Физиология дыхания в перинатальном периоде. Первый вдох ребенка, причины его возникновения

Сколько стоит написать твою работу?

Выберите тип работы Дипломная работа (бакалавр/специалист) Часть дипломной работы Магистерский диплом Курсовая с практикой Курсовая теория Реферат Эссе Контрольная работа Задачи Аттестационная работа (ВАР/ВКР) Бизнес-план Вопросы к экзамену Диплом МВА Дипломная работа (колледж/техникум) Другое Кейсы Лабораторная работа, РГР Он-лайн помощь Отчет о практике Поиск информации Презентация в PowerPoint Реферат для аспирантуры Сопроводительные материалы к диплому Статья Тест Чертежи далее »

Спасибо, вам отправлено письмо. Проверьте почту .

Хотите промокод на скидку 15% ?

Получить смс
с промокодом

Успешно!

?Сообщите промокод во время разговора с менеджером.
Промокод можно применить один раз при первом заказе.
Тип работы промокода - "дипломная работа ".

Физиология дыхания и спинного мозга человека


1. ФИЗИОЛОГИЯ ДЫХАНИЯ

а) роль СО2 , периферических и центральных хеморецепторов в гуморальной регуляции вентиляции легких

б) механизм первого вдоха новорожденного

в) факторы регуляции кислородной ёмкости крови

г) изменения дыхания при физической работе и в условиях высокогорья

2. ФИЗИОЛОГИЯ СПННОГО МОЗГА

а) функциональная классификация нейронов спинного мозга, их афферентные и эфферентные связи

б) классификация спинальных рефлексов

в) функции альфа- и гамма –мотонейронов спинного мозга

г) функциональные основы развития спинального шока


1. ФИЗИОЛОГИЯ ДЫХАНИЯ


Дыхание - физиологическая функция, обеспечивающая газообмен (О2 и СО2) между окружающей средой и организмом в соответствии с его метаболическими потребностями.

Дыхание протекает в несколько стадий: 1) внешнее дыхание - обмен О2 и СО2 между внешней средой и кровью легочных капилляров. В свою очередь внешнее дыхание можно разделить на два процесса: а) газообмен между внешней средой и альвеолами легких, что обозначается как «легочная вентиляция»; б) газообмен между альвеолярным воздухом и кровью легочных капилляров; 2) транспорт О2 и СО2 кровью; 3) обмен О2 и СО2 между кровью и клетками организма; 4) тканевое дыхание.

Дыхание осуществляет перенос О2 из атмосферного воздуха к клеткам организма, а в обратном направлении производит удаление СО2, который является важнейшим продуктом метаболизма клеток.

Транспорт О2 и СО2 в организме человека и животных на значительные расстояния, например в пределах воздухоносных путей, легких и в системе кровообращения, осуществляется конвекционно. Перенос О2 и СО2 на незначительные расстояния, например между альвеолярным воздухом и кровью, а также между кровью и клетками тканей организма осуществляется путем диффузии. Каждая из стадий дыхательной функции в соответствии с метаболическими потребностями клеток организма регулируется нервными и гуморальными механизмами.


а) роль СО 2 , периферических и центральных хеморецепторов в гуморальной регуляции вентиляции легких


Альвеолярная вентиляция является частью общей вентиляции легких, которая достигает альвеол. Альвеолярная вентиляция непосредственно влияет на содержание О2 и СО2 в альвеолярном воздухе и таким образом определяет характер газообмена между кровью и воздухом, заполняющим альвеолы. В процессе легочной вентиляции непрерывно обновляется газовый состав альвеолярного воздуха. Газы, входящие в состав атмосферного, альвеолярного и выдыхаемого воздуха, имеют определенное парциальное (partialis - частичный) давление, т.е. давление, приходящееся на долю данного газа в смеси газов. Альвеолярный воздух представлен смесью в основном О2, СО2 и N2. Кроме того, в альвеолярном воздухе содержатся водяные пары, которые также оказывают определенное парциальное давление, поэтому при общем давлении смеси газов 760,0 мм рт.ст. парциальное давление 02(Ро2) в альвеолярном воздухе составляет около 104,0 мм рт.ст., СО2(Рсо2) - 40,0 мм рт.ст. N2(PN2) - 569,0 мм рт.ст. Парциальное давление водяных паров при температуре 37 °С составляет 47 мм рт.ст.

На состав газов в альвеолах легких влияет не только вентиляция легких и величина анатомического мертвого пространства, но и перфузия кровью легочных капилляров. Если вентиляция относительно перфузии избыточна, то состав альвеолярного воздуха приближается к составу вдыхаемого воздуха. Напротив, в случае недостаточной вентиляции состав альвеолярного воздуха приближается к газовому составу венозной крови. Различие в соотношении альвеолярной вентиляции и перфузии легочных капилляров могут возникать как в целом легком, так и в его региональных участках. На особенности локального кровотока в легочных капиллярах влияет прежде всего состав альвеолярного воздуха. Например, низкое содержание О2 (гипоксия), а также понижение содержания СО2 (гипокапния) в альвеолярном воздухе вызывают повышение тонуса гладких мышц легочных сосудов и их сужение.

Основная функция дыхательной системы заключается в обеспечении газообмена О2 и СО2 между окружающей средой и организмом в соответствии с его метаболическими потребностями. В целом эту функцию регулирует сеть многочисленных нейронов ЦНС, которые связаны с дыхательным центром продолговатого мозга.

Под дыхательным центром следует понимать совокупность нейронов специфических (дыхательных) ядер продолговатого мозга, способных генерировать дыхательный ритм.

Поддержание постоянства газового состава внутренней среды организма регулируется с помощью центральных и периферических хеморецепторов.

В нормальных (физиологических) условиях дыхательный центр получает афферентные сигналы от периферических и центральных хеморецепторов, сигнализирующих соответственно о парциальном давлении О2 в крови и концентрации Н+ во внеклеточной жидкости мозга.

Центральные хеморецепторы расположены в структурах продолговатого мозга, и они чувствительны к изменению рН межклеточной жидкости мозга. Эти рецепторы стимулируются ионами водорода, концентрация которых зависит от рСО2 в крови. При снижении рН интерстициальной жидкости мозга (концентрация водородных ионов растет) дыхание становится более глубоким и частым. Напротив, при увеличении рН угнетается активность дыхательного центра и снижается вентиляция легких.

Периферические (артериальные) хеморецепторы расположены в дуге аорты и месте деления общей сонной артерии (каротидный синус). Эти рецепторы вызывают рефлекторное увеличение легочной вентиляции в ответ на снижение рО2 в крови (гипоксемия).

В период бодрствования деятельность дыхательного центра регулируется дополнительными сигналами, исходящими из различных структур ЦНС. У человека это, например, структуры, обеспечивающие речь. Речь (пение) может в значительной степени отклонить от нормального уровень газов крови, даже снизить реакцию дыхательного центра на гипоксию или гиперкапнию. Афферентные сигналы от хеморецепторов тесно взаимодействуют с другими афферентными стимулами дыхательного центра, но, в конечном счете, химический, или гуморальный, контроль дыхания всегда доминирует над нейрогенным. Например, человек произвольно не может бесконечно долго задерживать дыхание из-за нарастающих во время остановки дыхания гипоксии и гиперкапнии.

Дыхательный центр выполняет две основные функции в системе дыхания: моторную, или двигательную, которая проявляется в виде сокращения дыхательных мышц, и гомеостатическую, связанную с изменением характера дыхания при сдвигах содержания О2 и СО2 во внутренней среде организма.


б) механизм первого вдоха новорожденного


Известно, что дыхательные движения у плода возникают на 13-й неделе внутриутробного периода. Однако они происходят при закрытой голосовой щели. В период родов нарушается трансплацентарное кровообращение, а при пережатии пуповины у новорожденного - его полное прекращение, что вызывает значительное снижение парциального давления кислорода (рО2), повышение рСО2, снижение рН. В связи с этим возникает импульс от рецепторов аорты и сонной артерии к дыхательному центру, а также изменение соответствующих параметров среды вокруг самого дыхательного центра, т.е. гиперкапния и гипоксия раздражают хеморецепторы каротидных и аортальных рефлексогенных зон и хемочувствительные образования дыхательного центра, что приводит к возбуждению его инспираторного отдела и возникновению первого вдоха новорожденного. Так, например, у здорового новорожденного ребенка рО2 снижается с 80 до 15 мм, рт. ст., рСО2 возрастает с 40 до 70 мм. рт. ст., а рН падает ниже 7,35. Наряду с этим имеет значение и раздражение кожных рецепторов. Резкое изменение температуры и влажности вследствие перехода от внутриутробного окружения к пребыванию в атмосфере воздуха в комнате является дополнительным импульсом для дыхательного центра. Меньшее значение, вероятно, имеет тактильная рецепция при прохождении по родовым путям и во время приема новорожденного.

Сокращение диафрагмы создает отрицательное внутригрудное давление, что облегчает вхождение воздуха в дыхательные пути. Более значительное сопротивление вдыхаемому воздуху оказывают поверхностное натяжение в альвеолах и вязкость жидкости, находящейся в легких. Силы поверхностного натяжения в альвеолах уменьшаются сурфактантом. Легочная жидкость быстро всасывается лимфатическими сосудами и кровеносными капиллярами, если происходит нормальное расправление легкого.

Считается, что в норме отрицательное внутрилегочное давление достигает 80 см. вод. ст., а объем вдыхаемого воздуха при первом вдохе составляет более 80 мл., что значительно выше остаточного объема.

Как правило, после нескольких дыхательных движений легочная ткань становится равномерно прозрачной.

Регуляция дыхания осуществляется дыхательным центром, расположенным в ретикулярной формации ствола мозга в области дна IV желудочка. Дыхательный центр состоит из трех частей: медуллярной, которая начинает и поддерживает чередование вдоха и выдоха.

Апноэтической, которая вызывает длительный инспираторный спазм (расположена на уровне средней и нижней части моста мозга). Пневмотаксической, которая оказывает тормозящее влияние на апноэтическую часть (расположена на уровне верхней части моста мозга).

Регуляция дыхания осуществляется центральными и периферическими хеморецепторами, причем центральные хеморецепторы являются основными (в 80%) в регуляции дыхания. Центральные хеморецепторы более чувствительны к изменению рН, и их главная функция состоит в поддержании постоянства Н+ ионов в спинномозговой жидкости. СО2 свободно диффундирует через гематоэнцефалический барьер. Нарастание концентрации Н+ в спинномозговой жидкости стимулирует вентиляцию. Периферические хемо- и барорецепторы, особенно каротидные и аортальные, чувствительны к изменению содержания кислорода и углекислого газа. Они функционально активны к рождению ребенка.

В то же время пневмотаксическая часть дыхательного центра созревает лишь на протяжении первого года жизни, чем и объясняется выраженная аритмичность дыхания. Апноэ наиболее часты и длительны у недоношенных детей, причем, чем ниже масса тела, тем чаще и длительнее апноэ. Это свидетельствует о недостаточной зрелости пневмотаксической части дыхательного центра. Но еще большее значение в прогнозе выживаемости недоношенных детей имеет быстро нарастающее учащение дыхания в первые минуты жизни новорожденного. Это свидетельство недостаточности развития также апноэтической части дыхательного центра.


в) факторы регуляции кислородной ёмкости крови


Транспорт О2 осуществляется в физически растворенном и химически связанном виде. Физические процессы, т. е. растворение газа, не могут обеспечить запросы организма в О2. Подсчитано, что физически растворенный О2 может поддерживать нормальное потребление О2 в организме (250 мл*мин-1), если минутный объем кровообращения составит примерно 83 л*мин-1 в покое. Наиболее оптимальным является механизм транспорта О2 в химически связанном виде.

Согласно закону Фика, газообмен О2 между альвеолярным воздухом и кровью происходит благодаря наличию концентрационного градиента О2 между этими средами. В альвеолах легких парциальное давление О2 составляет 13,3 кПа, или 100 мм рт.ст., а в притекающей к легким венозной крови парциальное напряжение О2 составляет примерно 5,3 кПа, или 40 мм рт.ст. Давление газов в воде или в тканях организма обозначают термином «напряжение газов» и обозначают символами Ро2, Рсo2. Градиент О2 на альвеолярно-капиллярной мембране, равный в среднем 60 мм рт.ст., является одним из важнейших, но не единственным, согласно закону Фика, факторов начальной стадии диффузии этого газа из альвеол в кровь.

Транспорт О2 начинается в капиллярах легких после его химического связывания с гемоглобином.

Гемоглобин (Нb) способен избирательно связывать О2 и образовывать оксигемоглобин (НbО2) в зоне высокой концентрации О2 в легких и освобождать молекулярный О2 в области пониженного содержания О2 в тканях. При этом свойства гемоглобина не изменяются и он может выполнять свою функцию на протяжении длительного времени.

Гемоглобин переносит О2 от легких к тканям. Эта функция зависит от двух свойств гемоглобина: 1) способности изменяться от восстановленной формы, которая называется дезоксигемоглобином, до окисленной (Нb + О2  НbО2) с высокой скоростью (полупериод 0,01 с и менее) при нормальном Рог в альвеолярном воздухе; 2) способности отдавать О2 в тканях (НbО2  Нb + О2) в зависимости от метаболических потребностей клеток организма.

