки выделяют вещества (например, аденозин, оксид азота NO, простациклин, углекислый газ, аденозинфосфаты, гистамин, ионы водорода (молочная кислота), ионы калия, магния), которые расширяют прилегающие к ним артериолы, тем самым, увеличивая к себе приток крови, а, соответственно, кислорода и питательных веществ.

В почках, например, при ишемии клетки мозгового слоя почек начинают синтезировать и выделять в кровь кинины и простагландины, которые обладают сосудорасширяющим действием. В результате - артериальные сосуды почек расширяются, кровоснабжение почек увеличивается. Примечание: при избыточном употреблении соли с пищей синтез клетками почек кининов и простагландинов уменьшается.

Кровь устремляется прежде всего туда, где артериолы больше расширены (в место наименьшего сопротивления). Хеморецепторы запускают механизм повышения АД, чтобы ускорить доставку клеткам кислорода и питательных веществ, которых клеткам не хватает. По мере того, как состояние ишемии устранено, клетки перестают выделять вещества, расширяющие прилегающие артериолы, а хеморецепторы прекращают стимулировать повышение АД.

После того как мы узнали классификацию и нормальные цифры артериального давления, так или иначе необходимо вернутся к вопросам физиологии кровообращения. Артериальное давление у здорового человека, несмотря на значительные колебания в зависимости от физических и эмоциональных нагрузок, как правило, поддерживается на относительно стабильном уровне. Этому способствует сложные механизмы нервной и гуморальной регуляции, которые стремятся вернуть артериальное давление к первоначальному уровню после окончания действия провоцирующих факторов. Поддержка артериального давления на постоянном уровне обеспечивается слаженной работой нервной и эндокринной систем, а также почек.

Все известные прессорные(повышающие давление) системы, в зависимости от длительности эффекта, подразделяются на системы:

  • быстрого реагирования(барорецепторы синокаротидной зоны, хеморецепторы, симпатоадреналовая система) — начинается в первые секунды и длится несколько часов;
  • средней длительности(ренин-ангиотензиновая) — включается через несколько часов, после чего ее активность может быть как повышенной, так и сниженной;
  • длительно действующие(натрий-объем-зависимая и альдостероновая) — могут действовать в течении продолжительного времени.

Все механизмы в определенной степени вовлечены в регуляцию деятельности системы кровообращения, как при естественных нагрузках, так и при стрессах. Деятельность внутренних органов — головного мозга, сердца и других в высокой степени зависит от их кровоснабжения, для которого необходимо поддерживать артериальное давление в оптимальном диапазоне. То есть, степень повышения АД и скорость его нормализации должны быть адекватны степени нагрузки.

При чрезмерно низком давлении человек склонен к обморокам и потере сознания. Это связано с недостаточным кровоснабжением головного мозга. В организме человека существует несколько систем слежения и стабилизации АД, которые взаимно подстраховывают друг друга. Нервные механизмы представлены вегетативной нервной системой, регуляторные центры которой расположены в подкорковых областях головного мозга и тесно связаны с так называемым сосудодвигательным центром продолговатого мозга.

Необходимую информацию о состоянии системы эти центры получают от своего рода датчиков — барорецепторов, находящихся в стенках крупных артерий. Барорецепторы находятся преимущественно в стенках аорты и сонных артериях, снабжающих кровью головной мозг. Они реагируют не только на величину АД, но и на скорость его прироста и амплитуду пульсового давления. Пульсовое давление — расчетный показатель, который означает разницу между систолическим и диастолическим АД. Информация от рецепторов поступает по нервным стволам в сосудодвигательный центр. Этот центр управляет артериальным и венозным тонусом, также силой и частотой сокращений сердца.

При отклонении от стандартных величин, например, при снижении АД, клетки центра посылают команду к симпатическим нейронам, и тонус артерий повышается. Барорецепторная система принадлежит к числу быстродействующих механизмов регуляции, ее воздействие проявляется в течении нескольких секунд. Мощность регуляторных влияний на сердце настолько велика, что сильное раздражение барорецепторной зоны, например, при резком ударе по области сонных артерий способно вызвать кратковременную остановку сердца и потерю сознания из-за резкого падения АД в сосудах головного мозга. Особенность барорецепторов состоит в их адаптации к определенному уровню и диапазону колебаний АД. Феномен адаптации состоит в том, что рецепторы реагируют на изменения в привычном диапазоне давления слабее, чем на такие же по величине изменения в необычном диапазоне АД. Поэтому, если по какой-либо причине уровень АД сохраняется устойчиво повышенным, барорецепторы адаптируются к нему, и уровень их активации снижается (данный уровень АД уже считается как бы нормальным). Такого рода адаптация происходит при артериальной гипертензии, и вызываемая под влиянием применения медикаментов резкое снижение АД уже будет восприниматься барорецепторами как опасное снижение АД с последующей активизацией противодействия этому процессу. При искусственном выключении барорецепторной системы диапазон колебаний АД в течении суток значительно увеличивается, хотя в среднем остается в нормальном диапазоне(благодаря наличию других регуляторных механизмов). В частности, столь же быстро реализуется действие механизма, следящего за достаточным снабжением клеток головного мозга кислородом.

Для этого в сосудах головного мозга имеются специальные датчики, чувствительные к напряжению кислорода в артериальной крови — хеморецепторы. Поскольку наиболее частой причиной снижения напряжения кислорода служит уменьшение кровотока из-за снижения АД, сигнал от хеморецепторов поступает к высшим симпатическим центрам, которые способны повысить тонус артерий, а также стимулировать работу сердца. Благодаря этому, АД восстанавливается до уровня, необходимого для снабжения кровью клеток головного мозга.

Более медленно (в течении нескольких минут) действует третий механизм, чувствительный к изменениям АД — почечный. Его существование определяется условиями работы почек, требующих для нормальной фильтрации крови поддержание стабильного давления в почечных артериях. С этой целью в почках функционирует так называемый юкстагломерулярный аппарат (ЮГА). При снижении пульсового давления, вследствие тех или иных причин, происходит ишемия ЮГА и его клетки вырабатывают свой гормон — ренин, который преращается в крови в ангиотензин-1, который в свою очередь, благодаря ангиотензинпреращающему ферменту (АПФ), конвертируется в ангиотензин-2, который оказывает сильное сосудосуживающее действие, и АД повышается.

Ренин-ангиотензиновая система (РАС) регуляции реагирует не столь быстро и точно, нервная система, и поэтому даже кратковременное снижение АД может запустить образование значительного количества ангиотензина-2 и вызвать тем самым устойчивое повышение артериального тонуса. В связи с этим, значительное место в лечении заболеваний сердечно-сосудистой системы принадлежит препаратам, снижающим активность фермента, превращающего ангиотензин-1 в ангиотензин-2. Последний, воздействуя на, так называемые, ангиотензиновые рецепторы 1-го типа, обладает многими биологическими эффектами.

