Антитоксическая сыворотка. Введение антитоксической сыворотки

Антитоксические сыворотки получают иммунизацией лошадей возрастающими дозами анатоксинов. В практике производства антитоксических сывороток широко используют хлористый кальций, алюмокалиевые квасцы, адъюванты типа Фрейда, тапиока. Антитоксические сыворотки выпускают с определённым содержанием антитоксинов, измеряемым в международных единицах (МЕ), принятых ВОЗ. За 1 МЕ принимается то минимальное количество сыворотки, которое способно нейтрализовать определённую дозу токсина. Действие сывороток сводится к нейтрализации токсинов, вырабатываемых возбудителем. Титрование антитоксических сывороток может проводиться тремя методами - Эрлиха, Ремера, Рамона . Лечебный эффект сыворотки заключается в образовании нетоксичного комплекса токсин - антитело при непосредственном контакте между свободно циркулирующем в крови больного ботулотоксином и сывороточными антителами .

Лечение антитоксической сывороткой

Для профилактики и лечения ботулизма применяют противоботулиновые лечебно-профилактические антитоксические сыворотки, выпускаемые в виде комплекта моновалентных или поливалентных сывороток. Сыворотку применяют после обязательного определения чувствительности пациента к лошадиному белку при помощи внутрикожной пробы. При положительной реакции сыворотку вводят по абсолютным показаниям под наблюдением врача с особыми предосторожностями. Заболевшим и всем лицам, употреблявшим продукт, вызвавший отравление, назначают антитоксическую поливалентную сыворотку.

Активную иммунизацию осуществляют очищенным сорбированным пентаанатоксином, обеспечивающим защиту от ботулинических токсинов типов А, В, С, D, Е, и секстаанатоксином. Препараты предназначены для иммунизации ограниченного контингента населения. Одна лечебная доза для антитоксинов типа А, С, Е составляет по 10 000 ME, типа В по 5 000 ME.

При лёгкой форме - в первые сутки - две дозы, на следующий день одну дозу, каждой из трёх типов сыворотки А, В, С. Всего на курс лечения 2-3 дозы. Вводят сыворотку внутривенно или внутримышечно после предварительной десенсибилизации (метод Безредко). При введении сыворотки внутривенно капельно необходимо смешать её с 250 мл физиологического раствора, подогретого до 37 °C .

При среднетяжёлой форме - в первый день вводят 4 дозы сыворотки каждого типа внутримышечно с интервалом в 12 часов, в дальнейшем - по показаниям. Курс лечения - 10 доз .

При тяжёлой форме - в первый день 6 доз, на второй - 4-5 доз. Курс лечения - 12-15 доз. Вводят внутримышечно с интервалом в 6-8 часов .

Обязательно проводится проба на чувствительность к чужеродному белку, так как антитоксическая сыворотка гетерогенна. Если проба положительная, то проводится (в присутствии врача) предварительная десенсибилизация, затем вводят необходимую дозу сыворотки под прикрытием кортикостероидов. От сыворотки могут возникнуть различные осложнения, наиболее опасное из них - анафилактический шок. На вторую неделю заболевания может развиться сывороточная болезнь. Существует альтернатива антитоксической сыворотке - нативная гомологичная плазма (вводят по 250 мл 1-2 раза в сутки) .

Гепатит А

Материал из Википедии - свободной энциклопедии

Гепатит A
МКБ-10 BB15 15 -
МКБ-9 070.1 070.1
DiseasesDB
MedlinePlus
eMedicine med/991 ped/topic 977.htm ped/ 977
MeSH D006506

Гепатит A (также называемый Болезнью Боткина ) - острое инфекционное заболевание печени, вызываемое вирусом гепатита A (англ. HAV ) . Вирус хорошо передается по алиментарному пути, через зараженную пищу и воду, ежегодно вирусом инфицируются около десяти миллионов человек . Инкубационный период составляет от двух до шести недель, в среднем - 28 дней .

В развивающихся странах и в районах с недостаточным уровнем гигиены коэффициент заболеваемости гепатитом A высокий и сама болезнь переносится в раннем детстве в стёртой форме. Образцы океанической воды исследуют на наличие вируса гепатита A при изучении качества воды .