Зависимость степени оксигенации гемоглобина от парциального давления Ог в альвеолярном воздухе графически представляется в виде кривой диссоциации оксигемоглобина, или сатурационной кривой (рис. 8.7). Плато кривой диссоциации характерно для насыщенной О2 (сатурированной) артериальной крови, а крутая нисходящая часть кривой - венозной, или десатурированной, крови в тканях.

На сродство кислорода к гемоглобину влияют различные метаболические факторы, что выражается в виде смещения кривой диссоциации влево или вправо. Сродство гемоглобина к кислороду регулируется важнейшими факторами метаболизма тканей: Ро2 pH, температурой и внутриклеточной концентрацией 2,3-дифосфоглицерата. Величина рН и содержание СО2 в любой части организма закономерно изменяют сродство гемоглобина к О2: уменьшение рН крови вызывает сдвиг кривой диссоциации соответственно вправо (уменьшается сродство гемоглобина к О2), а увеличение рН крови - сдвиг кривой диссоциации влево (повышается сродство гемоглобина к О2). Например, рН в эритроцитах на 0,2 единицы ниже, чем в плазме крови. В тканях вследствие повышенного содержания СО2 рН также меньше, чем в плазме крови. Влияние рН на кривую диссоциации оксигемоглобина называется «эффектом Бора».

Рост температуры уменьшает сродство гемоглобина к О2. В работающих мышцах увеличение температуры способствует освобождению О2. Уменьшение температуры тканей или содержания 2,3-дифосфоглицерата вызывает сдвиг влево кривой диссоциации оксигемоглобина.

Метаболические факторы являются основными регуляторами связывания О2 с гемоглобином в капиллярах легких, когда уровень O2, рН и СО2 в крови повышает сродство гемоглобина к О2 по ходу легочных капилляров. В условиях тканей организма эти же факторы метаболизма понижают сродство гемоглобина к О2 и способствуют переходу оксигемоглобина в его восстановленную форму - дезоксигемоглобин. В результате О2 по концентрационному градиенту поступает из крови тканевых капилляров в ткани организма.

Оксид углерода (II) - СО, способен соединяться с атомом железа гемоглобина, изменяя его свойства и реакцию с О2. Очень высокое сродство СО к Нb (в 200 раз выше, чем у О2) блокируют один или более атомов железа в молекуле гема, изменяя сродство Нb к О2.

Под кислородной емкостью крови понимают количество Ог, которое связывается кровью до полного насыщения гемоглобина. При содержании гемоглобина в крови 8,7 ммоль*л-1 кислородная емкость крови составляет 0,19 мл О2 в 1 мл крови (температура 0oC и барометрическое давление 760 мм рт.ст., или 101,3 кПа). Величину кислородной емкости крови определяет количество гемоглобина, 1 г которого связывает 1,36-1,34 мл О2. Кровь человека содержит около 700-800 г гемоглобина и может связать таким образом почти 1 л О2. Физически растворенного в 1 мл плазмы крови О2 очень мало (около 0,003 мл), что не может обеспечить кислородный запрос тканей. Растворимость О2 в плазме крови равна 0,225 мл*л-1*кПа-1.

Обмен О2 между кровью капилляров и клетками тканей также осуществляется путем диффузии. Концентрационный градиент О2 между артериальной кровью (100 мм рт.ст., или 13,3 кПа) и тканями (около 40 мм рт.ст., или 5,3 кПа) равен в среднем 60 мм рт.ст. (8,0 кПа). Изменение градиента может быть обусловлено как содержанием О2 в артериальной крови, так и коэффициентом утилизации О2, который составляет в среднем для организма 30- 40%. Коэффициентом утилизации кислорода называется количество О2, отданного при прохождении крови через тканевые капилляры, отнесенное к кислородной емкости крови.

С другой стороны, известно, что при напряжении О2 в артериальной крови капилляров, равном 100 мм рт.ст. (13,3 кПа), на мембранах клеток, находящихся между капиллярами, эта величина не превышает 20 мм рт.ст. (2,7 кПа), а в митохондриях равна в среднем 0,5 мм рт.ст. (0,06 кПа).


г) изменения дыхания при физической работе и в условиях высокогорье

Дыхание при физической работе

При физической нагрузке потребление О2 и продукция СО2 возрастают в среднем в 15-20 раз. Одновременно усиливается вентиляция и ткани организма получают необходимое количество О2, а из организма выводится CO2.

Каждый человек имеет индивидуальные показатели внешнего дыхания. В норме частота дыхания варьирует от 16 до 25 в минуту, а дыхательный объем - от 2,5 до 0,5 л. При мышечной нагрузке разной мощности легочная вентиляция, как правило, пропорциональна интенсивности выполняемой работы и потреблению О2 тканями организма. У нетренированного человека при максимальной мышечной работе минутный объем дыхания не превышает 80 л*мин-1, а у тренированного может быть 120-150 л*мин-1 и выше. Кратковременное произвольное увеличение вентиляции может составлять 150-200 л*мин-1.

В момент начала мышечной работы вентиляция быстро увеличивается, однако в начальный период работы не происходит каких-либо существенных изменений рН и газового состава артериальной и смешанной венозной крови. Следовательно, в возникновении гиперпноэ в начале физической работы не участвуют периферические и центральные хеморецепторы как важнейшие чувствительные структуры дыхательного центра, чувствительные к гипоксии и к понижению рН внеклеточной жидкости мозга.

Уровень вентиляции в первые секунды мышечной активности регулируется сигналами, которые поступают к дыхательному центру из гипоталамуса, мозжечка, лимбической системы и двигательной зоны коры большого мозга. Одновременно активность нейронов дыхательного центра усиливается раздражением проприоцепторов работающих мышц. Довольно быстро первоначальный резкий прирост вентиляции легких сменяется ее плавным подъемом до достаточно устойчивого состояния, или так называемого плато. В период «плато», или стабилизации вентиляции легких, происходит снижение Рао2 и повышение Расо2 крови, усиливается транспорт газов через аэрогематический барьер, начинают возбуждаться периферические и центральные хеморецепторы. В этот период к нейрогенным стимулам дыхательного центра присоединяются гуморальные воздействия, вызывающие дополнительный прирост вентиляции в процессе выполняемой работы. При тяжелой физической работе на уровень вентиляции будут влиять также повышение температуры тела, концентрация катехоламинов, артериальная гипоксия и индивидуально лимитирующие факторы биомеханики дыхания.

Состояние «плато» наступает в среднем через 30 с после начала работы или изменения интенсивности уже выполняемой работы. В соответствии с энергетической оптимизацией дыхательного цикла повышение вентиляции при физической нагрузке происходит за счет различного соотношения частоты и глубины дыхания. При очень высокой легочной вентиляции поглощение О2 дыхательными мышцами сильно возрастает. Это обстоятельство ограничивает возможность выполнять предельную физическую нагрузку. Окончание работы вызывает быстрое снижение вентиляции легких до некоторой величины, после которой происходит медленное восстановление дыхания до нормы.

Дыхание при подъеме на высоту

С увеличением высоты над уровнем моря падает барометрическое давление и парциальное давление О2, однако насыщение альвеолярного воздуха водяными парами при температуре тела не изменяется. На высоте 20 000 м содержание О2 во вдыхаемом воздухе падает до нуля. Если жители равнин поднимаются в горы, гипоксия увеличивает у них вентиляцию легких, стимулируя артериальные хеморецепторы. Изменения дыхания при высотной гипоксии у разных людей различны. Возникающие во всех случаях реакции внешнего дыхания определяются рядом факторов: 1) скорость, с которой развивается гипоксия; 2) степень потребления О2 (покой или физическая нагрузка); 3) продолжительность гипоксического воздействия.

Первоначальная гипоксическая стимуляция дыхания, возникающая при подъеме на высоту, приводит к вымыванию из крови СО2 и развитию дыхательного алкалоза. Это в свою очередь вызывает увеличение рН внеклеточной жидкости мозга. Центральные хеморецепторы реагируют на подобный сдвиг рН в цереброспинальной жидкости мозга резким снижением своей активности, что затормаживает нейроны дыхательного центра настолько, что он становится нечувствительным к стимулам, исходящим от периферических хеморецепторов. Довольно быстро гиперпноэ сменяется непроизвольной гиповентиляцией, несмотря на сохраняющуюся гипоксемию. Подобное снижение функции дыхательного центра увеличивает степень гипоксического состояния организма, что чрезвычайно опасно, прежде всего для нейронов коры большого мозга.

При акклиматизации к условиям высокогорья наступает адаптация физиологических механизмов к гипоксии. К основным факторам долговременной адаптации относятся: повышение содержания СО2 и понижение содержания О2 в крови на фоне снижения чувствительности периферических хеморецепторов к гипоксии, а также рост концентрации гемоглобина.


2. ФИЗИОЛОГИЯ СПННОГО МОЗГА


а) функциональная классификация нейронов спинного мозга, их афферентные и эфферентные связи


Спинной мозг - наиболее древнее образование центральной нервной системы; он впервые появляется у ланцетника.

Приобретая новые связи и функции в ходе эволюции, спинной мозг высших организмов сохраняет старые связи и функции, которые у него возникли на всех предыдущих этапах развития.

Характерной чертой организации спинного мозга является периодичность его структуры в форме сегментов, имеющих входы в виде задних корешков, клеточную массу нейронов (серое вещество) и выходы в виде передних корешков.

Спинной мозг человека имеет 31-33 сегмента: 8 шейных (СI- CVIII), 12грудных (ТI-TXII), 5 поясничных (LI-LV), S крестцовых (SI-SV), 1-3 копчиковых (CoI-СоIII).

Морфологических границ между сегментами спинного мозга не существует, поэтому деление на сегменты является функциональным и определяется зоной распределения в нем волокон заднего корешка и зоной клеток, которые образуют выход передних корешков. Каждый сегмент через свои корешки иннервирует три метамера тела и получает информацию также от трех метамеров тела. В итоге перекрытия каждый метамер тела иннервируется тремя сегментами и передает сигналы в три сегмента спинного мозга.

Спинной мозг человека имеет два утолщения: шейное и поясничное - в них содержится большее число нейронов, чем в остальных его участках.

Волокна, поступающие по задним корешкам спинного мозга, выполняют функции, которые определяются тем, где и на каких нейронах заканчиваются данные волокна.

В опытах с перерезкой и раздражением корешков спинного мозга показано, что задние корешки являются афферентными, чувствительными, центростремительными, а передние - эфферентными, двигательными, центробежными (закон Белла-Мажанди).

Афферентные входы в спинной мозг организованы аксонами спинальных ганглиев, лежащих вне спинного мозга, и аксонами экстра- и интрамуральных ганглиев симпатического и парасимпатического отделов автономной нервной системы.

Первая группа афферентных входов спинного мозга образована чувствительными волокнами, идущими от мышечных рецепторов, рецепторов сухожилий, надкостницы, оболочек суставов. Эта группа рецепторов образует начало так называемой проприоцептивной чувствительности. Проприоцептивные волокна по толщине и скорости проведения возбуждения делятся на 3 группы (табл. 1). Волокна каждой группы имеют свои пороги возникновения возбуждения.


Таблица 1. Классификация афферентных входов спинного мозга

Рецептирующая

Скорость

проведения

возбуждения, м/с

волокон, мкм

Рецепторы
Проприорецептивная:


группы волокон





12-20 110-120 Аннулоспиральные мышечные веретена
II 4-12 35-70 Вторичные окончания мышечных веретен
III 1-4 10-24

Пластинчатые тельца

(тельца Фатера-Пачини)

Кожная:
мнелинизированные волокна 6-17 66 Механо- и терморецепторы

немиелнннзированные

1-6 21 То же

1-2 0.5
Висцеральная:

группы волокон



1,2-3,0 2,5-14 Пластинчатые тельца (тельца Фатера-Пачини) брыжейки
В 3-4 14-25

Механорецепторы полых

С 0.2-1.2 0,5-2.5 Хеморецепторы, рецепторы растяжения пищеварительного тракта

Вторая группа афферентных входов спинного мозга начинается от кожных рецепторов: болевых, температурных, тактильных, давления - и представляет собой кожную рецептирующую систему.

Третья группа афферентных входов спинного мозга представлена рецептирующими входами от висцеральных органов; это висцеро-рецептивная система.

Эфферентные (двигательные) нейроны расположены в передних рогах спинного мозга, и их волокна иннервируют всю скелетную мускулатуру.

Нейроны спинного мозга образуют его серое вещество в виде симметрично расположенных двух передних и двух задних рогов в шейном, поясничном и крестцовом отделах. Серое вещество распределено на ядра, вытянутые по длине спинного мозга, и на поперечном разрезе располагается в форме буквы Н. В грудном отделе спинной мозг имеет, помимо названных, еще и боковые рога.

Задние рога выполняют главным образом сенсорные функции и содержат нейроны, передающие сигналы в вышележащие центры, в симметричные структуры противоположной стороны либо к передним рогам спинного мозга.

В передних рогах находятся нейроны, дающие свои аксоны к мышцам. Все нисходящие пути центральной нервной системы, вызывающие двигательные реакции, заканчиваются на нейронах передних рогов. В связи с этим Шеррингтон назвал их «общим конечным путем».

Начиная с I грудного сегмента спинного мозга и до первых поясничных сегментов, в боковых рогах серого вещества располагаются нейроны симпатического, а в крестцовых - парасимпатического отдела автономной (вегетативной) нервной системы.