  • Сужение периферических сосудов
  • Выделение альдостерона
  • Синтез и выделение катехоламинов
  • Контроль гломерулярного кровообращения
  • Прямой антинатрийуретический эффект
  • Стимуляция гипертрофии гладкомышечных клеток сосудов
  • Стимуляция гипертрофии кардиомиоцитов
  • Стимуляция развития соединительной ткани (фиброз)

Одним из них является высвобождение альдостерона корковым веществом надпочечников. Функцией этого гормона является уменьшение выделения натрия и воды с мочой (антинатрийуретический эффект) и, соответственно, задержка их в организме, то есть, увеличение объема циркулирующей крови (ОЦК), что также повышает АД.

Ренин-ангиотензиновая система (РАС)

РАС, наиболее важная среди гуморальных эндокринных систем, регулирующих АД, которая влияет на две основные детерминанты АД — периферическое сопротивление и объем циркулирующей крови. Выделяют два вида этой системы: плазменная(системная) и тканевая. Ренин секретируется ЮГА почек в ответ на снижение давления в приносящей артериоле клубочков почек, а также при уменьшении концентрации натрия в крови.

Основное значение в образовании ангиотензина 2 из ангиотензина 1 играет АПФ, существует другой, независимый путь образования ангиотензина 2 — нециркулирующая «локальная» или тканевая ренин-ангиотензиновая паракринная система. Она находится в миокарде, почках, эндотелии сосудов, надпочечниках и нервных ганглиях и участвует в регуляции регионального кровотока. Механизм образования ангиотензина 2 в этом случае связан с действием тканевого фермента — химазы. В следствии чего может уменьшаться эффективность ингибиторов АПФ, не влияющих на этот механизм образования ангиотензина 2. Следует отметить также, что уровень активации циркулирующей РАС не имеет прямой связи с повышением АД. У многих больных (особенно пожилых) уровень ренина плазмы и ангиотензина 2 достаточно низкий.

Почему же, все-таки, возникает гипертензия?

Для того, чтобы это понять, нужно представить себе, что в организме человека есть, своего рода, весы на одной чаше которых находится прессорные(то есть повышающие давление) факторы, на другой — депрессорные(снижающие АД).

В случае, когда перевешивают прессорные факторы, давление повышается, когда депрессорные — снижается. И в норме у человека эти весы находятся в динамическом равновесии, благодаря чему давление и удерживается на относительно постоянном уровне.

Какова роль адреналина и норадреналина в развитии артериальной гипертензии?

Наибольшее значение в патогенезе артериальной гипертензии отводится гуморальным факторам. Мощной непосредственной прессорной и сосудосуживающей активностью активностью обладает катехоламины — адреналин и норадреналин , которые вырабатываются главным образом в мозговом веществе надпочечных желез. Они же являются нейромедиаторами симпатического отдела вегетативной нервной системы. Норадреналин воздействует на, так называемые альфа-адренорецепторы и действует достаточно долго. В основном сужаются периферические артериолы, что сопровождается повышением как систолического, так и диастолического АД. Адреналин возбуждая альфа- и бета-адренорецепторы(b1 — сердечной мышцы и b2 — бронхов), интенсивно, но кратковременно повышает АД, увеличивает содержание сахара в крови, усиливает тканевой обмен и потребность организма в кислороде, приводит к ускорению сердечных сокращений.

Вляние поваренной соли на АД

Кухонная или поваренная соль в избыточном количестве увеличивает объем внеклеточной и внутриклеточной жидкости, обуславливает отек стенки артерий, способствуя этим сужению их просвета. Повышает чувствительность гладких мышц к прессорным веществам и вызывает увеличение общего периферического сопротивления сосудов(ОПСС).

Какие существуют в настоящее время гипотезы возникновения артериальной гипертензии?

В настоящее время принята такая точка зрения, — причиной развития первичной (эссенциальной) является комплексное воздействие различных факторов, которые перечислены ниже.

Немодифицируемые:

  • возраст(2/3 лиц в возрасте более 55 лет имеют АГ, а если АД нормальное, вероятность развития в дальнейшем 90%)
  • наследственная предрасположенность(до 40% случаев АГ)
  • внутриутробное развитие(низкий вес при рождении). Кроме повышенного риска развития АГ, также риск связанных с АГ метаболических аномалий: инсулинрезистентность, сахарный диабет, гиперлипидемия, абдоминальный тип ожирения.

Модифицируемые факторы образа жизни(80% АГ связанно с этими факторами) :

  • курение,
  • неправильное питание(переедание, низкое содержание калия, высокое содержание соли и животных жиров, низкое содержание молочных продуктов, овощей и фруктов),
  • избыточный вес и ожирение(индекс массы тела больше 25 кг/мт2, центральный тип ожирения — объем талии у мужчин более 102 см , у женщин более 88 см ),
  • психосоциальные факторы(морально-психологический климат на работе и дома),
  • высокий уровень стресса,
  • злоупотребление алкоголем,
  • низкий уровень физических нагрузок.

Артериальная гипертензия - это стабильное повышение артериального давления - систолического до величины > 140 мм рт. ст. и/или диастолического до уровня > 90 мм рт. ст. по данным не менее чем двукратных измерений по методу Н. С. Короткова при двух или более последовательных визитах пациента с интервалом не менее 1 недели.

Артериальная гипертензия является важной и актуальной проблемой современного здравоохранения. При артериальной гипертензии значительно возрастает риск сердечно-сосудистых осложнений, она заметно снижает среднюю продолжительность жизни. Высокое артериальное давление всегда ассоциируется с увеличением риска развития мозгового инсульта, ишемической болезни сердца, сердечной и почечной недостаточности.

Различают эссенциальную (первичную) и вторичную артериальную гипертензию. Эссенциальная артериальная гипертензия составляет 90-92% (а по некоторым данным 95%), вторичная - около 8- 10% от всех случаев повышенного артериального давления.

Физиологические механизмы регуляции артериального давления

Артериальное давление формируется и поддерживается на нормальном уровне благодаря взаимодействию двух основных групп факторов:

    гемодинамических;

    нейрогуморальных.

Гемодинамические факторы непосредственно определяют уровень артериального давления, а система нейрогуморальных факторов оказывает регулирующее воздействие на гемодинамические факторы, что позволяет удерживать артериальное давление в пределах нормы.

Гемодинамические факторы, определяющие величину артериального давления

Основными гемодинамическими факторами, определяющими величину артериального давления, являются:

    минутный объем крови, т.е. количество крови, поступающей в сосудистую систему за 1 мин.; минутный объем или сердечный выброс = ударный объем крови х число сокращений сердца за 1 мин.;

    общее периферическое сопротивление или проходимость резистивных сосудов (артериол и прекапилляров);

    упругое напряжение стенок аорты и ее крупных ветвей - общее эластическое сопротивление;

    вязкость крови;

    объем циркулирующей крови.