Гепатит A не имеет хронической стадии развития и не вызывает постоянных повреждений печени. После инфицирования иммунная система образует антитела против вируса гепатита A, которые обеспечивают дальнейший иммунитет. Заболевание может быть предотвращено вакцинированием. Вакцина против вируса гепатита A эффективно сдерживает вспышки заболевания по всему миру .

Патология

Ранние симптомы инфицирования гепатитом A (ощущение слабости и недомогания, потери аппетита, тошноты и рвоты и боли в мышцах) могут быть ошибочно приняты за симптомы другой болезни с интоксикацией и лихорадкой, однако у ряда лиц, особенно детей, симптомы не проявляются вообще .

Вирус гепатита A обладает прямым цитопатическим действием, то есть способен непосредственно повреждать гепатоциты. Гепатит A характеризуется воспалительными и некротическими изменениями в ткани печени и синдромом интоксикации, увеличением печени и селезёнки, клинико-лабораторными признаками нарушений функции печени, в ряде случаев желтухой с потемнением мочи и обесцвечиванием кала.

После попадания в организм вирус гепатита A проникает в кровеносную систему через клетки эпителия ротовой части глотки или кишечник . Кровь переносит вирус к печени, где вирусные частицы размножаются в гепатоцитах и клетках Купфера (макрофагах печени). Вирионы секретируются в жёлчь и выводятся со стулом. Вирусные частицы экскретируются в значительных количествах в среднем около 11 дней до появления симптомов или IgM против вируса гепатита A в крови. Инкубационный период длится от 15 до 50 дней, смертность составляет менее 0,5%.

В гепатоците геномная РНК выходит из белковой оболочки и транслируется на рибосомах клетки. Для инициации трансляции РНК вируса требует эукариотический фактор инициации трансляции 4G (eIF4G) .

Диагностика

Концентрации IgG, IgM и аланинотрансферазы (ALT) в сыворотке крови в ходе инфекции вирусом гепатита A

Так как вирусные частицы экскретируются с калом лишь в конце инкубационного периода, возможна лишь специфическая диагностика наличия анти-HAV IgM в крови . IgM появляются в крови лишь после острой фазы инфекции и могут быть обнаружены через одну или две недели после заражения. Появление IgG в крови свидетельствует об окончании острой фазы и появлении иммунитета к инфекции. IgG против HAV появляются в крови после введения вакцины против вируса гепатита A .

В ходе острой фазы инфекции в крови значительно повышается концентрация фермента печени -- аланинтрансферазы, (англ. ALT ). Фермент появляется в крови в результате разрушения гепатоцитов вирусом .

Терапия

Не существует специфического способа лечения гепатита A. Около 6-10 % людей с диагнозом «гепатит A», могут иметь один или несколько симптомов заболевания в течение до сорока недель после начала заболевания .

Центр по контролю и предотвращению заболеваний США в 1991 году опубликовали следующую статистику смертности при заражении вирусом гепатита A: 4 смерти на 1000 случаев по всей популяции и до 17,5 смертных случаев среди лиц старше 50 лет. Как правило, смертельные случаи происходят, когда лицо заражается гепатитом A уже болея гепатитами B и C .

Дети, инфицированные вирусом гепатита A, как правило, переносят заболевание в легкой форме в течение 1-3 недель, а взрослые лица переносят болезнь в значительно более тяжелой форме .

Гепати́т В - антропонозное вирусное заболевание, вызываемое возбудителем с выраженными гепатотропными свойствами - вирус гепатита B (в специальной литературе его могут обозначать «вирус ГВ», ВГВ или HBV) из семейства гепаднавирусов.

Вирус отличается чрезвычайно высокой устойчивостью к различным физическим и химическим факторам: низким и высоким температурам (в том числе кипячению), многократному замораживанию и оттаиванию, длительному воздействию кислой среды. Во внешней среде при комнатной температуре вирус гепатита B может сохраняться до нескольких недель: даже в засохшем и незаметном пятне крови, на лезвии бритвы, конце иглы. В сыворотке крови при температуре +30°С инфекционность вируса сохраняется в течение 6 месяцев, при температуре −20°С около 15 лет; в сухой плазме - 25 лет. Инактивируется при автоклавировании в течение 30 минут, стерилизации сухим жаром при температуре 160°С в течение 60 минут, прогревании при 60°С в течение 10 часов.

Эпидемиология

Инфицирование вирусом гепатита B (HBV) остается глобальной проблемой здравоохранения, и, по оценкам, около 2 миллиардов людей во всем мире были инфицированы этим вирусом, более 350 миллионов людей больны.