Спинной мозг человека содержит около 13 млн. нейронов, из них 3% - мотонейроны, а 97% - вставочные. Функционально нейроны спинного мозга можно разделить на 4 основные группы:

1) мотонейроны, или двигательные, - клетки передних рогов, аксоны которых образуют передние корешки;

2) интернейроны - нейроны, получающие информацию от спинальных ганглиев и располагающиеся в задних рогах. Эти нейроны реагируют на болевые, температурные, тактильные, вибрационные, проприоцептивные раздражения;

3)симпатические, парасимпатические нейроны расположены преимущественно в боковых рогах. Аксоны этих нейронов выходят из спинного мозга в составе передних корешков;

4) ассоциативные клетки - нейроны собственного аппарата спинного мозга, устанавливающие связи внутри и между сегментами.


б) классификация спинальных рефлексов


Функциональное разнообразие нейронов спинного мозга, наличие в нем афферентных нейронов, интернейронов, мотонейронов и нейронов автономной нервной системы, а также многочисленных прямых и обратных, сегментарных, межсегментарных связей и связей со структурами головного мозга - все это создает условия для рефлекторной деятельности спинного мозга с участием как собственных структур, так и головного мозга. Подобная организация позволяет реализовывать все двигательные рефлексы тела, диафрагмы, мочеполовой системы и прямой кишки, терморегуляции, сосудистые рефлексы и т. д.

Рефлекторные реакции спинного мозга зависят от места, силы раздражения, площади раздражаемой рефлексогенной зоны, скорости проведения по афферентным и эфферентным волокнам и, наконец, от влияния головного мозга. Сила и длительность рефлексов спинного мозга увеличивается при повторении раздражения (суммация).

Собственная рефлекторная деятельность спинного мозга осуществляется сегментарными рефлекторными дугами.

Сегментарная рефлекторная дуга состоит из рецептивного поля, из которого импульсация по чувствительному волокну нейрона спинального ганглия, а затем по аксону этого же нейрона через задний корешок входит в спинной мозг, далее аксон может идти прямо к мотонейрону переднего рога, аксон которого подходит к мышце. Так образуется моносинаптическая рефлекторная дуга, которая имеет один синапс между афферентным нейроном спинального ганглия и мотонейроном переднего рога. Эти рефлекторные дуги образуются в таких рефлексах, которые возникают только при раздражении рецепторов аннулоспиральных окончаний мышечных веретен.

Другие спинальные рефлексы реализуются с участием интернейронов заднего рога или промежуточной области спинного мозга. В итоге возникают полисинаптические рефлекторные дуги.

Миотатические рефлексы - рефлексы на растяжение мышцы. Быстрое растяжение мышцы, всего на несколько миллиметров механическим ударом по ее сухожилию приводит к сокращению всей мышцы и двигательной реакции. Например, легкий удар по сухожилию надколенной чашечки вызывает сокращение мышц бедра и разгибание голени. Дуга этого рефлекса следующая: мышечные рецепторы четырехглавой мышцы бедра  спинальный ганглий  задние корешки  задние рога III поясничного сегмента  мотонейроны передних рогов того же сегмента  экстрафузальные волокна четырехглавой мышцы бедра. Реализация этого рефлекса была бы невозможна, если бы одновременно с сокращением мышц-разгибателей не расслаблялись мышцы-сгибатели. Рефлекс на растяжение свойствен всем мышцам, но у мышц-разгибателей, они хорошо выражены и легко вызываются.

Рефлексы с рецепторов кожи носят характер, зависящий от силы раздражения, вида раздражаемого рецептора, но чаще всего конечная реакция выглядит в виде усиления сокращения мышц-сгибателей.

Висцеромоторные рефлексы возникают при стимуляции афферентных нервов внутренних органов и характеризуются появлением двигательных реакций мышц грудной клетки и брюшной стенки, мышц разгибателей спины.

Рефлексы автономной нервной системы имеют свои пути. Они начинаются от различных рецепторов, входят в спинной мозг через задние корешки, задние рога, далее в боковые рога, нейроны которых через передний корешок посылают аксоны не непосредственно к органам, а к ганглию симпатического или парасимпатического отдела автономной нервной системы.

Автономные (вегетативные) рефлексы обеспечивают реакцию внутренних органов, сосудистой системы на раздражение висцеральных, мышечных, кожных рецепторов. Эти рефлексы отличаются большим латентным периодом (ЛП) двумя фазами реакции: первая - ранняя - возникает с ЛП 7-9 мс и реализуется ограниченным числом сегментов, вторая - поздняя - возникает с большим ЛП - до 21 мс и вовлекает в реакцию практически все сегменты спинного мозга. Поздний компонент вегетативного рефлекса обусловлен вовлечением в него вегетативных центров головного мозга.

Сложной формой рефлекторной деятельности спинного мозга является рефлекс, реализующий произвольное движение. В основе реализации произвольного движения лежит γ-афферентная рефлекторная система. В нее входят пирамидная кора, экстрапирамидная система, α- и γ-мотонейроны спинного мозга, экстра- и интрафузальные волокна мышечного веретена.

При травмах у человека в ряде случаев происходит полное или половинное пересечение спинного мозга. При половинном латеральном повреждении спинного мозга развивается синдром Броун-Секара. Он проявляется в том, что на стороне поражения спинного мозга (ниже места поражения) развивается паралич двигательной системы вследствие повреждения пирамидных путей. На противоположной поражению стороне движения сохраняются.

На стороне поражения (ниже места поражения) нарушается проприоцептивная чувствительность. Это обусловлено тем, что восходящие пути глубокой чувствительности идут по своей стороне спинного мозга до продолговатого мозга, где происходит их перекрест.

На противоположной стороне туловища (относительно повреждения спинного мозга) нарушается болевая чувствительность, так как проводящие пути болевой чувствительности кожи идут от спинального ганглия в задний рог спинного мозга, где переключаются на новый нейрон, аксон которого переходит на противоположную сторону. В итоге если повреждена левая половина спинного мозга, то исчезает болевая чувствительность правой половины туловища ниже повреждения. Полную перерезку спинного мозга в экспериментах на животных производят для исследования влияния вышележащих отделов ЦНС на нижележащие.


в) функции альфа- и гамма –мотонейронов спинного мозга


Аксон мотонейрона своими терминалами иннервирует сотни мышечных волокон, образуя мотонейронную единицу. Чем меньше мышечных волокон иннервирует один аксон (т. е. чем меньше количественно мотонейронная единица), тем более дифференцированные, точные движения выполняет мышца.

Несколько мотонейронов могут иннервировать одну мышцу, в этом случае они образуют так называемый мотонейронный пул. Возбудимость мотонейронов одного пула различна,

Похожие рефераты:

Автоматизм дыхания: зарождение импульсов в стволе головного мозга. Дорсальная и вентральная дыхательные группы медуллярных нейронов. Гуморальная регуляция с помощью центральных и периферических хеморецепторов. Патогенез дыхательной недостаточности.

Дыхательная функция легких и патофизиологические механизмы гипоксемии и гиперкапнии. Показатели эффективности легочной вентиляции. Причины нарушения диффузии газов через альвеолярно-капиллярную мембрану. Описание функций легких, не связанных с дыханием.

Нисходящие проводящие пути. Пирамидальные проводящие пути. Главный двигательный, или пирамидный корково-спинномозговой путь. Корково-ядерный путь. Корково-спинномозговые (пирамидные) пути. Экстрапирамидальные проводящие пути.

Понятие и процесс эволюции нервной системы. Головной мозг и его развитие. Строение и функции продолговатого, заднего и спинного мозга. Лимбическая система: строение, функции, роль. Зоны коры больших полушарий. Симпатическая вегетативная нервная система.

Нервные центры и свойства нервных центров. Торможение в ЦНС. Координация реакций организма. Физиология спинного мозга. Задний мозг. Дыхательный центр. Механизм действия гормонов

Во внутриутробном периоде развития легкие не являются органом внешнего дыхания плода, эту функцию выполняет плацента. Но задолго до рождения появляются дыхательные движения, которые необходимы для нормального развития легких. Легкие до начала вентиляции заполнены жидкостью (около 100 мл).

Рождение вызывает резкие изменения состояния дыхательного центра, приводящие к началу вентиляции. Первый вдох наступает через 15-70 секунд после рождения, обычно после пережатия пуповины, иногда – до него, т.е. сразу после рождения.

Факторы, стимулирующие первый вдох:

    Наличие в крови гуморальных раздражителей дыхания: СО 2 , Н + и недостаток О 2 . В процессе родов, особенно после перевязки пуповины, напряжение СО 2 и концентрация Н + возрастают, усиливается гипоксия. Но сами по себе гиперкапния, ацидоз и гипоксия не объясняют наступления первого вдоха. Возможно, что у новорожденных небольшие уровни гипоксии могут возбуждать дыхательный центр, действуя непосредственно на ткань мозга.

    Не менее важный фактор, стимулирующий первый вдох, - резкое усиление потока афферентных импульсов от рецепторов кожи (холодовых, тактильных), проприорецепторов, вестибулорецепторов, наступающее в процессе родов и сразу после рождения. Эти импульсы активируют ретикулярную формацию ствола мозга, которая повышает возбудимость нейронов дыхательного центра.

    Стимулирующим фактором является устранение источников торможения дыхательного центра. Раздражение жидкостью рецепторов, расположенных в области ноздрей, сильно тормозит дыхание (рефлекс «ныряльщика»). Поэтому сразу при рождении головки плода из родовых путей, акушеры удаляют слизь и оклоплодные воды из воздухоносных путей.

Таким образом, возникновение первого вдоха – результат одновременного действия ряда факторов.

Первый вдох новорожденного характеризуется сильным возбуждением инспираторных мышц, прежде всего диафрагмы. В 85 % случаев первый вдох более глубокий, а первый дыхательный цикл более длительный, чем последующие дыхательные циклы. Происходит сильное снижение внутриплеврального давления. Это необходимо для преодоления силы трения между жидкостью, находящейся в воздухоносных путях и их стенкой, а также для преодоления силы поверхностного натяжения альвеол на границе жидкость – воздух после попадания в них воздуха. Длительность первого вдоха 0,1–0,4 сек., а выдоха в среднем 3,8 сек. Выдох происходит на фоне суженной голосовой щели и сопровождается криком. Объем выдыхаемого воздуха меньше, чем вдыхаемого, что обеспечивает начало формирования ФОЕ. ФОЕ увеличивается от вдоха к вдоху. Аэрация легких обычно заканчивается ко 2-4 дню после рождения. ФОЕ в этом возрасте составляет около 100 мл. С началом аэрации начинается функционировать малый круг кровообращения. Жидкость, оставшаяся в альвеолах, всасывается в кровеносное русло и лимфу.

У новорожденных ребра расположены с меньшим наклоном, чем у взрослых, поэтому сокращения межреберных мышц менее эффективно изменяют объем грудной полости. Спокойное дыхание у новорожденных является диафрагмальным, инспираторные мышцы работают только при крике и одышке.

Новорожденные всегда дышат носом. Частота дыхания вскоре после рождения в среднем около 40 в минуту. Воздухоносные пути у новорожденных узкие, их аэродинамическое сопротивление в 8 раз выше, чем у взрослых. Легкие малорастяжимы, но податливость стенок грудной полости высокая, результатом этого являются низкие величины эластической тяги легких. Для новорожденных характерен относительно небольшой резервный объем вдоха и относительно большой резервный объем выдоха. Дыхание новорожденных нерегулярно, серии частых дыханий чередуются с более редкими дыханиями, 1-2 раза в минуту возникают глубокие вздохи. Могут наступать задержки дыхания на выдохе (апноэ) до 3 и более секунд. У недоношенных новорожденных может наблюдаться дыхание типа Чейн-Стокса. Деятельность дыхательного центра координируется с активностью центров сосания и глотания. При кормлении частота дыхания обычно соответствует частоте сосательных движений.

Возрастные изменения дыхания:

После рождения до 7-8 лет идут процессы дифференцировки бронхиального дерева и увеличения количества альвеол (особенно в первые три года). В подростковом возрасте происходит увеличение объема альвеол.

Минутный объем дыхания увеличивается с возрастом почти в 10 раз. Но для детей в целом характерен высокий уровень вентиляции легких, приходящийся на единицу массы тела (относительной МОД). Частота дыхания с возрастом уменьшается, особенно сильно в течение первого года после рождения. С возрастом ритм дыхания становиться более стабильным. У детей длительность вдоха и выдоха почти равны. Увеличение продолжительности выдоха у большинства людей происходит в подростковом возрасте.

С возрастом совершенствуется деятельность дыхательного центра, развиваются механизмы, обеспечивающие четкую смену дыхательных фаз. Постепенно формируется способность детей к произвольной регуляции дыхания. С конца первого года жизни дыхание участвует в речевой функции.

8.7. ИССЛЕДОВАНИЯ ОБМЕНА ВЕЩЕСТВ И ПРЕВРАЩЕНИЯ ЭНЕРГИИ В ОРГАНИЗМЕ

Обмен веществ в организме взаимосвязан с превращением энергии. Потенциальная энергия сложных органических соединений, поступивших с пищей, превращается в тепловую, механическую и электрическую энергии. Энергия расходуется не только на поддержание температуры тела и выполнение работы, но и на воссоздание структурных элементов клеток, обеспечение их жизнедеятельности, роста и развития организма.