Нейрогуморальные системы регуляции артериального давления

Регуляторные нейрогуморальные системы включают:

    систему быстрого кратковременного действия;

Система быстрого кратковременного действия

Система быстрого кратковременного действия или адаптационная система обеспечивает быстрый контроль и регуляцию артериального давления. Она включает механизмы немедленной регуляции артериального давления (секунды) и среднесрочные механизмы регуляции (минуты, часы).

Механизмы немедленной регуляции артериального давления

Основными механизмами немедленной регуляции артериального давления являются:

    барорецепторный механизм;

    хеморецепторный механизм;

    ишемическая реакция центральной нервной системы.

Барорецепторный механизм

Барорецепторный механизм регуляции артериального давления функционирует следующим образом. При повышении артериального давления и растяжении стенки артерии возбуждаются барорецепторы, расположенные в области каротидного синуса и дуги аорты, далее информация от этих рецепторов поступает в сосудодвигательный центр головного мозга, откуда исходит импульсация, приводящая к уменьшению влияния симпатической нервной системы на артериолы (они расширяются, снижается общее периферическое сосудистое сопротивление - постнагрузка), вены (происходит венодилатация, уменьшается давление наполнения сердца - преднагрузка). Наряду с этим повышается парасимпатический тонус, что приводит к уменьшению частоты сердечного ритма. В конечном итоге указанные механизмы приводят к снижению артериального давления.

Хеморецепторный механизм

Хеморецепторы, принимающие участие в регуляции артериального давления, расположены в каротидном синусе и аорте. Хеморецепторная система регулируется уровнем артериального давления и величиной парциального напряжения в крови кислорода и углекислого газа. При снижении артериального давления до 80 мм рт. ст. и ниже, а также при падении парциального напряжения кислорода и повышении углекислого газа возбуждаются хеморецепторы, импульсация от них поступает в сосудодвигательный центр с последующим повышением симпатической активности и тонуса артериол, что приводит к повышению артериального давления до нормального уровня.

Ишемическая реакция центральной нервной системы

Этот механизм регуляции артериального давления включается при быстром падении артериального давления до 40 мм рт. ст. и ниже. При такой выраженной артериальной гипотензии развивается ишемия центральной нервной системы и сосудодвигательного центра, из которого усиливается импульсация к симпатическому отделу вегетативной нервной системы, в итоге развивается вазоконстрикция и артериальное давление повышается.

Среднесрочные механизмы регуляции артериального давления

Среднесрочные механизмы регуляции артериального давления развивают свое действие в течение минут - часов и включают:

    ренин-ангиотензиновую систему (циркулирующую и локальную);

    антидиуретический гормон;

    капиллярную фильтрацию.

Ренин-ангиотензиновая система

В регуляции артериального давления активное участие принимают как циркулирующая, так и местная ренин-ангиотензиновая система. Циркулирующая ренин-ангиотензиновая система приводит к повышению артериального давления следующим образом. В юкстагломерулярном аппарате почек продуцируется ренин (его выработка регулируется активностью барорецепторов афферентных артериол и влиянием на плотное пятно концентрации натрия хлорида в восходящей части петли нефрона), под влиянием которого из ангиотензиногена образуется ангиотензин I, превращающийся под влиянием ангиотензинпревращающего фермента в ангиотензин II, который обладает выраженным сосудосуживающим действием и повышает артериальное давление. Вазоконстрикторный эффект ангиотензина II продолжается от нескольких минут до нескольких часов.

Антидиуретический гормон

Изменение секреции гипоталамусом антидиуретического гормона регулирует уровень артериального давления, причем считается, что действие антидиуретического гормона не ограничивается только среднесрочной регуляцией артериального давления, он принимает также участие в механизмах долгосрочной регуляции. Под влиянием антидиуретического гормона возрастает реабсорбция воды в дистальных канальцах почек, увеличивается объем циркулирующей крови, повышается тонус артериол, что приводит к повышению артериального давления.

Капиллярная фильтрация

Капиллярная фильтрация принимает определенное участие в регуляции артериального давления. При повышении артериального давления происходит перемещение жидкости из капилляров в интерстициальное пространство, что приводит к уменьшению объема циркулирующей крови и соответственно к снижению артериального давления.

Длительно действующая система регуляции артериального давления

Для активации длительно действующей (интегральной) системы регуляции артериального давления требуется значительно больше времени (дни, недели) по сравнению с быстродействующей (краткосрочной) системой. Длительно действующая система включает следующие механизмы регуляции артериального давления:

а) прессорный объемно-почечный механизм, функционирующий по схеме:

почки (ренин) → ангиотензин I → ангиотензин II→ клубочковая зона коры надпочечников (альдостерон) → почки (увеличение реабсорбции натрия в почечных канальцах) → задержка натрия → задержка воды → увеличение объема циркулирующей крови → увеличение АД;

б) локальную ренин-ангиотензиновую систему;

в) эндотелиальный прессорный механизм;

г) депрессорные механизмы (система простагландинов, калликреинкининовая система, эндотелиальные вазодилатирующие факторы, натрийуретические пептиды).

ИЗМЕРЕНИЕ АРТЕРИАЛЬНОГО ДАВЛЕНИЯ ПРИ ОБСЛЕДОВАНИИ БОЛЬНОГО С АРТЕРИАЛЬНОЙ ГИПЕРТЕНЗИЕЙ

Измерение артериального давления аускультативным методом Короткова является основным методом диагностики артериальной гипертензии. Для получения цифр, соответствующих истинному артериальному давлению, необходимо соблюдать следующие условия и правила измерения артериального давления.

Методика измерения артериального давления

    Условия измерения. Измерение артериального давления должно проводиться в условиях физического и эмоционального покоя. В течение 1 ч до измерения артериального давления не рекомендуется прием кофе, употребление пищи, запрещается курение, не разрешаются физические нагрузки.

    Положение больного. Измерение артериального давления производится в положении пациента сидя, лежа.

    Положение манжеты тонометра. Середина манжеты, наложенной на плечо пациента, должна находиться на уровне сердца. Если манжета расположена ниже уровня сердца, артериальное давление завышается, если выше - занижается. Нижний край манжетки должен находиться на 2.5 см выше локтевого сгиба, между манжетой и поверхностью плеча пациента должен проходить палец. Манжета накладывается на обнаженную руку - при измерении артериального давления через одежду показатели завышаются.

    Положение стетоскопа. Стетоскоп должен плотно прилегать (но без сдавления!) к поверхности плеча в месте наиболее выраженной пульсации плечевой артерии у внутреннего края локтевого сгиба.