Механизм передачи инфекции - парентеральный. Заражение происходит естественным (половой, вертикальный, бытовой) и искусственным (парентеральным) путями. Вирус присутствует в крови и различных биологических жидкостях - слюне, моче, сперме, влагалищном секрете, менструальной крови и др. Контагиозность (заразность) вируса гепатита B превышает контагиозность ВИЧ в 100 раз.

Наибольшее значение раньше повсеместно имел именно парентеральный путь - заражение при лечебно-диагностических манипуляциях, сопровождающихся нарушением целостности кожного или слизистого покрова через медицинский, стоматологический, маникюрный и прочий инструментарий, трансфузии крови и её препаратов.

В последние годы всё большее значение в развитых странах приобретает половой путь передачи вируса, что обусловлено во-первых, снижением значения парентерального пути (появление разового инструментария, применение эффективных дезинфицирующих средств, ранним выявлением больных доноров), во-вторых так называемой «сексуальной революцией»: частой сменой половых партнёров, практикованием анальных контактов, сопровождающихся бо́льшей травматизацией слизистых и, соответственно, возрастанием риска попадания вируса в кровоток. При этом инфицирование при поцелуях, передача инфекции через молоко матери, а также распространение воздушно-капельным путем считается невозможным . Распространение наркомании также играет большую роль, поскольку «внутривенные» наркоманы входят в группу высокого риска и, что немаловажно, они не являются изолированной группой и с лёгкостью вступают в беспорядочные незащищённые половые отношения с другими людьми. Примерно 16-40 % половых партнёров при незащищённом половом контакте заражаются вирусом. [источник не указан 2381 день ]

При бытовом пути заражения инфицирование происходит при пользовании общими бритвами, лезвиями, маникюрными и банными принадлежностями, зубными щётками, полотенцами и т. д. В этом отношении опасны любые микротравмы кожи или слизистых оболочек предметами (или соприкосновение с ними травмированной кожи (потёртости, порезы, трещинки, воспаления кожи, проколы, ожоги и т. п.) или слизистых оболочек), на которых имеется даже микроколичество выделений инфицированных людей (мочи, крови, пота, спермы, слюны и др.) и даже в высушенном виде, незаметном невооружённым глазом. Собраны данные о наличии бытового пути передачи вируса: считается [кем? ] , что если в семье есть носитель вируса, то все члены семьи будут заражены в течение 5-10 лет.

Большое значение в странах с интенсивной циркуляцией вируса (высокой заболеваемостью) имеет вертикальный путь передачи, когда ребёнка заражает мать, где также реализуется кровоконтактный механизм. Обычно ребёнок заражается от инфицированной матери во время родов при прохождении через родовые пути. Причём имеет большое значение в каком состоянии находится инфекционный процесс в организме матери. Так, при положительном HBe-антигене, косвенно свидетельствующем о высокой активности процесса, риск инфицирования возрастает до 90 %, тогда как при единственном положительном HBs-антигене - такой риск составляет не более 20 %. [источник не указан 2381 день ]

С течением времени в России возрастная структура заболевших острым вирусным гепатитом B существенно меняется. Если в 70-80-х годах сывороточным гепатитом чаще болели 40-50-летние люди, то в последние годы от 70 до 80 % заболевших острым гепатитом B - молодые люди в возрасте 15-29 лет. [источник не указан 2381 день ]

Клопы рассматриваются как потенциальные трансмиссивные переносчики вируса гепатита B .

Патогенез

Самый значимый патогенетический фактор при вирусном гепатите B - гибель заражённых гепатоцитов вследствие атаки собственными иммунными агентами. Массивная гибель гепатоцитов приводит к нарушению функций печени, прежде всего детоксикационной, в меньшей степени - синтетической.