Теплообразование в организме носит 2-х фазный характер. При окислении белков, жиров и углеводов большая часть энергии превращается в теплоту (первичная теплота), а меньшая используется для синтеза АТФ, т.е. для аккумулирования в макроэргических связях. При окислении углеводов 77.3 % энергии химической связи глюкозы рассеивается в виде тепла, а 22,7 % идет на синтез АТФ. Аккумулированная в АТФ энергия используется в дальнейшем для механической работы, электрических процессов и в конечном счете тоже превращается в теплоту (вторичная теплота). Т.о., количество тепла, образовавшегося в организме, - это мера суммарной энергии химических связей, подвергшихся биологическому окислению. Энергия, образовавшаяся в организме, может быть выражена в единицах измерения тепла – калориях или джоулях.

Для исследования процессов энергообразования в организме используют: прямую калориметрию, непрямую калориметрию и исследование валового обмена.

Прямая калориметрия основана на непосредственном учете тепла, выделенного организмом. Биокалориметр – это герметизированная и хорошо теплоизолированная от внешней среды камера, куда подается О 2 и поглощается избыток СО 2 и паров. В ней по трубкам циркулирует вода. Тепло, выделяемое человеком или животным, находящимся в камере, нагревает циркулирующую воду, что позволяет по количеству протекающей воды и изменению ее температуры рассчитать количество тепла, выделенного исследуемым организмом.

Т.к. теплообразование в организме обеспечивается окислительными процессами, возможна непрямая калориметрия , т.е. косвенное, непрямое определение теплообразования по газообмену – учету потребленного О 2 и выделенного СО 2 с последующим расчетом теплопродукции.

Для длительных исследований газообмена используют специальные респираторные камеры (закрытые способы непрямой калориметрии) – например, респираторный аппарат Шатерникова. Кратковременное определение газообмена проводят некамерными методами (открытые способы непрямой калориметрии).

Наиболее распространен способ Дугласа-Холдейна. В течение нескольких минут собирают выдыхаемый воздух в мешок из воздухонепроницаемой ткани (мешок Дугласа). Затем измеряют объем выдохнутого воздуха и определяют в нем количество О 2 и СО 2 .

Дыхательным коэффициентом (ДК) называется отношение объема выделенного СО 2 к объему поглощенного О 2 .

ДК при окислении углеводов, белков и жиров различен. Окисление 1 г каждого из этих веществ требует неодинакового количества О 2 и сопровождается освобождением различного количества тепла.

При окислении углеводов ДК=1. Например, итог окисления глюкозы: С 6 Н 12 О 6 + 6О 2 = 6СО 2 + 6Н 2 О. Число молекул образовавшегося СО 2 равно числу молекул затраченного О 2 . А равное количество молекул газа, при одинаковой температуре и одинаковом давлении, занимает один и тот же объем (закон Авогадро-Жерара).

При окислении белков ДК = 0,8; жиров ДК = 0,7. Когда человек находится на смешанном питании в стандартных условиях ДК = 0,85 – 0,86.

Калорический эквивалент кислорода (КЭК) или калорическая стоимость кислорода – это количество тепла, выделяемого организмом после потребления 1 л кислорода.

Данный показатель зависит от ДК и определяется по специальным таблицам, где каждому значению ДК соответствует определенное значение калорической стоимости кислорода. Например: ДК=0,8; КС=4,801 ккал. ДК=0,9; КС=4,924.

Т.о., данные газоанализа переводят в тепловые единицы.

После определения объема кислорода, потребленного в единицу времени (сутки, час, минута), появляется возможность определить количество тепла, выделенного организмом за это время (КЭК, умноженный на объём потреблённого кислорода).

Во время работы ДК повышается и в большинстве случаев приближается к 1. Это объясняется тем, что во время напряженной мышечной работы главным источником энергии является окисление углеводов. После завершения работы ДК сначала повышается, затем резко снижается, и только спустя 30-50 мин нормализуется. Эти изменения ДК после работы не отражают истинного отношения между используемым в данный момент кислородом и выделенным СО 2 .

ДК в начале восстановительного периода повышается из-за того, что во время работы в мышцах накапливается молочная кислота, на окисление которой не хватало кислорода (кислородный долг). Молочная кислота поступает в кровь и вытесняет СО 2 из гидрокарбонатов, присоединяя основания. Благодаря этому количество выделенного СО 2 становится больше количества СО 2 , образовавшегося в данный момент в тканях.

Обратная картина наблюдается в дальнейшем, когда молочная кислота постепенно исчезает из крови. Одна ее часть окисляется, другая ресинтезируется в гликоген, третья выделяется с потом и мочой. По мере уменьшения количества молочной кислоты освобождаются основания. Основания связывают СО 2 и образуют гидрокарбонаты. Поэтому ДК падает вследствие задержки в крови СО 2 , поступающей из тканей.

Исследование валового обмена – это длительное (на протяжении суток) определение газообмена, которое дает возможность не только найти теплопродукцию организма, но и решить вопрос о том, за счет окисления каких веществ шло теплообразование. Для этого, помимо использовавшегося кислорода и выделившегося СО 2 определяются выделенные с мочой азот (1 г азота содержится в 6,25 г белка) и углерод (в белках содержится примерно 53% углерода).

Основной обмен (ОО) – это показатель, отражающий уровень энергетических процессов в стандартных условиях, которые максимально приближены к состоянию функционального покоя организма.

Энерготраты в условиях ОО связаны с поддержанием минимально необходимого для жизни клеток уровня окислительных процессов и с деятельностью постоянно работающих органов и систем – дыхательной мускулатуры, сердца, почек, печени, с поддержанием мышечного тонуса. Освобождение в ходе этих процессов тепловой энергии обеспечивает теплопродукцию, необходимую для поддержания температуры тела.

5 условий определения ОО.

    Время. Исследование проводят утром до 9 часов после сна.

    Натощак (через 12-16 часов после приема пищи), так как прием и действие пищи вызывает интенсификацию энергетических процессов (специфическое динамическое действие пищи). СДДП сохраняется в течение нескольких часов. При белковой пище обмен увеличивается на 30%, при жирах и углеводах на 14-15%.

    Температура комфорта в помещении: 18-20 град.С. (температура, барометрическое давление, влажность воздуха и т.д. могут оказывать влияние на интенсивность окислительных процессов).

    Исследование проводится лежа, т.е. в состоянии мышечного покоя.

    Предварительно исключается прием фармакологических препаратов, влияющих на энергетические процессы, а также наркотических веществ.

В данных условиях у здорового человека ОО составляет от 1600 до 1800 ккал в сутки в зависимости от: 1.Возраста, 2. Пола, 3Массы тела (веса), 4. Роста.

Формулы и таблицы ОО – средние данные большого числа исследованных здоровых людей разного пола, возраста, массы тела и роста. Допустимые колебания – 10%.

Несоразмерно высокие величины ОО наблюдаются при избыточной функции щитовидной железы. Понижение ОО встречается при недостаточности щитовидной железы (микседема), гипофиза, половых желез.

Интенсивность ОО, пересчитанная на 1 кг массы тела, у детей значительно выше, чем у взрослых. Величина ОО человека в возрасте 20-40 лет сохраняется на довольно постоянном уровне. В пожилом возрасте ОО снижается.

Правило поверхности – затраты энергии теплокровными животными пропорциональны поверхности тела.

Если пересчитать интенсивность ОО на 1 кг массы тела, то окажется, что у разных видов животных и даже у людей с разной массой тела и ростом этот показатель сильно различается. Если же произвести перерасчет интенсивности ОО на 1 м 2 поверхности тела, то полученные результаты различаются не столь резко.

Это правило относительно. У 2-х индивидуумов с одинаковой поверхностью тела обмен веществ может значительно различаться. Уровень окислительных процессов определяется не столько теплоотдачей с поверхности тела, сколько теплопродукцией, зависящей от биологических особенностей вида животных и состояния организма, которое обусловлено деятельностью нервной, эндокринной и других систем.

Обмен энергии при физическом труде .

Мышечная работа значительно увеличивает расход энергии, поэтому суточный расход энергии значительно превышает величину ОО. Это увеличение составляет рабочую прибавку. Она тем больше, чем интенсивнее мышечная работа.

Степень энергетических затрат при различной физической активности определяется коэффициентом физической активности (КФА). КФА – отношение общих энергозатрат за сутки к величине ОО. По этому принципу выделяется 5 групп:

Особенности профессии

Общий суточный расход энергии, ккал

Преимущественно умственного труда

Легкого физического труда

Труд средней тяжести

Тяжелого труда

Особо тяжелого физического труда (мужчины)

Умственный труд вызывает ничтожные (2-3%) повышения затрат энергии по сравнению с полным покоем, если не сопровождается движением. Однако двигательная активность и эмоциональное возбуждение повышают энергозатраты (пережитое эмоциональное возбуждение может вызвать повышение обмена на 11-19% в течение нескольких дней).

Суточный расход энергии у детей и подростков зависит от возраста:

6 мес.- 1 г - 800 ккал

1 – 1,5 г - 1300

1,5 – 2 - 1500

14 – 17 (юноши) – 3150

13 - 17 (девушки) – 2750.

К 80 годам энерготраты снижаются (2000-2200 ккал).

Глава 8

АНАТОМИЯ И ФИЗИОЛОГИЯ ДЫХАТЕЛЬНОЙ СИСТЕМЫ

Общие положения

Дыхание - это совокупность процессов, обеспечивающих поступление в организм человека кислорода, использование его для окисления органических веществ и удаления из организма углекислого газа.

Дыхание состоит из ряда этапов:

1)транспорт газов к легким и обратно - внешнее дыхание ;

2)поступление кислорода воздуха в кровь через альвеолярно-ка-пиллярную мембрану легких, а углекислого газа - в обратном направлении;

3)транспорт 0 2 кровью ко всем органам и тканям организма,а углекислого газа - от тканей к легким (в связи с гемоглобином и в растворенном состоянии);

4)обмен газов между тканями и кровью: кислород перемещаетсяиз крови в ткани, а углекислый газ - в обратном направлении;

5)тканевое, или внутреннее дыхание , цель которого - окисление органических веществ с выделением углекислого газа и воды (см. гл. 10 «Обмен веществ и энергии»).

Дыхание - один из основных процессов, поддерживающих жизнь. Прекращение его даже на небольшой срок ведет к скорой гибели организма от кислородной недостаточности - гипоксии .

Поступление в организм кислорода и выведение из него во внешнюю среду углекислого газа обеспечивается органами дыхательной системы (рис. 8.1). Различают дыхательные (воздухоносные) пути и собственно дыхательные органы - легкие.

Дыхательные пути в связи с вертикальным положением тела делят на верхние и нижние . К верхним дыхательным путям относят: наружный нос, полость носа, носоглотку и ротоглотку. Нижние дыхательные пути - это гортань, трахея и бронхи, включая их внутри- легочные разветвления, или бронхиальное дерево. Дыхательные пути представляют собой систему трубок, стенки которых имеют костную или хрящевую основу. Благодаря этому они не слипаются. Их просвет всегда зияет, и воздух свободно циркулирует в обе стороны, несмотря на изменения давления при вдохе и выдохе. Внутренняя (слизистая) оболочка дыхательных путей выстлана мерцательным

Рис. 8.1. Органы дыхательной системы:

1 - полость носа; 2 - полость рта; 3 - носоглотка; 4 - ротоглотка; 5 - надгортанник; 6 - гортаноглотка; 7 - трахея; 8 - левый главный бронх; 9 - левое легкое; 10 - верхнедолевой бронх; 11 - нижнедолевой бронх; 12 - среднедолевой бронх; 13 - правое легкое; 14 - правый главный бронх; 15 - гортань

эпителием и содержит железы, вырабатывающие слизь. Благодаря этому вдыхаемый воздух очищается, увлажняется и согревается.

Верхние дыхательные пути

Наружный нос, nasus externus (греч. - rhis, rhinos), представляет собой выступающее в виде трехгранной пирамиды образование в центральной части лица. В его строении выделяют: корень, спинку, верхушку и два крыла. «Скелет» наружного носа образуют носовые кости и лобные отростки верхней челюсти, а также ряд хрящей носа (рис. 8.2). К последним относятся: латеральный хрящ, большой хрящ крыла носа, 1 - 2 малых хряща крыла носа, добавочные носовые хрящи. Корень носа имеет костный остов. Он отделен от области лба углублением, носящим название «переносье». Крылья имеют хрящевую основу и ограничивают отверстия - ноздри. Через них проходит воздух в полость носа и обратно. Форма наружного носа индивидуальна, но в то же время она имеет определенные этнические особенности. Снаружи нос покрыт кожей. Внутри ноздри переходят в полость, называемую преддверием полости носа.

Полость носа , cavitas nasi, спереди открывается ноздрями, а сзади сообщается с носоглоткой через отверстия - хоаны. В полости носа выделяют четыре стенки: верхнюю, нижнюю и латеральные. Они образованы костями черепа и описаны в подразд. 4.3. По срединной линии расположена перегородка носа. Ее «скелет» составляют: перпендикулярная пластинка решетчатой кости, сошник и хрящ перегородки носа. Следует отметить, что примерно у 90 % людей носовая перегородка в той или иной степени отклоняется от срединной линии. На ее поверхности имеются незначительные возвышения и углубления, но патологией считается тот вариант, когда искривленная перегородка препятствует нормальному носовому дыханию.