    Выбор руки пациента для измерения артериального давления. При первом посещении пациентом врача измерение артериальное давление следует производить на обеих руках. В последующем АД измеряется на руке с более высокими его показателями. В норме разница артериального давления на левой и правой руке составляет 5-10 мм рт. ст. Более высокая разница может быть обусловлена анатомическими особенностями или патологией самой плечевой артерии правой или левой руки. Повторные измерения следует проводить всегда на одной и той же руке.

    У пожилых людей также отмечается ортостатическая гипотензия, поэтому у них целесообразно измерять артериальное давление в положении лежа и стоя.

Самоконтроль артериального давления в амбулаторных условиях

Самоконтроль (измерение артериального давления самим пациентом дома, в амбулаторных условиях) имеет огромное значение и может производиться с помощью ртутных, мембранных, а также электронных тонометров.

Самоконтроль за артериальным давлением позволяет установить «феномен белого халата» (повышение артериального давления регистрируется лишь при посещении врача), сделать заключение о поведении артериального давления в течение суток и принять решение о распределении приемов гипотензивного препарата в течение суток, что может снизить стоимость лечения и повысить его эффективность.

Суточное мониторирование артериального давления

Суточное мониторирование артериального давления - это многократное измерение артериального давления в течение суток, производимое через определенные промежутки времени наиболее часто в амбулаторных условиях (суточное амбулаторное мониторирование артериального давления) или реже - в стационаре с целью получения суточного профиля артериального давления.

В настоящее время суточное мониторирование артериального давления производится, конечно, неинвазивным методом с использованием различных типов носимых автоматических и полуавтоматических мониторных систем-регистраторов.

Установлены следующие преимущества суточного мониторирова ния артериального давления по сравнению с однократным или двукратным его измерением:

    возможность производить частые измерения артериального давления в течение суток и получить более точное представление о суточном ритме артериального давления и его вариабельности;

    возможность измерять артериальное давление в обычной повседневной, привычной для больного обстановке, что позволяет сделать заключение об истинном артериальном давлении, характерном для данного больного;

    устранение эффекта «белого халата»;

Минестерство здравоохранения РБ

Гомельский государственный медицинский университет.

Кафедра нормальной физиологии

Реферат: «Регуляция артериального давления»

Выполнила: ст-ка гр. Л-201 Ковалевская П.И.

Проверил: Мельник В.А.

Гомель,2004.

Регуляция артериального давления.

Регуляция АД направлена на поддержание его на достаточно высоком уровне с тем, чтобы обеспечить кровью все ткани тела, даже если они расположены выше сердца. Нарушение регуляции системы кровообращения ле­жит в основе многих заболеваний, в частности, оно является при­чиной становления ГБ. Четыре, основных фактора обеспечивают величину АД: общее периферическое сопротивление (ОПС), на сосная функция сердца объем циркулирующей крови и растяжи­мость сосудов. На изменение этих факторов влияют состояние центральной и вегетативной нервной системы, содержание нат­рия в организме, прессорная и депрессорная система почек, сте­роиды надпочечников и др. Следовательно, можно выделить жей-рогенные и гуморальные факторы регуляции сосудистого тонуса. Нейрогенные механизмы регуляции АД. Нерв­ная система в определенных пределах мобилизует или лимитиру­ет включение других механизмов в регуляцию АД, обеспечивает быстрые и точные приспособительные реакции системы кровооб­ращения при внезапных нагрузках и изменениях внешних усло­вий. Системный принцип организации центральной регуляции ге­модинамики признан основным. Понятие «вазомоторный центр». ассоциировавшееся до недавнего времени только с бульбарным центром; в настоящее время приобрело функциональное, собира­тельное значение, включающее деятельность различных уровней головного мозга (спинальный, продолговатый и средний_мозг, лимбико-ретикулярный комплекс, кора). Помимо центральной ре­гуляции, существуют афферентные и эфферентные звенья регу­ляции АД. Основным афферентным путем нейрогенной регуля-ции сосудистого тонуса является симпатическая нервная система. Особенно богато иннервированы артерии, меньше, но все же много нервных окончаний в обоих краях артериовенозных ана­стомозов, в стенках вен. В периферических сосудах имеются а- и-в-адренорецептопы.

В 60-х годах электрофизиологическими методами показана ин-тегративная роль симпатического аппарата спинного мозга в регуляции АД. Недавно R. Levin с соавт. (1980) доказали, что "спинальный аппарат способен поддерживать нейрогенный сосуди­стый тонус и вне связи с вышележащими отделами мозга. Кроме того, спинной мозг является и уровнем замыкания вазомоторных рефлексов. Однако, хотя сегментарные структуры и осуществляют интегративные функции в регуляции кровообращения, они нахо­дятся под «организующим» влиянием супраспинальных структур. Бульбарному вазомоторному центру долго при­давали решающее значение в регуляции АД. В структурах буль-барного отдела локализованы нейроны, получающие информацию по синокаротидному и аортальному нервам от барорецепторов аор­ты и каротидных синусов. Максимальная чувствительность баро­рецепторов находится в пределах физиологических колебаний АД: повышение давления в каротидном синусе выше 220-240 мм рт. ст. дополнительного снижения системного АД не вызывает.

Во время физической нагрузки (острый стресс) АД контролиру­ется преимущественно нервными рефлекторными механизмами. Однако при длительном воздействии эти рефлекторные механиз­мы отступают па задний план, так как наступает адаптация. Ос­новными механизмами регуляции становятся точечно -объемно-эндокринные факторы, способствующие нормализации АД . Барорепепюры каротидных синусов эффективно реагируют не только на повышение, но и на снижение АД. В этой ситуации подключаются и хеморецепторы аорты, сонных артерий регистрирующие уменьшение поступления кислорода с кровью, накопление углекислоты и продуктов метаболизма., что стимулирует бульбарный центр и симпатическийотдел вегетативной нерв-ной системы, в результате чего системное АД нормализуется за счет централизации.

Гипоталамус осуществляет как прессорные (задние отде­лы), так и депрессорные (передние отделы) реакции АД. Это условное разделение, поскольку сдвиги АД возникают при раз­дражении всех отделов гипоталамуса, что связано с диффузным распределением в нем нервных элементов с антагонистическими функциональными проявлениями. Важно, что топографически зо­ны гипоталамуса, раздражение которых вызывает повышение АД, совпадают с зонами, откуда можно вызвать эмоционально окра­шенные поведенческие реакции. Установлены прямые связи меж­ду нейронами спинного и продолговатого мозга и гипоталамусом. Стимуляция гипоталамуса, в том числе эмоциональный стресс, подавляет барорецепторные рефлексы и таким образом повышают АД.