Течение

Инкубационный период (время с момента заражения до появления симптомов) гепатита B составляет в среднем 12 недель, но может колебаться в пределах от 2 до 6 месяцев. Инфекционный процесс начинается с момента попадания вируса в кровь. После попадания вирусов в печень через кровь идёт скрытая фаза размножения и накопления вирусных частиц. При достижении определённой концентрации вируса в печени развивается острый гепатит B. Иногда острый гепатит проходит для человека практически незаметно, и обнаруживается случайно, иногда протекает в легкой безжелтушной форме - проявляется только недомоганием и снижением работоспособности. Некоторые исследователи [какие? ] полагают, что бессимптомное течение, безжелтушная форма и «желтушный» гепатит составляют равные по количеству поражённых лиц группы. То есть выявленные диагностированные случаи острого гепатита B составляют только одну треть всех случаев острого гепатита. По данным других исследователей [каких? ] на один «желтушный» случай острого гепатита B приходится от 5 до 10 случаев заболеваний, которые как правило не попадают в поле зрения врачей. Между тем представители всех трёх групп потенциально заразны для окружающих.

Острый гепатит либо постепенно сходит на нет с элиминацией вируса и оставлением стойкого иммунитета (функция печени восстанавливается через несколько месяцев, хотя остаточные явления могут сопровождать человека всю жизнь), либо переходит в хроническую форму.

Хронический гепатит B протекает волнообразно, с периодическими (иногда имеющими сезонный характер) обострениями. В специальной литературе этот процесс обычно описывают как фазы интеграции и репликации вируса. Постепенно (интенсивность зависит как от вируса, так и иммунной системы человека) гепатоциты заменяются на клетки стромы, развивается фиброз и цирроз печени. Иногда следствием хронической HBV-инфекции бывает первичноклеточный рак печени (гепатоцеллюлярная карцинома). Присоединение вируса гепатита D к инфекционному процессу резко меняет течение гепатита и увеличивает риск развития цирроза (как правило у таких больных рак печени не успевает развиться).

Стоит обратить внимание на следующую закономерность: чем раньше человек заболевает, тем вероятность хронизации выше. Например, более 95 % взрослых людей заболевших острым гепатитом B, выздоравливают. А из заболевших гепатитом B новорожденных избавятся от вируса только 5 %. Из заразившихся детей в возрасте 1-6 лет хрониками станут около 30 %.

Клиника

Вся симптоматика вирусного гепатита B обусловлена интоксикацией вследствие снижения детоксикационной функции печени и холестазом - нарушением оттока желчи. Причём предполагается [кем? ] , что у одной группы больных превалирует экзогенная интоксикация - от токсинов поступающих с пищей или образующихся при пищеварении в кишечнике, а у другой группы больных превалирует эндогенная - от токсинов, образующиеся в результате метаболизма в собственных клетках и при некрозе гепатоцитов.

Поскольку к любым токсинам чувствительна прежде всего нервная ткань, в частности нейроциты головного мозга, прежде всего наблюдается церебротоксический эффект, что приводит к повышенной утомляемости, нарушению сна (при лёгких формах острого и хроническом гепатите), и спутанности сознания вплоть до печёночной комы (при массивном некрозе гепатоцитов или последних стадиях цирроза печени).

При поздних стадиях хронического гепатита, при обширном фиброзе и циррозе на первый план выступает синдром портальной гипертензии отягощённый хрупкостью сосудов вследствие снижения синтетической функции печени. Геморрагический синдром также характерен для фульминантного гепатита.

Иногда при гепатите B развивается полиартрит.

Диагностика

Основана на клинических данных, окончательный диагноз ставится после лабораторных исследований (показатели функции печени, признаки цитолиза, серологические маркеры, выделение ДНК вируса).


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-13

Антитоксические гетерогенные сыворотки получаются путем гипериммунизации различных животных. Они называются гетерогенными т.к. содержат чужеродные для человека сывороточные белки. Более предпочтительным является применение гомологичных антитоксических сывороток, для получения которых используется сыворотка переболевших людей (коревая, паротидная), или специально иммунизированных доноров(противостолбнячная, противоботулинистическая), сыворотка из плацентарной а так же абортивной крови, содержащие антитела к ряду возбудителей инфекционных болезней вследствие вакцинации или перенесенного заболевания.

Для очистки и концентрирования антитоксических сывороток используют методы: осаждение спиртом или ацетоном на холоде, обработка ферментами, аффинная хроматография, ультрафильтрация.

Активность иммунных антитоксических сывороток выражают в антитоксических единицах, т.е. тем наименьшим кол-вом антител, которое вызывает видимую или регистрируемую соответствующим способом реакцию с определённым кол-вом специфического антигена. активность антитоксической противостолбнячной сыворотки и соответствующего Ig выражается в антитоксических единицах.