В полости носа выделяют преддверие и собственно полость носа . Границей между ними служит порог носа. Он представляет собой дугообразную линию на латеральной стенке полости носа, расположенную на расстоянии около 1 см от края ноздрей, и соответствует границе с преддверием. Последнее выстлано кожей и покрыто волосами, которые препятствуют попаданию в дыхательные пути крупных частиц пыли.

В полости носа расположены три носовые раковины - верхняя, средняя и нижняя(рис. 8.3). Костную основу первых двух образуют одноименные части решетчатой кости. Нижняя носовая раковина является самостоятельной костью. Под каждой носовой раковиной расположены соответственно верхний, средний и нижний носовые ходы.Между боковым краем носовых раковин и перегородкой носа находится общий носовойход. В носовой полости наблюдаются как ламинарные, так и турбулентные потоки воздуха. Ламинарные потоки представляют собой течение воздуха без образования завихрений. Возникновению турбулентных

Рис. 8.2. Наружный нос:

1 - малый хрящ крыла носа; 2 - передняя носовая ость верхней челюсти; 3 - хрящ перегородки носа; 4 - преддверие носа; 5 - большой хрящ крыла носа;6 - латеральный хрящ; 7- носовая кость; 8- лобный отросток верхней челюсти; 9 -

носовая часть лобной кости227

Рис. 8.3. Полость носа:

1 - лобная пазуха; 2 - клиновидная пазуха; 3 - верхняя носовая раковина; 4 - средняя носовая раковина; 5 - нижняя носовая раковина; 6 - глоточное отверстие слуховой трубы; 7 - нижний носовой ход; 8 - преддверие носа; 9 - средний носовой ход; 10 - верхний носовой ход

завихрений способствуют носовые раковины. Благодаря этому скорость прохождения воздуха через носовую полость уменьшается. Медленное движение обеспечивает большее согревание и очищение воздушного потока, что создает наилучшие условия для газообмена в альвеолах. В области нижнего носового хода открывается носослезный канал. По нему в полость носа из слезных путей поступает слеза.

Стенки полости носа выстланы слизистой оболочкой. В ней различают респираторную и обонятельную области. Обонятельная область находится в пределах верхнего носового хода и верхней носовой раковины. Здесь расположены рецепторы органа обоняния - обонятельные луковицы.

Эпителий респираторной области - реснитчатый (мерцательный). В его строении выделяют реснитчатые и бокаловидные клетки. Бокаловидные клетки секретируют слизь, благодаря которой носовая полость постоянно поддерживается в увлажненном состоянии. На поверхности реснитчатых клеток расположены особые выросты - реснички. Реснички колеблются с определенной частотой и способствуют перемещению слизи с осевшими на ее поверхности бактериями и пылевыми частицами в направлении глотки. Сосудистые сплетения, находящиеся в глубоких слоях слизистой оболочки, обеспечивают согревание поступающего воздуха.

Носовое дыхание является более физиологичным по сравнению с ротовым. Воздух в полости носа очищается, увлажняется и согревается. При нормальном носовом дыхании обеспечивается характерный для каждого человека тембр голоса.

Околоносовые пазухи , или придаточные пазухи носа, - это полости в костях черепа, выстланные слизистой оболочкой и заполненные воздухом. Они сообщаются с полостью носа через небольшие каналы. Последние открываются в области верхнего и среднего носовых ходов. Околоносовыми пазухами являются:

верхнечелюстная (Гайморова ) пазуха , sinus maxillaris, расположенная в теле верхней челюсти;

лобная пазуха , sinus frontalis, - в лобной кости;

клиновидная пазуха , sinus sphenoidalis, - в теле клиновиднойкости;

ячейки решетчатого лабиринта (передние, средние и задние),cellulae ethmoidales, - в решетчатой кости.

Околоносовые пазухи формируются в течение первых лет жизни. У новорожденного имеется только Гайморова пазуха (в виде небольшой по размерам полости). Основная функция придаточных пазух - обеспечение резонанса при разговоре.

Из полости носа через носоглотку и ротоглотку вдыхаемый воздух поступает в гортань. Анатомо-физиологические особенности глотки описаны ранее.

Нижние дыхательные пути

Строение. Гортань, larynx, расположена в передней области шеи. Вверху она с помощью связок соединяется с подъязычной костью, внизу продолжается в трахею (рис. 8.4). Верхняя граница гортани расположена на уровне межпозвоночного диска между IV и V шейными позвонками. Нижняя - на уровне VII шейного позвонка. Спереди гортань прикрыта мышцами шеи. Сзади от нее расположена глотка, сбоку проходят сонные артерии, внутренняя яремная вена и блуждающий нерв.

В полости гортани можно выделить три отдела: верхний - преддверие , средний - промежуточнуючасть и нижний - подголосовую полость . Границами между отделами являются парные преддверные и

Рис. 8.4. Гортань (вид спереди):1 - подъязычная кость; 2 3 - пластинка щитовидного хряща; 4 - нижний рог щитовидного хряща; 5 - перстневидный хрящ; 6 - хрящи трахеи; 7 - кольцеобразные связки трахеи; 8 - перстнещитовидный сустав; 9 - эластический конус; 10 - верхняя вырезка щитовидного хряща; 11 - щитоподъязычная мембрана

Рис. 8.5. Поперечный разрез гортани (вид сзади):

I - преддверие гортани; II - промежуточная часть; III - подголосовая полость; 7 - надгортанник; 2 - щитовидный хрящ; 3 - преддверная складка; 4 - желудочек гортани; 5 - голосовая мышца; 6 - перстнещитовидная мышца; 7 - перстневидный

хрящ; 8 - хрящ трахеи; 9 - голосовая складка

Верхний отдел гортани довольно широкий. Он простирается от входа в гортань до преддверных складок. Промежуточная часть представляет собой самый узкий отдел. Это пространство ограниче

но сверху преддверными, а снизу - голосовыми складками. В промежуточной части между складками с каждой стороны расположено углубление - желудочек гортани (Морганиев желудочек). Желудочки гортани играют роль резонаторов воздуха при голосообразо- вании. Кроме того, они обеспечивают согревание вдыхаемого воздуха. Ниже голосовых складок расположена подголосовая полость. По направлению книзу она постепенно расширяется и продолжается в полость трахеи. Благодаря отличающейся ширине просвета различных отделов гортани на фронтальном и сагиттальном срезах она имеет форму песочных часов (рис. 8.5).

Основу органа образуют хрящи, которые разделяют на парные и непарные. Непарными являются щитовидный, перстневидный и надгортанный хрящи (рис. 8.6), к парным относят черпаловидный, конусовидный, рожковидный и зерновидный.

Щитовидный хрящ в виде «щита» спереди закрывает остальные. Он состоит из двух пластинок, соединенных под острым углом, который называется выступом гортани. Он легко прощупывается (пальпируется) под кожей в области шеи в виде плотного по консистенции возвышения. У мужчин это образование хорошо выражено и называется кадыком (Адамово яблоко). От каждой пластинки отходит верхний и нижний рога. Между подъязычной костью и щитовидным хрящом располагается щитоподъязычная мембрана.

Надгортанный хрящ лежит кзади от корня языка, над входом в гортань. Он имеет широкую верхнюю часть - пластинку,которая книзу суживается, образуя стебелек,или ножку. Надгортанный хрящ, покрытый слизистой оболочкой, называется надгортан-

Рис. 8.6. Хрящи и мышцы гортани:

а, г - вид сбоку; б - вид спереди; в, д - вид сзади; е - сагиттальный разрез; 1 - перстневидный хрящ; 2 - выступ гортани; 3 - надгортанник; 4 - верхний рог щитовидного хряща; 5 - нижний рог щитовидного хряща; б - дуга перстневидного хряща; 7 - перстнещитовидный сустав; 8 - черпаловидный хрящ; 9 - перстнечерпаловидный сустав; 10 - пластинка перстневидного хряща; 11 - латеральная перстнечерпаловидная мышца; 12 - черпалонадгортанная мышца; 13 - щиточерпаловидная мышца; 14 - задняя перстнечерпаловидная мышца; 15 - косая черпаловидная мышца; 16 - поперечная черпаловидная мышца; 17 - преддверная склад

ка; 18 - желудочек гортани; 19 - голосовая складка

ником. Основная его функция - препятствие для попадания в нижние дыхательные пути воды и пищи.

Перстневидный хрящ расположен ниже остальных и образует основание гортани. Свое название он получил благодаря специфической форме перстня. В нем выделяют дугу и пластинку.

Черпаловидный хрящ парный. Он расположен сзади на пластинке перстневидного хряща. Он имеет голосовой и мышечный отростки. Между щитовидным хрящом и голосовым отростком натянута голосовая связка. Мышечный отросток служит для фиксации некоторых мышц гортани. Остальные парные хрящи незначительных размеров и расположены в слизистой оболочке в области входа в гортань - конусовидный и рожковидный , а в толще латеральной части щитоподъязычной мембраны - зерновидный .

Хрящи гортани соединяются между собой с помощью связок и суставов. Щитовидный хрящ с перстневидным соединяются с помощью двух перстнещитовидных суставов . Перстнечерпаловидныесуставы расположены между перстневидным хрящом и основаниями черпаловидных хрящей. В этом суставе черпаловидный хрящ вращается вокруг вертикальной оси, что приводит к расширению или сужению голосовой щели.

Мышцы гортани - поперечнополосатые и сокращаются произвольно. Их классифицируют на скелетные и собственные . Скелетные мышцы гортани перемещают ее вверх или вниз при глотании и образовании голоса. Согласно классификации они относятся к мышцам шеи, расположенным ниже подъязычной кости (грудинощитовидная и щитоподъязычная). Собственные мышцы гортани по функции подразделяют на четыре группы:

1)мышцы , влияющие на ширину входа в гортань : черпалонадгортанная мышца, которая закрывает вход в гортань;2)мышцы , влияющие на положение надгортанника : щитонадгортанная мышца, поднимающая надгортанник;3)мышцы , влияющие на ширину голосовой щели:

Расширяющая (задняя перстнечерпаловидная);

Суживающие (боковая перстнечерпаловидная, щиточерпаловид

ная; поперечная и косая черпаловидные мышцы);4)мышцы , влияющие на состояние голосовой связки:

Напрягающие (перстнещитовидная мышца);

Изнутри гортань покрыта слизистой оболочкой, поверхность которой выстлана мерцательным эпителием. Только в области голосовой складки расположен многослойный плоский неороговевающий эпителий.

Слизистая оболочка, за исключением области голосовых складок, срастается с подслизистой основой рыхло. Особенно это характерно для области преддверных складок. В этих местах возможно возникновение отеков, затрудняющих дыхание. Такое состояние носит название «ложный круп», возникающий у детей раннего возраста.

Функции гортани. Гортань относится к нижним дыхательным путям и обеспечивает проведение воздуха. В слизистой оболочке гортани и трахеи расположены многочисленные рецепторы, при раздражении которых возникает так называемый кашлевой рефлекс, являющийся защитным механизмом при попадании большого числа пылевых частиц. Одновременно гортань является органом голосооб- разования.

Рис. 8.7. Формы голосовой щели при различных функциональных состояниях (схема):а - голосовая щель при фонации; б - голосовая щель при спокойном дыхании; в - голосовая щель при глубоком дыхании; 1 - голосовая связка; 2 - перепончатая часть голосовой щели; 3 - хрящевая часть голосовой щели; 4 - мышечный отросток черпаловидного хряща; 5 - перстневидный хрящ; 6 - голосовой отросток черпаловидного хряща; 7 - щитовидный хрящ

яют степень их натяжения, а также ширина голосовой щели (рис. 8.7).

При спокойном дыхании она составляет 5 мм, при глубоком дыха

нии и громком крике - 15 мм. При разговоре ширина голосовой

щели изменяется - то сужается, то расширяется. Существенную роль

в произнесении звуков играет степень натяжения голосовых связок.

Они напрягаются и расслабляются под влиянием соответствующих

мышц. На выдохе струя воздуха, проходя через голосовую щель, при

водит связки и складки в колебательные движения. При этом обра

зуются звуки, которые зависят от частоты и амплитуды колебания

связок. Частота колебания определяет высоту голоса, а амплитуда -

кого нёба, проходимости полости носа и его придаточных пазух.

женского.

Трахея и главные бронхи

Трахея (дыхательное горло), trachea, - полая цилиндрическая трубка длиной 11 - 13 см. Она начинается от гортани на уровне VII шейного позвонка. Между IV и V грудными позвонками она разделяется на два главных бронха, образуя бифуркацию трахеи. В трахее выделяют шейную и грудную части.В шейном отделе к ней прилежит щитовидная железа. В грудной полости трахея располагается в средостении, разграничивая его на переднее и заднее. Здесь к ней прилегают крупные сосуды, включая аорту. Позади трахеи на всем ее протяжении находится пищевод.

Слизистая оболочка трахеи выстлана мерцательным эпителием. В ней содержатся многочисленные железы. Основу органа составляют 15 - 20 хрящевых полуколец, которые соединяются между собой с помощью связок. Задняя стенка лишена хрящевой ткани - это перепончатая часть трахеи. Ее основу составляет соединительная ткань и гладкие мышцы, расположенные в поперечном направлении. Благодаря наличию хрящевых полуколец трахея не спадается при дыхании. Снаружи орган покрыт адвентициальной оболочкой.