Кора больших полушарий координирует деятельность всех нижележащих центров вегетативной нервной системы с разнооб­разными проявлениями жизнедеятельности организма.

В последние годы показано, что любой орган сам регулирует свое локальное сопротивление (ауторегуляция) и скорость тока крови. Миогенная теория ауторегуляции кровотока сводится к тому, что повышение АД обусловливает увеличение констрикции мышц резистивных сосудов, а снижение - дилатацию сосу­дов. Защитное значение такого противодействия непереносимому для капилляров давлению очевидно. Этот процесс происходит ав­тономно и не имеет нервно-рефлекторной природы. Филогенети­чески древние механизмы обладают высокой устойчивостью и на­дежностью. В клинике практически не приходится иметь дело с патологией, обусловленной первичным нарушением системы са­морегуляции кровообращения. Тем не менее при различных па тологических состояниях вышедшая из-под контроля нервных механизмов саморегуляция становится нецелесообразной и усугубляет нарушение гемодинамики.

Гуморальные факторы регуляции АД. К гумо­ральным факторам регуляции-АД относят катехоламины, ренин-ангиотеизлн-альдостероновую систему, простагландипы, кинин-калликреиновую систему, стероиды, а также посредники биологи ческого действия перечисленных веществ - циклические нуклео-тидьА

Катехоламины. Адреналин и норадреналин продуцируемые мозговым слоем надпочечников, который представляет собой трансформировавшийся в онтогенезе симпатический ганглий; его деятельность функционально интегрирована с симпатической нервной системой. Норадреналин - вазоконстрикторное вещество, влияющее преимущественно на а-адренорецепторы мембран глад­ких мышц. Адреналин активирует как а-, так и |3-адренорецепторы. Существует предположение, что динамика адреналина боль­ше отражает активность симпатико-адреналовой системы, чем норадреналина, поскольку адреналин из надпочечников непосред­ственно поступает в кровоток, концентрация норадреналина в кро­ви зависит от многих факторов (повторный захват, скорость вы­хода из синаптической щели и др.). Дофамин (предшественник; норадреналина) в больших количествах повышает АД, в малых - снижает. Дофамин является важным медиатором не только цен­тральных, но и периферических нейронов. Благодаря наличию» специфических дофаминергических рецепторов он играет сущест­венную роль в регуляции почечного кровотока и натрий-уреза.. В состоянии покоя для поддержания исходного периферического-тонуса сосудов в основном имеет значение норадреналин, так как его концентрация во много раз выше, чем адреналина; при физи­ческих и эмоциональных стрессах возрастает роль адреналина в регуляции АД.

Часть 1

Артериальная гипертензия (АГ) — один из видов сердечно-сосудистой патологии, значительно влияющей на заболеваемость и смертность. Различают первичную (эссенциальную) и вторичную (симптоматическую) артериальную гипертензию. Эссенциальная гипертензия это гетерогенное заболевание с прогрессирующим поражением органов и систем с различающимися на начальных этапах механизмами развития. Основное значение она имеет среди лиц среднего и пожилого возраста. Вторичные гипертензии, к которым относится эндокринная, составляют 15% случаев в популяции. При этом у детей они встречаются значительно чаще, чем у взрослых, а в младшем школьном возрасте вторичные гипертензии преобладают . В данной статье рассматривается один из распространенных видов вторичной артериальной гипертензии — гипертензии, обусловленной эндокринными заболеваниями.

Физиологические механизмы регуляции артериального давления

Давление крови создается благодаря тому, что сердце выбрасывает кровь в сосуды, преодолевая большое сопротивление ее движению. Сосудистый тонус определяется, главным образом, состоянием их гладкой мускулатуры.

В артериальных сосудах кровяное давление значительно колеблется в зависимости от фазы сердечного цикла — систолы, диастолы. Систолическое артериальное давление (САД) формируется за счет энергии систолы желудочков в период изгнания из них крови. Диастолическое артериальное давление (ДАД) определяется эластичностью стенок артериальных сосудов.

В здоровом организме поддержание нормального уровня АД осуществляет многокомпонентная система, которая представлена нейрогенными, гуморальными и локальными факторами. Они действуют в неразрывной связи друг с другом и являются взаимодополняющими.

Управление прессорными и депрессорными реакциями связано с деятельностью бульбарного сосудодвигательного центра. Оно контролируется гипоталамическими структурами и корой головного мозга и реализуется через изменение активности симпатических и парасимпатических нервов.

На деятельность вегетативной нервной системы оказывают влияние как генетические факторы, так и факторы внешней среды (стрессы, физическая активность, масса тела). Повышение активности симпатической нервной системы (СНС) приводит к усилению сократительной деятельности миокарда и увеличению тонуса гладкой мускулатуры сосудов. Гипертензивный эффект симпатической нервной системы реализуется также через подавление синтеза оксида азота (NO), который обладает сосудорасширяющим действием. Помимо непосредственного влияния, гипоталамус координирует сосудистый тонус через эндокринную систему (нейрогипофиз и аденогипофиз).

Быстрая регуляция АД осуществляется выделением адреналина и норадреналина из мозгового слоя надпочечников. Оба гормона по-разному влияют на АД. Адреналин повышает АД преимущественно благодаря усилению работы сердца, минутного объема, частоты пульса. Норадреналин, образующийся в нейронах, оказывает непосредственное влияние на сосудистый тонус. Прессорный эффект адреналина значительно сильнее. Влияя непосредственно на адренорецепторы, которые вызывают вазоконстрикцию, норадреналин повышает как систолическое, так и диастолическое АД .

Ренин-ангиотензин-альдо-стеро-новая система (РААС) формирует фундамент современных представлений о регуляции АД.

Ренин — протеолитический фермент, синтезируется в юкстагломерулярном аппарате почек. Он принадлежит к числу почечных прессорных факторов. Его влияние на сосудистый тонус опосредуется через ангиотензин. Попав в кровь, ренин превращает ангиотензиноген в ангиотензин I. Выделение ренина контролируется тремя основными механизмами: барорецепторами стенок приносящей почечной артерии, которые стимулируются при снижении перфузионного давления; рецепторами сердца и крупных артерий, которые активируют симпатическую нервную систему, приводя к повышению уровня катехоламинов в крови и прямой стимуляции юкстагломерулярного аппарата (через β-адренорецепторы); содержанием ионов натрия в дистальных канальцах нефронов. Ингибиторами освобождения ренина являются ангиотензин II, тромбоксан, эндотелин, NO, предсердный натрийуретический пептид (ПНУП).

Ангиотензиноген — пептид, синтезирующийся в печени. Глюкокортикоиды, эстрогены, инсулин, гормоны щитовидной железы усиливают выработку этого белка. При уменьшении содержания натрия в организме, сопровождающемся повышением уровня ренина, скорость метаболизма ангиотензиногена резко возрастает. Механизм повышения печеночной продукции ангиотензиногена неясен, хотя известно, что ангиотензин II стимулирует продукцию первого.