Антитоксические сыворотки применяются для лечения токсинемических инфекций (столбняк, ботулизм, дифтерия, газовая гангрена).

После введения антитоксических сывороток возможны осложнения в виде анафилактического шока и сывороточной болезни, поэтому пред введением препаратов ставят аллергическую пробу на чувствительность к ним пациента, а вводят их дробно, по Безредке.

3. Возбудители холеры. Таксономия. Характеристика. Микробиологическая диагностика. Специфическая профи­лактика и лечение.

Возбудитель – Vibrio cholerae, серогрупп О1 и О139, характеризуется токсическим поражением тонкого кишечника, нарушением водно-солевого баланса.

Морфологические и культуральные свойства. Вибрион имеет один полярно расположенный жгутик. Под действием пени­циллина образуются L-формы. Грамотрицательны, спор не образуют. Факультативный анаэроб. Не требователен к питательным средам. Температурный опти­мум 37C.



На плотных средах вибрионы образуют мел­кие круглые прозрачные S-колонии с ровными краями. На скошенном агаре образуется жел­товатый налет. В непрозрачных R-колониях бактерии становятся устойчивыми к действию бактериофагов, антибиотиков и не агглютинируются О-сыворотками.

Биохимические свойства. Активны: сбраживают до кислоты глюкозу, мальтозу, сахарозу, маннит, лактозу, крахмал. Все вибрионы делятся на шесть групп по отноше­нию к трем сахарам (манноза, сахароза, арабиноза). Первую группу, к которой относятся истинные возбудители холеры, составляют вибрионы, разлагающие маннозу и сахарозу и не разлагающие арабинозу: разлагают белки до аммиака и ин­дола. H 2 S не образуют.

Антигенная структура . Термостабильный О-антиген и термолабильный Н-антиген. Н-АГ являются общими для большой груп­пы вибрионов.

Возбудители классической холеры и холеры Эль-Тор объединяются в серогруппу 01. Антигены серогруппы 01 включают в раз­личных сочетаниях А-, В- и С-субъединицы. Сочетание субъединиц АВ называется сероваром Огава, сочетание АС - сероваром Инаба, сочетание ABC - Гикошима. R-формы колоний утрачивают О-АГ.

Резистентность. Вибрионы плохо переносят высушивание. Долго сохраняются в водоемах, пи­щевых продуктах.. Биовар Эль-Тор более устойчив в окружающей среде, чем классический вибрион.

Эпидемиология. Острая кишечная инфекция с фекально-оральным механизмом передачи. Путь передачи - водный, пищевой. Источник инфекции - больной человек или вибрионоситель.

Факторы патогенности. Пили адгезии; фермент муциназа, разжижающий слизь и обеспечивающий доступ к эпите­лию. Эпителиальные клетки выделяют ще­лочной секрет, который в сочетании с желчью является прекрасной питательной средой для размножения вибрионов. Токсинообразование вибрионов, которые вырабатывают эндо- и экзотоксины. Экзотоксин (энтеротоксин) холероген - тер­молабильный белок, чувствителен к протеолитическим ферментам. Холероген содержит 2 субъединицы: А и В. А активизиру­ет внутриклеточную аденилатциклазу, происходит повышение выхода жидкости в просвет кишечника. Диарея, рвота. Фермент нейраминидаза усиливает связывание холерного экзо­токсина с эпителием слизистой кишечника. Эндотоксин запускает каскад арахидоновой кислоты, которая запускает синтез простагландинов (Е, F). Они вызывают сокращение глад­кой мускулатуры тонкого кишечника и подав­ляют иммунный ответ, чем обусловлены диарея.

Клинические проявления. Инкубационный период 2-3 дня. Боль в животе, рвота, диарея.

Иммунитет. Гуморально-клеточный. При выздоровлении возникает напряженный не­продолжительный иммунитет.

Выделение и идентифика­ция возбудителя. Материал для исследова­ния - выделения от больных (кал, рвота), вода.

Для экспресс-диагностики используют РИФ, ПЦР. Бактериоскопический метод в настоящее время не используется.

Лечение : а)регидратация (восполнение потерь жид­кости и электролитов введением изотоничес­ких, растворов, а также плазмозаменяющих жидкостей внутривенно; б) антибактериальная терапия (тетрациклины, фторхинолоны).