Главные бронхи, bronchi principales, расходятся под углом 70°. Правый главный бронх короче и шире, длиной 3 см, он расположен более вертикально и является непосредственным продолжением трахеи. Вследствие данной особенности инородные тела чаще попадают в этот бронх (в 70-80 % случаев). Левый главный бронх длиной 4-5 см.

Главные бронхи входят в состав ворот легких, внутри которых они разделяются, давая начало бронхиальному дереву. Принципы строения стенки главных бронхов и стенки трахеи сходны. Она так же, как и трахея, состоит из хрящевых полуколец. Слизистая оболочка изнутри выстлана мерцательным эпителием. Снаружи главные бронхи покрыты адвентициальной оболочкой.

Легкие

Строение легких. Легкое, pulmo (греч. - pneumon), - это паренхиматозный орган, расположенный в грудной полости (рис. 8.8). Правое легкое немного преобладает по размерам над левым. Масса правого легкого колеблется в норме от 360 до 570 г, левого - 325-480 г. В каждом легком выделяют диафрагмальную, реберную, средостенную и междолевыеповерхности. Сзади в пределах реберной поверхности выделяют позвоночную часть. Свое название поверхности легких получили от образований, к которым они прилежат.

Диафрагмальная поверхность соприкасается с диафрагмой, реберная - с внутренней поверхностью ребер, средостенная - с органом средостения, а ее позвоночная часть - с грудным отделом позвоночного столба, междолевые поверхности долей легкого прилежат друг к другу. Средостенная поверхность левого легкого в нижней части имеет углубление - сердечную вырезку.

Друг от друга поверхности отделены краями. Переднийкрай расположен между реберной и средостенной поверхностями; задний- между средостенной и реберной; нижнийотделяет реберную и средостенную поверхности от диафрагмальной.

Рис. 8.8. Легкие:1 - трахея; 2 - верхушка легкого; 3 - верхняя доля; 4 - реберная поверхность; 5 - нижняя доля; 6 - нижний край; 7 - средостенная поверхность; 8 - передний край; 9 - главные бронхи; 10 - средняя доля; 11 - косая щель; 12 - горизонтальная щель

Каждое легкое имеет верхушку и основание.Верхушка расположена над ключицей и выступает примерно на 2 см выше. Основание соответствует диафрагмальной поверхности. Снаружи легкие покрыты серозной оболочкой - висцеральной плеврой.

Каждое легкое состоит из долей, разделенных щелями. В правом легком различают три доли: верхнюю , среднюю и нижнюю. В левом - две: верхнюю и нижнюю. Косая щельимеется в каждом легком, пересекает все три его поверхности, проникая внутрь органа. В левом легком она отделяет нижнюю долю от верхней, в правом - нижнюю от верхней и средней. Косая щель идет почти одинаково на обоих легких. Начинается она на заднем крае примерно на уровне III грудного позвонка, идет вперед, а затем направляется по реберной поверхности вперед и вниз по ходу VI ребра. В правом легком кроме косой щели имеется горизонтальная щель.Она отделяет от верхней доли треугольный участок - среднюю долю. Горизонтальная щель начинается от косой щели и проходит в проекции IV ребра.

Доли легких состоят из сегментов, т.е. участков в форме конуса, который обращен основанием к поверхности легкого, а верхушкой - к его корню. Между собой сегменты разделены рыхлой соединительной тканью. Это позволяет при некоторых хирургических вмешательствах удалять не всю долю легкого, а лишь пораженный сегмент. В обоих легких выделяют по 10 сегментов. Каждый состоит из долек - участков легкого пирамидальной формы. Максимальный ее размер не превышает 10-15 мм. В общей сложности в обоих легких насчитывается около 1000 долек.

На средостенной поверхности расположены ворота легких , куда входят главный бронх, легочная артерия и нервы, а выходят две легочные вены и лимфатические сосуды. Эти образования, окруженные соединительной тканью, составляют корень легкого . В корне левого легкого сверху расположена легочная артерия, затем - главный бронх, ниже которого находятся две легочные вены (правило А-Б -В). В правом легком элементы его корня расположены по правилу Б-А-В:главный бронх, затем легочная артерия, ниже - легочные вены. Легочная артерия несет бедную кислородом (венозную) кровь от правого желудочка сердца. Легочные вены транспортируют артериальную, насыщенную кислородом кровь в левое предсердие. Следует отметить, что обеспечение легочной ткани питательными веществами и кислородом сосудами малого круга кровообращения не осуществляется. Эту функцию берут на себя бронхиальные артерии, отходящие от грудной части аорты. Основное предназначение малого круга - удаление из крови углекислого газа и насыщение ее кислородом.

Бронхиальное дерево. Главный бронх в воротах легкого делится на долевые , количество которых соответствует количеству долей (в правом - 3, в левом - 2). Эти бронхи входят в каждую долю и разделяются на сегментарные. Соответственно количеству сегментов выделяют 10 сегментарных бронхов. В бронхиальном дереве сегментарный бронх является бронхом III порядка (долевой - II, главный - I). Сегментарные в свою очередь разделяются на субсегмен-тарные (9- 10 порядков ветвления). Бронх диаметром около 1 мм входит в дольку легкого, поэтому называется дольковым . Он также многократно делится. Бронхиальное дерево заканчивается концевыми (терминальными) бронхиолами .

Слизистая оболочка внутрилегочных бронхов изнутри выстлана мерцательным эпителием. В ней расположены многочисленные слизистые железы. Реснички эпителия перемещают слизь с осевшими на ней частицами вверх, по направлению к глотке. Под слизистой оболочкой находятся гладкие мышечные клетки, а снаружи от них - хрящ. Хрящевые полукольца в стенке главного бронха превращаются в долевых бронхах в хрящевые кольца. С уменьшением калибра уменьшаются размеры хрящевых пластинок. Постепенно кольца превращаются лишь в небольшие «включения» хряща. Выраженность гладких мышц с уменьшением диаметра бронхов возрастает.

Бронхиолы в отличие от бронхов не имеют в стенке хрящевых элементов, их средняя оболочка представлена только гладкой мускулатурой. В связи с такими особенностями строения многие дыхательные расстройства возникают на уровне бронхиол (бронхиальная астма, бронхоэктатическая болезнь, бронхоспастический синдром и т.д.). Наружная оболочка представлена рыхлой волокнистой соединительной тканью, которая отделяет бронхи от паренхимы легких. Терминальные бронхиолы заканчивают воздухоносный отдел дыхательной системы. Они переходят в респираторные (дыхательные) бронхиолы (I, II, III порядков). Их отличительной особенностью является наличие отдельных тонкостенных выпячиваний - альвеол (рис. 8.9). Респираторные бронхиолы III порядка дают начало альвеолярным ходам,которые заканчиваются скоплениями альвеол- альвеолярными мешочками.Респираторные бронхиолы I, II, III порядков, альвеолярные ходы и альвеолярные мешочки образуют ацинус - структурно-функциональную единицу легкого, в которой происходит обмен газов между внешней средой и кровью.

Стенка альвеол состоит из одного слоя клеток - альвеолоцитов, расположенных на базальной мембране. По другую сторону базальной мембраны находится густая сеть кровеносных капилляров. Альвеолярный эпителий постоянно вырабатывает поверхностно-ак- тивное вещество, называемое «сурфактантом», который снижает поверхностное натяжение и препятствует слипанию альвеол при выдохе. Он также очищает их поверхность от попавших с воздухом инородных частиц и обладает бактерицидной активностью.

Рис. 8.9. Схема внутреннего строения легкого:1 - ветвь легочной артерии; 2 - сегментарный бронх; 3 - терминальная бронхиола; 4 - альвеолы; 5 - альвеолярный ход; 6 - респираторная бронхиола; 7 - висцеральная плевра; 8 - сеть капилляров; 9 - нервные волокна; 10 - субсегментар- ный бронх; 11 - гладкие мышцы; 12 - бронхиальная артерия; 13 - бронхиальнаявена

Рис. 8.10. Границы легких и плевры:

7 - верхняя граница легких и плевры; 2 - передняя граница легких и плевры; 3 - сердечная вырезка (проекция); 4 - нижняя граница легкого; 5 - нижняя граница плевры; 6 - косая щель (проекция); 7 - горизонтальная щель (проекция); I -IX - ребра

Таким образом, альвеолярный воздух и кровь непосредственно не сообщаются между собой. Они разделяются так называемой альвеоляр- но-капиллярной мембраной, или аэрогематическим барьером.В состав его входят: сурфактант, альвеолоциты, базальная мембрана (общая для альвеолоцитов и эндотелиоцитов), эндотелий капилляров.

Суммарная площадь аэрогематического барьера составляет примерно 70 - 80 м 2 . Газы переходят через альвеолярно-капиллярную мембрану путем диффузии. Направление и интенсивность перехода газов зависит от их концентрации в воздухе и крови.

Границы легких. Различают верхнюю, переднюю, нижнюю и заднюю границы легкого (рис. 8.10). Верхняя граница соответствует верхушке легкого. Она одинакова справа и слева - выступает спереди над ключицей на 2 - 3 см. Сзади она проецируется на уровне остистого отростка VII шейного позвонка. Передняя граница правого легкого идет от верхушки к правому грудиноключичному суставу и далее опускается по срединной линии до хряща VI ребра. Там она переходит в нижнюю границу. Передняя граница левого легкого проходит так же, как у правого легкого, но только до уровня хряща IV ребра. В этом месте она резко отклоняется влево до окологрудинной линии, а затем поворачивает вниз, продолжаясь до хряща VI ребра (соответствует сердечной вырезке). Нижняя граница правого легкого пересекает по среднеключичной линии VI ребра; по передней подмышечной линии - VII; по средней подмышечной - VIII; по задней подмышечной - IX; по лопаточной линии - X; по околопозвоночной - XI ребро. Такое смещение нижней границы легкого по каждой линии на одно ребро называется анатомическими часами. Нижняя граница левого легкого идет на ширину одного ребра ниже, т.е. по соответствующим межреберьям. Задняя граница легких соответствует заднему краю органа и проецируется вдоль позвоночного

Рис. 8.11. Фронтальный разрез грудной клетки (сердце и легкие удалены):

1 - плевральная полость; 2 - полость перикарда; 3 - реберно-диафрагмальный синус; 4 - диафрагмально-средостенный синус; 5 - диафрагма (сухожильный центр); 6 - средостенная плевра; 7 - диафрагмальная плевра; 8 - реберная плевра

столба от головки II ребра до шейки XI ребра по околопозвоноч- ной линии.

Плевральная полость. Каждое легкое снаружи покрыто серозной оболочкой - плеврой . Выделяют висцеральный и париетальный листки плевры . Висцеральный листок покрывает легкое со всех сторон, заходит в щели между долями, плотно срастается с подлежащей тканью. По поверхности корня легкого висцеральная плевра, не прерываясь, переходит в париетальную (пристеночную). Последняя выстилает стенки грудной полости, диафрагму и ограничивает с боков средостение. Она прочно срастается с внутренней поверхностью стенок грудной полости. Вследствие этого различают реберную, диафрагмальную и средостеннуючасти париетальной плевры (рис. 8.11).

Между висцеральным и париетальным листками образуется щелевидное пространство, называемое плевральной полостью. Каждое легкое имеет свою замкнутую плевральную полость. Она заполнена небольшим количеством (20-30 мл) серозной жидкости. Эта жидкость удерживает соприкасающиеся листки плевры друг относительно друга, смачивает их и устраняет между ними трение. В плевральной полости имеются углубления - плевральные синусы: реберно-диафрагмальный, диафрагмально-средостенный и реберносредостенный. Они ограничены частями париетальной плевры в местах их перехода друг в друга. Самый глубокий из них - реберно-ди- афрагмальный синус.

Легочная ткань очень эластична. За счет эластической тяги легкие стремятся к спадению. Препятствует их спадению именно наличие герметичных плевральных полостей. Они как бы фиксируют поверхность легких к стенкам грудной полости. Благодаря эластической тяге легких давление в плевральной полости всегда остается отрицательным относительно атмосферного (с разницей примерно 6 мм рт. ст.). В случаях проникающих ранений грудной стенки, ткани легких или бронхов возможна разгерметизация плевральной полости. Она может возникать также вследствие различных патологических процессов, сопровождающихся разрушением легочной ткани и висцеральной плевры. При этих состояниях воздух проникает в плевральную полость. Наличие воздуха в плевральной полости получило название пневмоторакса . При пневмотораксе адекватная вентиляция легких становится невозможной. В случае обширной раны или длительного поступления воздуха в плевральную полость легкие полностью спадаются. Пневмоторакс подразделяют на открытый, закрытый и клапанный (напряженный).

Открытый пневмоторакс имеет место в тех случаях, когда плевральная полость непосредственно сообщается с атмосферным воздухом через раневой канал. Следовательно, воздух свободно перемещается из внешней среды в плевральную полость и обратно. Часто в этом случае можно наблюдать зияющую рану грудной стенки. Закрытый пневмоторакс возникает тогда, когда рана быстро закрывается смещающимися мягкими тканями, что исключает дальнейшее попадание воздуха в плевральную полость. Клапанный пневмоторакс считается наиболее опасным. Мягкие ткани грудной стенки или поврежденный бронх играют роль клапана. Они пропускают воздух в полость на вдохе и препятствуют его выходу из нее при выдохе. При этом воздух с каждым дыхательным движением нагнетается в плевральную полость (отсюда второе название данного вида пневмоторакса - напряженный). Давление в плевральной полости все больше возрастает, вызывая сдавление легкого и смещение средостения в здоровую сторону.