Ангиотензиноген, не обладающий прессорной активностью, гидролизуется, образуя ангиотензин I — биологически неактивное вещество. Под действием ангиотензинпревращающего фермента (АПФ) ангиотензин I переходит в ангиотензин II, который является высокоактивным эндогенным прессорным фактором. АПФ также ингибирует брадикинин, т. е. он сам по себе является ключевым элементом регуляции АД.

Ангиотензин II является основным гормоном в цепочке РААС, вызывающим быстрое повышение АД и общее периферическое сопротивление сосудов (ОПСС). Он стимулирует синтез и секрецию альдостерона в надпочечниках и секрецию антидиуретического гормона, возбуждает симпатическую систему (за счет облегчения секреции норадреналина нервными окончаниями и повышения чувствительности гладкомышечных волокон к этому трансмиттеру). Под воздействием ангиотензина II возрастает секреция адреналина, увеличивается сердечный выброс.

Подобную ренин-ангиотензин-альдостероновую систему обнаружили в различных органах и тканях (сердце, почках, мозге, кровеносных сосудах). Показано, что активность тканевых РААС зависит во многом не от АПФ, а от других ферментов (химаз, катепсина G и др.). Повышенная активность тканевых РААС обуславливает долговременные эффекты ангиотензина II, которые проявляются структурно-функциональными изменениями в органах-мишенях.

Физиологические эффекты ангиотензина II реализуются через специфические ангиотензиновые рецепторы. Существуют два класса рецепторов ангиотензина II — АТ1 и АТ2. Сердечно-сосудистые, почечные, надпочечниковые эффекты ангиотензина II реализуются через рецепторы АТ1.

Действуя непосредственно на кору надпочечников, ангиотензин II стимулирует секрецию альдостерона, а также его предшественников — менее активных минералокортикоидов — дезоксикортикостерона, 18-оксикортизона, 18-гидроксидезоксикортикостерона. Основным стимулятором выработки альдостерона является ренин. Отчасти его секреция зависит от адренокортикотропного гормона (АКТГ).

Альдостерон играет ключевую роль в регуляции баланса натрия и калия. Синтез и секреция альдостерона регулируется двумя путями. Медленный механизм зависит от баланса К + /Na + и поддерживает базальную секрецию. Повышение уровня калия в сыворотке крови стимулирует синтез альдостерона в клубочковой зоне коры надпочечников. Быстрый путь регуляции зависит от объема циркулирующей крови (ОЦК) и контролируется ренин-ангиотензиновой системой. Альдостерон оказывает свое специфическое действие через минералокортикоидный рецептор, который находится в эпителиальных клетках (дистальных отделах нефрона и других органов), осуществляющих транспорт натрия. Непосредственно эффект альдостерона осуществляется путем усиления поступления натрия в клетку и активации Na + /K + -помпы, причем не только в почечных канальцах, но и в кишечнике, потовых и слюнных железах. Также альдостерон участвует в процессах ремоделирования сосудов и фиброза миокарда.

Вазопрессин — антидиуретический гормон (АДГ) гипоталамуса, накапливается в задней доле гипофиза и затем секретируется в кровь. Вазопрессин увеличивает ОЦК, повышает тонус сосудов, повышая периферическое сопротивление. Развитию гипертензии способствует повышение чувствительности сосудистой стенки к констрикторному действию катехоламинов, под влиянием АДГ.

Эстрогены и глюкокортикоиды увеличивают концентрацию альдостерона в сыворотке опосредованно, через увеличение продукции ангиотензиногена в печени и повышение образования ангиотензина II. Прессорный эффект глюкокортикоидов осуществляется также путем повышения чувствительности сосудистой стенки к воздействию катехоламинов.

Итак, гормоны принимают непосредственное участие в регуляции сосудистого тонуса. При патологии эндокринных органов это может формировать выраженную и стойкую гипертензию.

Механизм обратной связи обеспечивается функцией барорецепторов, которые располагаются в дуге аорты, синокаротидной зоне и артериях почек. При повышении АД через эти рефлексогенные зоны усиливается депрессорное влияние на сосудодвигательный центр, что приводит к угнетению симпатической и повышению парасимпатической активности с уменьшением образования гипертензионных факторов. Это снижает частоту и силу сердечных сокращений и периферическое сопротивление.

Мощным вазодилататором, снижающим АД, является предсердный натрийуретический пептид, который синтезируется кардиомиоцитами предсердия. Он активно выделяется при растяжении предсердия, вызываемого гиперволемией, при стимуляции β- адренорецепторов, воздействии ангиотензина II, эндотелина и гипернатриемии. Этот пептид усиливает выделение почками натрия, подавляет РААС, СНС, вазоконстрикторные факторы сосудистого эндотелия.

Корригирует базовую регуляцию АД система эндотелинов. Эндотелины — пептиды, синтезирующиеся в клетках эндотелия, вызывают вазоконстрикцию, действуя на эндотелиновые рецепторы типа А. Меньшая часть эндотелина, взаимодействуя с эндотелиновыми рецепторами типа В, стимулирует синтез оксида азота (NO) и вызывает вазодилатацию. Синтез NO увеличивается также под влиянием умеренной физической нагрузки, ангиотензина II, вазопрессина, катехоламинов.

Другими эндотелиальными факторами, существенно влияющими на расширение сосудов, являются кинины. Представителямии этой группы являются брадикинин и каллидин. Кинины оказывают сосудорасширяющее действие путем активации простагландинов и оксида азота; обладают натрийуретическим и диуретическим действием. Эти вазоактивные факторы эндотелия сосудов реализуются через их воздействие на гладкую мускулатуру сосудов .

В основе развития АГ при некоторых эндокринных заболеваниях лежит избыточная продукция и секреция гормонов, оказывающих прямое или косвенное влияние на спазм сосудов. Своевременная диагностика эндокринной патологии позволяет правильно трактовать причину повышения АД и исключить эссенциальную гипертонию.

Гипотиреоз и тиреотоксикоз

Тиреоидные гормоны оказывают прямое действие на функцию сердца и сосудистый тонус. Артериальная гипертензия встречается как при гипотиреозе, так и при тиреотоксикозе.

При гипотиреозе повышается преимущественно ДАД. Это связано с брадикардией, ослаблением сократительной способности миокарда. Скорость кровотока снижается, и объем циркулирующей крови уменьшается. Нарушается секреция натрийуретического гормона, что вызывает задержку натрия и воды в организме. Секреция ренина и альдостерона не изменяется. Увеличивается чувствительность сосудистых рецепторов к циркулирующим катехоламинам. Сосудистое сопротивление повышено более чем на 50%, время диастолического наполнения увеличено. Способствует развитию АГ гиперлипидемия (64%), ускоряющая формирование атеросклеротического процесса. В таком случае она схожа с эссенциальной АГ.