Профилактика. Санит.-гиг. мероприятия. Экстренная профилактика антибио­тиками широкого спектра действия, а также вакцинопрофилактика. Современная вакцина представляет собой комплексный препарат, состоящий из холероген-анатоксина и химического О-антигена, обоих биоваров и сероваров Огава и Инаба. Прививка обеспечивает выработку вибриоцидных анти­тел и антитоксинов в высоких титрах.

Билет27

1. Методы культивирования вирусов.

Для культивирования вирусов используют культуры клеток, куриные эмбрионы и чувствительных лабораторных животных. Эти же методы используют и для культивирования риккетсий и хламидий - облигатных внутриклеточных бактерий, которые не растут на искусственных питательных средах.

Культуры клеток. Культуры клеток готовят из тканей живот­ных или человека. Культуры подразделяют на первичные (неперевиваемые), полуперевиваемые и перевиваемые.

Приготовление первичной культуры клеток складывает­ся из нескольких последовательных этапов: измельчения ткани, разъединения клеток путем трипсинизации, отмывания получен­ной однородной суспензии изолированных клеток от трипсина с последующим суспендированием клеток в питательной среде, обеспечивающей их рост, например в среде 199 с добавлением телячьей сыворотки крови.

Перевиваемые культуры в отличие от первичных адаптированы к условиям, обеспечивающим им постоянное существование in vitro, и сохра­няются на протяжении нескольких десятков пассажей.

Перевиваемые однослойные культуры клеток приготов­ляют из злокачественных и нормальных линий клеток, обладаю­щих способностью длительно размножаться in vitro в определен­ных условиях. К ним относятся злокачественные клетки HeLa, первоначально выделенные из карциномы шейки матки, Нер-3 (из лимфоидной карциномы), а также нормальные клетки ам­ниона человека, почек обезьяны и др.

К полуперевиваемым культурам относятся диплоид­ные клетки человека. Они представляют собой клеточную систе­му, сохраняющую в процессе 50 пассажей (до года) диплоидный набор хромосом, типичный для соматических клеток использу­емой ткани. Диплоидные клетки человека не претерпевают зло­качественного перерождения и этим выгодно отличаются от опу­холевых.

О размножении (репродукции) вирусов в культуре клеток судят по цитопатическому действию (ЦПД), кото­рое может быть обнаружено микроскопически и характеризуется морфологическими изменениями клеток.

Характер ЦПД вирусов используют как для их обнаружения (индикации), так и для ориентировочной идентификации, т. е. определения их видовой принадлежности.

Один из методов индикации вирусов основан на способности поверхности клеток, в которых они репродуцируются, адсорби­ровать эритроциты - реакция гемадсорбции. Для ее по­становки в культуру клеток, зараженных вирусами, добавляют взвесь эритроцитов и после некоторого времени контакта клетки промывают изотоническим раствором хлорида натрия. На по­верхности пораженных вирусами клеток остаются прилипшие эритроциты.

Другой метод - реакция гемагглютинации (РГ). Применяется для обнаружения вирусов в культуральной жид­кости культуры клеток либо хорионаллантоисной или амниотической жидкости куриного эмбриона.

Количество вирусных частиц определяют методом титрования по ЦПД в культуре клеток . Для этого клетки культуры заражают десятикратным разведением вируса. После 6-7-дневной инку­бации их просматривают на наличие ЦПД. За титр вируса при­нимают наибольшее разведение, которое вызывает ЦПД в 50 % зараженных культур. Титр вируса выражают количеством цитопатических доз.

Более точным количественным методом учета отдельных ви­русных частиц является метод бляшек .

Некоторые вирусы можно обнаружить и идентифицировать по включениям , которые они образуют в ядре или цитоплазме зараженных клеток.

Куриные эмбрионы. Куриные эмбрионы по сравнению с культурами клеток значительно реже бывают контаминированы вирусами и микоплазмами, а также обладают сравнительно вы­сокой жизнеспособностью и устойчивостью к различным воздей­ствиям.

Для получения чистых культур риккетсий, хламидий. и ря­да вирусов в диагностических целях, а также для приготов­ления разнообразных препаратов (вакцины, диагностикумы) используют 8-12-дневные куриные эмбрионы. О размножении упомянутых микроорганизмов судят по морфологическим из­менениям, выявляемым после вскрытия эмбриона на его обо­лочках.