Накопление крови в плевральной полости носит название гемоторакс . При этом кровь под действием силы тяжести скапливается в нижележащих ее отделах. Продолжающееся кровотечение все больше оттесняет легкое вверх, а средостение - в здоровую сторону. В тяжелых случаях легкое полностью выключается из дыхания. Скопление в плевральной полости воздуха и крови одновременно называют гемопневмотораксом .

Средостение

Средостение, mediastinum, - это комплекс органов (рис. 8.12), расположенных между двумя легкими (между плевральными полостями). Средостение подразделяют на два отдела: переднее и заднее . Условная граница между ними проходит по передней поверхности трахеи и главных бронхов. В переднем средостении расположены сердце с перикардом, вилочковая железа, диафрагмальные нервы и лимфатические узлы. В заднем средостении находятся трахея и главные бронхи, пищевод, блуждающий нерв, грудная часть аорты, сим-

Рис. 8.12. Горизонтальный разрез грудной клетки на уровне VI грудногопозвонка:

1 - аорта; 2 - ворота легкого; 3 - нижняя доля левого легкого; 4 - верхняя доля

левого легкого; 5 - висцеральная плевра; 6 - перикард; 7 - плевральная полость;

8 - сердце; 9 - грудина; 10 - верхняя доля правого легкого; 11 - реберная плев

ра; 12 - средняя доля правого легкого; 13 - нижняя доля правого легкого; 14 -

ребро; 15 - нижний угол лопатки; 16 - пищевод; 17- тело VI грудного позвонка

патический ствол, грудной лимфатический проток, непарная и по- лунепарная вены, лимфатические узлы. Все пространство между этими органами заполнено рыхлой волокнистой соединительной тканью и жировой клетчаткой.

Физиология дыхания

Биомеханика дыхательного акта. Частота дыхания (ЧД) в покое составляет 14 -18 в минуту и обеспечивается дыхательными мышцами. Учащенное дыхание называют тахипноэ, а редкое - б р а - д и п н о э. Различают мышцы вдоха и выдоха. Первые в свою очередь классифицируют на основные и вспомогательные. При этом вспомогательные мышцы включаются в обеспечение вдоха только в экстренных ситуациях, а в обычных условиях они выполняют иные функции. К основным мышцам вдоха относят: диафрагму, наружные межреберные мышцы и мышцы, поднимающие ребра. Во время вдоха объем грудной полости увеличивается в основном за счет опускания купола диафрагмы и поднимания ребер. Диафрагма обеспечивает 2 / 3 объема вентиляции. В обстоятельствах, затрудняющих вентиляцию легких (бронхиальная астма, пневмония), в обеспечении вдоха принимают участие вспомогательные мышцы : мышцы шеи (грудино-ключично-сосцевидная и лестничные), груди (большая и малая грудные, передняя зубчатая), спины (задняя верхняя зубчатая мышца).

Мышцами выдоха являются: внутренние межреберные мышцы, подреберные мышцы и поперечная мышца груди, задняя нижняя зубчатая мышца. При этом вдох идет более активно и с большей затратой энергии. Выдох же осуществляется пассивно под действием эластичности легких и тяжести грудной клетки. Сокращение мышц на выдохе имеет вспомогательный характер.

Выделяют два типа дыхания - грудной и брюшной. При грудном типе преобладает увеличение объема грудной клетки за счет поднимания ребер, а не за счет опускания купола диафрагмы. Этот тип дыхания более характерен для женщин. Брюшной тип дыхания обеспечивается в первую очередь диафрагмой. При опускании купола происходит смещение органов живота вниз, что сопровождается выпячиванием передней брюшной стенки на вдохе. На выдохе купол диафрагмы поднимается и передняя брюшная стенка возвращается в исходное положение. Брюшной тип дыхания чаще наблюдается у мужчин.

Механизм первого вдоха новорожденного.

Легкие начинают обеспечивать организм кислородом с момента рождения. До этого плод получает 0 2 через плаценту по сосудам пуповины. Во внутриутробном периоде происходит бурное развитие дыхательной системы: формируются воздухоносные пути, альвеолы. Следует отметить, что легкие плода с момента их образования находятся в спавшемся состоянии. Ближе к рождению начинает синтезироваться сурфактант. Установлено, что, еще находясь в организме матери, плод активно тренирует дыхательную мускулатуру: диафрагма и другие дыхательные мышцы периодически сокращаются, имитируя вдох и выдох. Однако околоплодная жидкость при этом не поступает в легкие: голосовая щель у плода находится в сомкнутом состоянии.

После родов поступление кислорода в организм новорожденного прекращается, так как пуповина перевязывается. Концентрация 0 2 в крови плода постепенно уменьшается. В то же время постоянно увеличивается содержание С0 2 , что приводит к закислению внутренней среды организма. Эти изменения регистрируются хеморецепторами дыхательного центра, который расположен в продолговатом мозге. Они сигнализируют об изменении гомеостаза, что ведет к активации дыхательного центра. Последний посылает импульсы к дыхательным мышцам - возникает первый вдох. Голосовая щель раскрывается, и воздух устремляется в нижние дыхательные пути и далее - в альвеолы легких, расправляя их. Первый выдох сопровождается возникновением характерного крика новорожденного. На выдохе альвеолы уже не слипаются, так как этому препятствует сурфактант. У недоношенных детей, как правило, количество сурфактанта недостаточно для обеспечения нормальной вентиляции легких. Поэтому у них после рождения часто наблюдаются различные дыхательные расстройства.

Дыхательные объемы. Для оценки функции легких большое значение имеет определение дыхательных объемов, т.е. количества вдыхаемого и выдыхаемого воздуха. Данное исследование проводится при помощи специальных приборов - спирометров.

Определяют дыхательный объем, резервные объемы вдоха и выдоха, жизненную емкость легких, остаточный объем, общую емкость легких.

Дыхательный объем (ДО) - количество воздуха, которое человек вдыхает и выдыхает при спокойном дыхании за один цикл (рис. 8.13). Он составляет в среднем 400 - 500 мл. Объем воздуха, проходящий через легкие при спокойном дыхании за 1 мин, называют минутным объемом дыхания(МОД). Его вычисляют, умножая ДО на частоту дыхания (ЧД). В состоянии покоя человеку требуется 8 -9 л воздуха в минуту, т.е. около 500 л в час, 12000 - 13 000 л в сутки.

При тяжелой физической работе МОД может многократно увеличиваться (до 80 и более литров в минуту). Необходимо отметить, что

Рис. 8.13. Спирограмма:ДО - дыхательный объем; РОВд - резервный объем вдоха; РОВыд - резервный объем выдоха; ЖЕЛ - жизненная емкость легких

далеко не весь объем вдыхаемого воздуха участвует в вентиляции альвеол. Во время вдоха часть его не доходит до ацинусов. Она остается в воздухоносных путях (от носовой полости до терминальных бронхиол), где отсутствует возможность для диффузии газов в кровь. Объем воздухоносных путей, в котором находящийся воздух не принимает участия в газообмене, называют «дыхательным мертвым пространством». У взрослого человека на «мертвое пространство» приходится около 140-150 мл, т.е. примерно 1 / 3 ДО.

Резервный объем вдоха (РОВд) - количество воздуха, которое человек может вдохнуть при самом сильном максимальном вдохе после спокойного вдоха, т.е. сверх дыхательного объема. Он составляет в среднем 1500-3000 мл.

Резервный объем выдоха (РОВыд) - количество воздуха, которое человек может дополнительно выдохнуть после спокойного выдоха. Он составляет около 700-1000 мл.

Жизненная емкость легких (ЖЕЛ) - это количество воздуха, которое человек может максимально выдохнуть после самого глубокого вдоха. Этот объем включает в себя все предыдущие (ЖЕЛ = ДО +

РОВд + РОВыд) и составляет в среднем 3500-4500 мл.

Остаточный объем легких (ООЛ) - это количество воздуха, остающееся в легких после максимального выдоха. Этот показатель в среднем равен 1000-1500 мл. За счет остаточного объема препараты легких не тонут в воде. На этом явлении основана судебно-медицинская экспертиза мертворожденности: если плод родился живым и дышал, его легкие, будучи погруженными в воду, не тонут. В случае же рождения мертвого, не дышавшего плода, легкие опустятся на дно. Кстати, свое название легкие получили именно благодаря наличию в них воздуха. Воздух значительно уменьшает общую плотность этих органов, делая их легче воды.

Общая емкость легких (ОЕЛ) - это максимальное количество воздуха, которое может находиться в легких. Этот объем включает в себя жизненную емкость и остаточный объем (ОЕЛ = ЖЕЛ + ООЛ). Он составляет в среднем 4500 -6000 мл.

Жизненная емкость легких находится в прямой зависимости от степени развития грудной клетки. Известно, что физические упражнения и тренировка дыхательной мускулатуры в молодом возрасте способствуют формированию широкой грудной клетки с хорошо развитыми легкими. После 40 лет ЖЕЛ начинает постепенно уменьшаться.

Диффузия газов. Состав вдыхаемого и выдыхаемого воздуха довольно постоянен. Во вдыхаемом воздухе содержится 0 2 около 21 %, С0 2 - 0,03 %. В выдыхаемом: 0 2 около 16-17 %, С0 2 - 4 %. Следует отметить, что выдыхаемый воздух отличается по составу от альвеолярного, т.е. находящегося в альвеолах (0 2 - 14,4%, С0 2 - 5,6%). Связано это с тем, что при выдохе содержимое ацинусов смешивается с воздухом, находящимся в «мертвом пространстве». Как уже244

было сказано, воздух этого пространства не принимает участия в газообмене. Количество вдыхаемого и выдыхаемого азота практически одинаково. Во время выдоха из организма выделяются пары воды. Остальные газы (в том числе, инертные) составляют ничтожно малую часть атмосферного воздуха. Следует отметить, что человек способен переносить большие концентрации кислорода в окружающей его воздушной среде. Так, при некоторых патологических состояниях в качестве лечебного мероприятия используют ингаляцию 100 % 0 2 . В то же время длительное вдыхание этого газа вызывает негативные последствия.

Переход газов через аэрогематический барьер обусловлен разностью их концентраций по обе стороны этой мембраны. Для газовой среды применяют такое понятие, как «парциальное давление», это та часть общего давления газовой смеси, которая приходится на данный газ. Если принять атмосферное давление за 760 мм рт. ст., парциальное давление кислорода в воздушной смеси будет составлять примерно 160 мм рт. ст. (760 мм рт. ст. 0,21). Парциальное давление углекислого газа в атмосферном воздухе при этом около 0,2 мм рт. ст. В альвеолярном воздухе парциальное давление кислорода приблизительно равно 100 мм рт. ст., парциальное давление углекислого газа - 40 мм рт. ст.

Если газ растворен в жидкой среде, то говорят о его напряжении (по сути, напряжение - это синоним парциального давления). Напряжение 0 2 в венозной крови примерно 40 мм рт. ст. Следовательно, градиент (разница) давления для кислорода между альвеолярным воздухом и кровью составляет 60 мм рт. ст. Благодаря этому возможна диффузия этого газа в кровь. Там он в основном связывается с гемоглобином, превращая его в оксигемоглобин . Кровь, содержащая большое количество оксигемоглобина, называется артериальной. У здоровых лиц гемоглобин насыщается кислородом на 96 %. В 100 мл артериальной крови в норме содержится около 20 мл кислорода. В таком же объеме венозной крови кислорода содержится только 13-15 мл.

Углекислый газ, образовавшийся в тканях, попадает в кровь (также по градиенту концентрации: в тканях углекислый газ содержится в больших количествах). С гемоглобином соединяется только 10 % поступившего количества этого газа. В результате такого взаимодействия образуется карбгемоглобин . Большая же часть углекислого газа вступает в реакцию с водой. Это приводит к образованию угольной кислоты (Н 2 СО 3). Данная реакция ускоряется в 20000 раз особым ферментом, находящимся в эритроцитах - карбоангидразой. Угольная кислота диссоциирует (распадается) на протон водорода (Н +) и бикарбонат-ион (HCO 3 -). Большая часть углекислого газа переносится кровью именно в виде бикарбоната. Напряжение углекислого газа в венозной крови составляет примерно 46 мм рт. ст. Следовательно, градиент давления для него будет равен 6 мм рт. ст. (парциальное245

давление углекислого газа в альвеолярном воздухе - 40 мм рт. ст.) в пользу крови. Направление диффузии для углекислого газа следующее: из крови во внешнюю среду. В течение 1 мин из организма человека в состоянии покоя удаляется около 230 мл углекислого газа. Таким образом, диффузия идет из среды с большим ПД (напряжением) в среду с меньшим парциальным давлением (напряжением), т.е. по разности концентрации.