Повышение АД является частым симптомом тиреотоксикоза. Патогенез АГ при тиреотоксикозе связан с увеличением сердечного выброса, увеличением минутного объема крови, активизацией калликреин-кининовой системы, гиперсекрецией адреномедуллина, функционального гиперкортицизма.

Тиреоидные гормоны непосредственно связываются с кардиомиоцитами, оказывая положительный инотропный эффект. Они повышают чувствительность и экспрессию адренорецепторов и, как следствие, повышают чувствительность к катехоламинам. Происходит увеличение частоты сердечных сокращений, ускоряется кровоток. Систолическое давление нарастает. АГ при тиреотоксикозе называют синдромом высокого выброса, при этом гипертрофия левого желудочка отсутствует. Последнее объясняют снижением диастолического АД.

Сосуды кожи компенсаторно расширяются (реакция для отдачи тепла). На ощупь они теплые и влажные. Снижены общее и периферическое сопротивление. Показано, что при тиреотоксикозе активируется кинин-калликреиновая система. В последние годы доказано участие адреномедуллина в снижении ДАД у больных с тиреотоксикозом. Пептид адреномедуллин обладает очень выраженной вазодилататорной активностью.

Повышение систолического АД и тенденция к снижению диастолического АД сопровождается увеличением пульсового АД. Больные могут ощущать пульсацию в голове при каждой систоле. Пульс характеризуется быстрым нарастанием и внезапным спадом пульсовой волны (pulsus celer et altus). Кроме того, тиреотоксикоз сопровождается увеличением ОЦК и эритроцитарной массы. Стойкое повышение АД выявляется у больных со стажем заболевания более 3 лет. У больных с тиреотоксикозом значительно чаще, чем в популяции в целом, формируется гипертоническая болезнь .

Гиперпаратиреоз

АГ при гиперпаратиреозе обусловлена действием избыточного количества ионизированного кальция на тонус сосудов. Для сокращения гладкомышечных клеток сосудов необходимы ионы кальция, которые поступают в цитоплазму клеток и взаимодействуют с белком кальмодулином. Образующийся комплекс (кальций + кальмодулин) активирует киназу легких цепей миозина, результатом чего является сокращение гладких мышечных волокон. Кальций в повышенной концентрации может чрезмерно усиливать процессы клеточного метаболизма. Трансмембранный перенос ионов кальция осуществляется через специальные кальциевые каналы. Поскольку концентрации ионов кальция в крови тесно связана с сократимостью гладких мышц, гиперкальциемия приводит к повышению сопротивления кровотока в периферических артериях. С другой стороны, избыток кальция, раздражая симпатическую нервную систему, опосредованно стимулирует выброс катехоламинов. Экспериментальные данные показали, что вызываемое кальцием увеличение ОПСС резко снижается после адреналэктомии. Длительный избыток кальция может привести к кальцификации кровеносных сосудов и повышению АД .

Сахарный диабет

Сахарный диабет (СД) признан всемирной неинфекционной патологией. Увеличение продолжительности жизни больных сахарным диабетом выдвинуло на первый план проблему поздних сосудистых осложнений. Сахарный диабет и артериальная гипертензия — две взаимосвязанные патологии, которые обладают мощным взаимоусиливающим повреждающим действием, направленным сразу на несколько органов-мишеней: сердце, сосуды мозга, сетчатки.

Механизмы развития АГ при СД 1-го и 2-го типов различаются. При СД 1-го типа АГ в 90% случаев формируется вследствие диабетической нефропатии (ДН). Микроальбуминурия (ранняя стадия ДН) выявляется у больных СД 1-го типа с длительностью болезни менее 5 лет, а повышение АД, как правило, развивается через 10-15 лет от дебюта СД 1-го типа.

Гипергликемия является основной причиной, вызывающей повреждение микроциркуляторного русла, в том числе сосудов клубочков. Хроническая гипергликемия активирует процессы неферментативного гликозилирования белков, полиоловый путь метаболизма глюкозы и прямую глюкозотоксичность.

Поскольку эндотелиальные клетки сосудов являются инсулиннезависимыми, глюкоза беспрепятственно проникает внутрь клеток, вызывая их дисфункцию. Неферментативное гликозилирование белков, превращение глюкозы в сорбитол при участии фермента альдоредуктазы, длительное и неконтролируемое при СД 1-го типа воздействие глюкозы на структуру клеток, связанное с активацией фермента протеинкиназы С, приводит к повышению проницаемости стенок сосудов и пролиферации клеток, ускоряя процессы склерозирования тканей, нарушению внутриорганной гемодинамики .

Гиперлипидемия, развивающаяся при СД 1-го типа, также способствует развитию диабетической нефропатии. При СД 1-го типа в крови накапливаются атерогенный холестерин липопротеидов низкой (ЛПНП) и очень низкой плотности (ЛПОНП) и триглицеридов. Гиперлипидемия вызывает повреждение эндотелия, базальной мембраны клубочков, пролиферацию мезангия.

В основе формирования АГ при СД 1-го типа лежит устойчивое повышение внутриклубочкового давления, которые многие авторы связывают с нарушением тонуса артериол клубочков в результате эндотелиальной дисфункции. Снижается эффективность NO за счет уменьшения его образования и увеличения его разрушения, снижения плотности мускариноподобных рецепторов, активизация которых приводит к синтезу NO, повышению активности АПФ на поверхности эндотелиальных клеток, катализирующего превращение ангиотензина I в ангиотензин II, а также выработке эндотелина I и других вазоконстрикторных субстанций. Увеличение образования ангиотензина II приводит к спазму эффекторных артериол и повышению соотношения диаметра приносящей и выносящей артериол.

Ключевая роль в развитии АГ и почечной недостаточности отводится ангиотензину II. Установлено, что местная почечная концентрация ангиотензина II в 1000 раз превышает содержание его в плазме. Механизмы патогенного действия ангиотензина II обусловлены не только его мощным вазоконстрикторным действием, но и пролиферативной, прооксидантной и протромбиновой активностью. Одновременно ангиотензин II оказывает повреждающее действие и на другие ткани, в которых его активность высока (сердце, эндотелий сосудов), поддерживая высокое АД.

Профилактика и лечение АГ у больных СД 1-го типа заключается в достижении оптимальной компенсации углеводного обмена и коррекции внутрипочечной гемодинамики. С этой целью используются ингибиторы АПФ. Эти препараты рекомендуется назначать на стадии микроальбуминурии (каптоприл, эналаприл, рамиприл и др.) .