Естественный состав атмосферного воздуха может существенно меняться за счет производственной и хозяйственно-бытовой деятельности людей, природных катаклизмов. Появление в его составе угарного газа в концентрации более 100-200 мг/м 3 способствует возникновению отравлений. При этом СО образует с гемоглобином устойчивое соединение - карбоксигемоглобин , который не в состоянии связывать кислород. Кроме угарного газа существует множество других веществ, способных существенно влиять на здоровье человека. К ним относятся, например, соединения серы (сероводород, ангидриды, пары серной кислоты), оксиды азота, канцерогены (бензпирен), радиоактивные вещества и др.

Повышенное и пониженное атмосферное давление также соответствующим образом влияют на процессы дыхания. При пониженном давлении снижается и ПД 0 2 . Это наблюдается, например, при подъеме на высоту. На высоте до 3000 м над уровнем моря человек чувствует себя вполне удовлетворительно. Компенсаторно увеличивается частота дыхания, ускоряется кровообращение. Организм адаптируется к меньшему количеству кислорода, содержащемуся в воздухе. При подъеме выше 4000-6000 м появляются одышка, приступы удушья, сердцебиение; некоторые участки кожи становятся цианотичными (фиолетовой окраски). Возникает так называемая «горная болезнь».

Повышение давления наблюдается, например, при нырянии с аквалангом. Через каждые 10 м глубины давление повышается на 1 атм. При этом в кровь попадает большое количество газов. При быстром подъеме с глубины давление резко снижается. Газы, растворенные в крови, выходят из нее и могут образовывать пузырьки (как при открывании бутылки с газированной водой). Образовавшиеся пузырьки с током крови переносятся в мелкие сосуды и закупоривают их. Возникает кессонная болезнь , которая может привести к смерти. Чтобы избежать ее появления, подъем с глубины следует осуществлять постепенно.

Регуляция дыхания. Изменения состава окружающей газовой среды, тяжелая физическая работа, некоторые заболевания дыхательной системы приводят к снижению концентрации кислорода, растворенного в крови. Кислородный дефицит носит название гипоксии. В то же время любые обменные процессы сопровождаются выделением углекислого газа. Увеличение концентрации С0 2 в организме называется гиперкапнией. Как правило, повышение содержания246

углекислого газа сопровождается закислением внутренней среды организма, или ацидозом .

В организме существуют специальные рецепторы, которые способны контролировать концентрации веществ, растворенных в крови. Их называют хеморецепторами. Они незамедлительно реагируют даже на малейшие изменения в содержании тех или иных веществ во внутренней среде. Эти рецепторы расположены в каротидном синусе (в области бифуркации общей сонной артерии), а также в центральной нервной системе (в продолговатом мозге). В регуляции дыхания участвуют также чувствительные нервные окончания, реагирующие на растяжение легких, химическое раздражение дыхательных путей. Важную роль играют проприоцепторы дыхательных мышц. От всех перечисленных рецепторов информация поступает в центральную нервную систему, где она интегрируется и изменяет работу дыхательного центра, который локализуется в продолговатом мозге.

Дыхательный центр регулирует частоту дыхания постоянно, автоматически генерируя нервные импульсы. В нем выделяют два отдела: инспираторный (центр вдоха) и экспираторный (центр выдоха). При этом центр дыхания обладает способностью реагировать на повышение концентрации углекислого газа в крови или спинномозговой жидкости (на снижение в этих средах концентрации кислорода он практически не реагирует). Таким образом, повышение концентрации углекислого газа в крови приводит к увеличению интенсивности дыхания. В первую очередь увеличивается его частота. Дыхательный центр тесно связан с сосудодвигательным, также расположенным в продолговатом мозге. Последний обеспечивает увеличение количества крови, проходящей через малый круг кровообращения. От дыхательного центра импульсы идут в спинной мозг, который обеспечивает иннервацию дыхательных мышц.

Секрецию бронхиальных желез, а также величину их просвета регулирует вегетативная нервная система. Под действием симпатической нервной системы просвет бронхов расширяется, секреция угнетается. Парасимпатическая система вызывает обратные эффекты. Кроме того, угнетать работу желез и расширять просвет бронхов способны различные биологически активные вещества (адреналин, нор- адреналин). Противоположное действие оказывают ацетилхолин, гистамин.

Как уже упоминалось, оптимальным является носовое дыхание. Оно создает сопротивление потоку воздуха, благодаря чему определяется состав воздуха (оцениваются запахи), происходит согревание и увлажнение воздуха. При этом формируется медленное и глубокое дыхание, которое создает оптимальные условия для газообмена в альвеолах, улучшает распределение сурфактанта, препятствует спадению альвеол и, как следствие, спадению (ателектазу) легких. При носовом дыхании также происходит очищение вдыхаемого воздуха.247

Крупные частицы пыли задерживаются в преддверии полости носа при прохождении через фильтр волос.

При вдыхании дыма, газов, остро пахнущих веществ происходит рефлекторная задержка дыхания, сужение голосовой щели, сужение бронхов (бронхоконстрикция). Эти рефлексы защищают нижние дыхательные пути и легкие от проникновения в них раздражающих веществ.

Временная рефлекторная остановка дыхания - апноэ- происходит при действии воды на область нижнего носового хода (при умывании, нырянии), а также во время акта глотания, предохраняя дыхательные пути от попадания в них воды или пищи. При раздражении рецепторов слизистой оболочки гортани, трахеи, бронхов возникает защитный кашлевой рефлекс: после глубокого вдоха происходит резкое сокращение мышц выдоха; голосовая щель открывается и воздух устремляется наружу. Раздражение чувствительных окончаний тройничного нерва, расположенных в слизистой оболочке полости носа, вызывает рефлекс чиханья. Механизм чиханья аналогичен кашлевой реакции. Раздражение рефлексогенной зоны полости носа также вызывает интенсивное слезотечение. Слеза стекает через носослезный канал в полость носа и, смывая раздражающее вещество, выполняет защитную функцию.

Контрольные вопросы

1.Назовите этапы дыхания.

2.Какие органы входят в состав верхних и нижних дыхательныхпутей?

3.Перечислите околоносовые пазухи.

4.Какие хрящи образуют основу гортани?

5.Какие отделы выделяют в полости гортани?

6.Охарактеризуйте функции гортани.

7.Назовите структуры, образующие бронхиальное дерево.

8.Какие доли, поверхности и края выделяют в легком?

9.Перечислите границы легких.

10.Что такое пневмоторакс? Назовите основные его виды.

11.Перечислите органы переднего и заднего средостения.

12.Дайте характеристику дыхательных объемов.

13.Где расположен дыхательный центр? Какова его роль?


Похожая информация.


Известно, что дыхательные движения у плода возникают на 13-й неделе внутриутробного периода. Однако они происходят при закрытой голосовой щели. В период родов нарушается трансплацентарное кровообращение, а при пережатии пуповины у новорожденного - его полное прекращение, что вызы­вает значительное снижение парциального давления кислорода (рО 2), повыше­ние рСО 2 , снижение рН. В связи с этим возникает импульс от рецепторов аорты и сонной артерии к дыхательному центру, а также изменение соответ­ствующих параметров среды вокруг самого дыхательного центра. Так, напри­мер, у здорового новорожденного ребенка рО 2 снижается с 80 до 15 мм рт. ст., рСО 2 возрастает с 40 до 70 мм рт. ст., а рН падает ниже 7,35. Наряду с этим имеет значение и раздражение кожных рецепторов. Резкое изменение температуры и влажности вследствие перехода от внутриутробного окруже­ния к пребыванию в атмосфере воздуха в комнате является дополнительным импульсом для дыхательного центра. Меньшее значение, вероятно, имеет так­тильная рецепция при прохождении по родовым путям и во время приема новорожденного.

Сокращение диафрагмы создает отрицательное внутригрудное давление, что облегчает вхождение воздуха в дыхательные пути. Более значительное со­противление вдыхаемому воздуху оказывают поверхностное натяжение в аль­веолах и вязкость жидкости, находящейся в легких. Силы поверхностного на­тяжения в альвеолах уменьшаются сурфактантом. Легочная жидкость быстро всасывается лимфатическими сосудами и кровеносными капиллярами, если происходит нормальное расправление легкого. Считается, что в норме отри­цательное внутрилегочное давление достигает 80 см вод. ст., а объем вдыхае­мого воздуха при первом вдохе составляет более 80 мл, что значительно вы­ше остаточного объема.

Регуляция дыхания осуществляется дыхательным центром, располо­женным в ретикулярной формации ствола мозга в области дна IVжелудочка. Дыхательный центр состоит из трех частей: медуллярной, которая начинает и поддерживает чередование вдоха и выдоха; апноэтической, которая вызы­вает длительный инспираторный спазм (расположена на уровне средней и нижней части моста мозга); пневмотаксической, которая оказывает тормо­зящее влияние на апноэтическую часть (расположена на уровне верхней части моста мозга).

Регуляция дыхания осуществляется центральными и периферическими хе-морецепторами, причем центральные хеморецепторы являются основными (в 80%) в регуляции дыхания. Центральные хеморецепторы более чувстви­тельны к изменению рН, и их главная функция состоит в поддержании по­стоянства Н + -ионов в спинномозговой жидкости. СО 2 свободно диффунди­рует через гематоэнцефалический барьер. Нарастание концентрации Н + в спинномозговой жидкости стимулирует вентиляцию. Периферические хемо- и барорецепторы, особенно каротидные и аортальные, чувствительны к изме­нению содержания кислорода и углекислого газа. Они функционально ак­тивны к рождению ребенка.

В то же время пневмотаксическая часть дыхательного центра созревает лишь на протяжении первого года жизни, чем и объясняется выраженная аритмичность дыхания. Апноэ наиболее часты и длительны у недоношенных детей, причем чем ниже масса тела, тем чаще и длительнее апноэ. Это свиде­тельствует о недостаточной зрелости пневмотаксической части дыхательного центра. Но еще большее значение в прогнозе выживаемости недоношенных детей имеет быстро нарастающее учащение дыхания в первые минуты жизни новорожденного. Это свидетельство недостаточности развития также апноэтической части дыхательного центра.

Первый вдох новорожденного происходит по такому механизму — перемежающееся сжатие грудной клетки в процессе родов через естественные родовые пути облегчает удаление из легких фе­тальной жидкости. Сурфактант выстилающего альвеолы слизистого слоя, снижая поверхностное натяжение и необходимое для открытия альвеол давление, облегчает аэрацию легких.

Несмотря на это, давление, необходимое для наполнения возду­хом легких при первом вдохе новорожденного, выше, чем при вдохе в любом другом возрасте. Оно колеблется от 10 до 50 см вод. ст. и обычно составляет 10-20 см вод. ст., в то время как при последующих вдохах у здоровых новорожденных и у взрослых оно около 4 см вод. ст. Это обусловлено необходимостью преодоления при первом вдохе сил поверхностного натяжения (особенно в мелких разветвлениях бронхов), вяз­кости оставшейся в дыхательных путях жидкости и поступления в легкие приблизительно 50 мл воздуха, 20-30 мл из которых остаются в легких, образуя ФОЕ. Большая часть фетальной жидко­сти из легких всасывается в легочный кровоток, который многократно увеличивается, так как весь выброс правого желудочка направляется в сосу­дистое русло легких. Остатки фетальной жидко­сти выделяются через верхние дыхательные пути и проглатываются, а иногда вновь попадают из ро­тоглотки в дыхательные пути. Механизм удаления жидкости нарушается при кесаревом сечении или вследствие повреждения эндотелия, гипоальбуминемии, повышенного венозного давления в легких, поступления в кровь новорожденного седативных препаратов.

Пусковые факторы первого вдоха новорожденного многочис­ленны. Каков вклад каждого из них, неизвестно. В их число входят снижение Ро2 и pH и повыше­ние Рсо2 вследствие прекращения плацентарного кровообращения, перераспределение сердечного выброса после пережатия сосудов пуповины, сни­жение температуры тела, разнообразные тактиль­ные стимулы.

У детей с низкой массой тела при рождении лег­кие значительно податливей, чем у доношенных, что затрудняет первый вдох новорожденного. ФОЕ у глубоко недо­ношенных наименьшая в связи с наличием ателек­тазов. Нарушения вентиляционно-перфузионного отношения наиболее выражены и длительны при образовании воздушных полостей по типу воздуш­ных ловушек. В результате ателектазов, внутрилегочного шунтирования и гиповентиляции развива­ется гипоксемия (Рао2 50-60 мм рт. ст.) и гиперкапния. Наиболее глубокие, близкие к таковым при болезни гиалиновых мембран нарушения газооб­мена наблюдаются у детей с экстремально низкой массой тела при рождении.

Статью подготовил и отредактировал: врач-хирург

Видео:

Полезно:

Статьи по теме:

  1. Оценка состояния новорожденного ребенка в первую очередь отражает его жизнеспособность и возможность адаптации к внешней...
  2. В характеристику неврологического статуса новорожденного ребенка входит состояние тонуса мышц и двигательной актив­ности, оценка безусловных...
  3. Рождение ребенка одно из самых важных событий в семье любого человека. В этом сложном процессе...
  4. Новорожденный малыш вначале выглядит «скрюченным». Ручки и ножки еще не смогли разогнуться. Со временем, когда...
  5. Под зрелостью новорожденного ребенка подразумевают соответствие морфологического и функционального развития ЦНС, желудочно-кишечного аппарата и дыхательной...
  6. Появление в доме новорожденного крохи – невероятная радость и безграничное счастье. Однако это еще и...