Метаболический синдром

Метаболический синдром (МС) объединяет группу разных заболеваний, тесно ассоциированных с СД 2-го типа. В основе МС лежит инсулинорезистентность (ИР) и гиперинсулинемия (ГИ). Самыми часто сочетаемыми компонентами МС являются абдоминальное ожирение, артериальная гипертензия и атерогенная дислипидемия (повышение уровня триглицеридов и снижение содержания холестерина липопротеинов высокой плотности (ХЛПВП). По некоторым данным у подростков с ожирением до 50% выявляется метаболический синдром.

В отличие от подкожного жира, который составляет 75% от всей жировой ткани организма и является основным хранилищем липидов, абдоминальный жир в настоящее время рассматривают как самостоятельный эндокринный орган. В его адипоцитах синтезируется значительное количество различных биологически активных веществ, участвующих в метаболизме глюкозы, жиров, воспалении, коагуляции, пищевом поведении, регуляции сосудистого тонуса.

Абдоминальное ожирение, ассоциированное с МС, является ключевым механизмом в формировании АГ. Оказалось, что жировая ткань занимает второе место после печени по образованию ангиотензиногена. При ожирении в адипоцитах повышено содержание ренина, активность АПФ, значительно увеличено содержание ангиотензина II, повышена экспрессия рецепторов ангиотензина II типа 1 (АТ1-рецепторов). Активность тканевой ренин-ангиотензиновой ситемы тесно связана с продукцией адипокинов жировой тканью.

Нарушение липидного обмена приводит к избыточному отложению жира в тканях, снижению активности ферментов, участвующих в метаболизме глюкозы. В эндотелии сосудов активизируется протеинкиназа, которая угнетает синтез оксида азота.

С другой стороны, ИР приводит к развитию компенсаторной гиперинсулинемии, которая долгое время может поддерживать нормальный углеводный обмен. Взаимосвязь ГИ и АГ настолько прочна, что при выявлении у больного высокой концентрации инсулина плазмы можно прогнозировать развитие в скором времени АГ.

В высоких концентрациях инсулин повышает активность симпатоадреналовой системы, реабсорбцию натрия и воды в проксимальных канальцах почек, усиливает пролиферацию гладкомышечных клеток сосудов, блокирует активность Na + /K + -АТФазы и Ca 2+ /Mg 2+ -АТФазы, увеличивая внутриклеточное содержание Na + и Ca 2+ , что повышает чувствительность сосудов к воздействию вазоконстрикторов.

Усиление активности симпатической нервной системы при избытке жировой массы приводит к нарастанию сердечного выброса и частоты сердечных сокращений, повышению реабсорбции натрия, а в целом — к увеличению внутрисосудистого объема крови.

Причина развития ИР не ясна. Предполагают, что в основе развития периферической ИР лежит гиперактивность ренин-ангиотензиновой системы. Ангиотензин II в высоких концентрациях конкурирует с инсулином на уровне инсулиновых рецепторов (IRS 1 и 2), тем самым препятствуя действию его на уровне клеток. С другой стороны, имеющаяся ИР и ГИ активирует АТ1-рецепторы ангиотензина II, приводя к реализации механизмов развития АГ.

Итак, при МС основную роль в развитии АГ, сердечно-сосудистых осложнений и прогрессировании атеросклероза играет высокая активность ренин-ангиотензиновой системы. В основе лечения МС лежит снижение массы тела (см. лечение ожирения) и повышение чувствительности рецепторов к инсулину. С этой целью рекомендуются бигуаниды (метформин (Сиофор, Глюкофаж и др.)), которые тормозят всасывание глюкозы в кишечнике, угнетают скорость образования ее в печени, увеличивают количество глюкозных транспортеров в клетках-мишенях .

Ожирение

АГ тесно связана с избыточной массой тела и ожирением. У подростков такое сочетание встречается в 30% случаев. Основной причиной возрастания распространенности ожирения и его осложнений является энергетический дисбаланс между избытком поступления энергии в виде продуктов и ее расходованием в результате сниженной двигательной активности.

Первичное ожирение (конституцио-нально-экзогенное) представляет собой самостоятельную нейроэндокринную болезнь, зависящую от нарушения адипозно-гипоталамических взаимоотношений. При этой форме имеет место относительная или абсолютная лептиновая недостаточность на алиметарно-гиподинамическом фоне.

Самой распространенной формой вторичного ожирения у подростков является гипоталамический синдром пубертатного периода (пубертатно-юношеский диспитуитаризм). Сущность заболевания обусловлена дисрегуляцией гипоталамусом гормонов (либеринов), главным образом повышением секреции кортиколиберина в пубертатном периоде. В клинике больные предъявляют жалобы на головные боли, жажду, утомляемость, избыточную массу тела. Чаще встречается у лиц женского пола. Ожирение с равномерным распределение жира. На коже имеются полосы растяжения разного цвета. У девочек менструальный цикл нередко нарушается. Лицо мальчиков женоподобно, растительность на нем скудная. Часто выявляется гинекомастия, стрии.

АГ при этих формах заболевания связывают с гемодинамическими изменениями: увеличением объема циркулирующей крови, ударного и сердечного выброса при «неадекватно нормальном» периферическом сопротивлении. При вторичной форме она усугубляется гиперпродукцией АКТГ и кортизола. Клинически АГ может проявляться в виде умеренного повышения артериального давления; у некоторых повышается до гипертонических кризов.

Эффект лечения ожирения, метаболического синдрома и связанной с ними артериальной гипертензии зависит от мотивации пациента к изменению образа жизни, который предполагает повышенную физическую активность и диету со сниженной калорийностью. Физические упражнения позитивно влияют на эмоциональное и психологическое здоровье личности. Физическая активность способствует расходу большого количества углеводов, выходу из депо нейтральных жиров, их расщеплению и преобразованию. Она должна соответствовать возрастным и индивидуальным особенностям больных, обеспечивая повышенные энергозатраты. Это утренняя зарядка, прогулки, плавание, танцы, катание на лыжах и велосипеде, массаж и т. д. Физическая нагрузка должна быть средней интенсивности, способствующей усиленному расходу углеводов и жиров. В пище рекомендуется ограничить прием соли, животных жиров, быстроусвояемых углеводов. Для коррекции гипоталамо-гипофизарных нарушений назначают препараты, улучшающие трофику и микроциркуляцию (Кавинтон, Ноотропил и др.). Из гипотензивных препаратов у этой группы больных предпочтительно применять ингибиторы АПФ, так как они оказывают органопротективный эффект, а также диуретки в небольших дозах .

Окончание статьи читайте в следующем номере.

В. В. Смирнов 1 , доктор медицинских наук, профессор
М. Д. Утев
А. И. Морозкина

ГБОУ ВПО РНИМУ им. Н. И. Пирогова МЗ РФ, Москва