О репродукции некоторых вирусов, например гриппа, оспы, можно судить по реакции гемагглютинации (РГА) с куриными или другими эритроцитами.

К недостаткам данного метода относятся невозможность об­наружения исследуемого микроорганизма без предварительного вскрытия эмбриона, а также наличие в нем большого количества белков и других соединений, затрудняющих последующую очист­ку риккетсий или вирусов при изготовлении различных препа­ратов.

Лабораторные животные. Видовая чувствительность живот­ных к определенному вирусу и их возраст определяют репродук­тивную способность вирусов. Во многих случаях только ново­рожденные животные чувствительны к тому или иному вирусу (например, мыши-сосунки - к вирусам Коксаки).

Преимущество данного метода перед другими состоит в воз­можности выделения тех вирусов, которые плохо репродуциру­ются в культуре или эмбрионе. К его недостаткам относятся кон­таминация организма подопытных животных посторонними ви­русами и микоплазмами, а также необходимость последующего заражения культуры клеток для получения чистой линии данно­го вируса, что удлиняет сроки исследования.

2. Реакция связывания комплемента. Механизм. Компо­ненты. Применение.

Реакция связывания комплемента (РСК) за­ключается в том, что при соответствии друг другу антигены и антитела образуют иммун­ный комплекс, к которому через Fc-фрагмент антител присоединяется комплемент (С), т. е. происходит связывание комплемента комп­лексом антиген-антитело. Если же комплекс антиген-антитело не образуется, то комп­лемент остается свободным.

Специфическое взаимодействие АГ и AT сопровождается адсорб­цией (связыванием) комплемента. Поскольку процесс связыва­ния комплемента не проявляется визуально, Ж. Борде и О.Жангу предложили использовать в качестве индикатора гемолитическую систему (эритроциты барана + гемолитическая сыворотка), кото­рая показывает, фиксирован ли комплемент комплексом АГ-АТ. Если АГ и AT соответствуют друг другу, т. е. образовался иммунный комплекс, то комплемент связывается этим комплексом и гемоли­за не происходит. Если AT не соответствует АГ, то комплекс не образуется и комплемент, оставаясь свободным, соединяется со второй системой и вызывает гемолиз.

Компоненты . Реакция связывания комплемента (РСК) относится к слож­ным серологическим реакциям. Для ее проведения необходимы 5 ингредиентов, а именно: АГ, AT и комплемент (первая система), эритроциты барана и гемолитическая сыворотка (вторая система).

Антигеном для РСК могут быть культуры различных убитых микроорганизмов, их лизаты, компоненты бактерий, патологи­чески измененных и нормальных органов, тканевых липидов, ви­русы и вирусосодержащие материалы.

В качестве комплемента используют свежую или сухую сыво­ротку морской свинки.

Механизм . РСК проводят в две фазы: 1-я фаза - инкубация смеси, содержащей три компонента антиген + антитело + комплемент; 2-я фаза (инди­каторная) - выявление в смеси свободного комплемента путем добавления к ней гемоли­тической системы, состоящей из эритроцитов барана, и гемолитической сыворотки, содер­жащей антитела к ним. В 1-й фазе реакции при образовании комплекса антиген-антите­ло происходит связывание им комплемента, и тогда во 2-й фазе гемолиз сенсибилизирован­ных антителами эритроцитов не произойдет; реакция положительная. Если антиген и ан­титело не соответствуют друг другу (в иссле­дуемом образце нет антигена или антитела), комплемент остается свободным и во 2-й фазе присоединится к комплексу эритроцит - антиэритроцитарное антитело, вызывая гемо­лиз; реакция отрицательная.

Применение . РСК применяют для диагностики многих инфекционных болезней, в частности сифи­лиса (реакция Вассермана).

3. Возбудитель гриппа. Таксономия. Характеристика. Лабораторная диагностика. Специфическая профилакти­ка и лечение.

Таксономия: семейство – Orthomyxoviridae, род Influenzavirus. Раз­личают 3 серотипа вируса гриппа: А, В и С.

Структура вируса гриппа А. Возбудитель гриппа имеет однонитчатую РНК, состоящую из 8 фрагментов. Подобная сегментарность позволяет двум вирусам при взаимодействии легко обмениваться генетической информацией и тем самым спо­собствует высокой изменчивости вируса. Капсомеры уложены вок­руг нити РНК по спиральному типу. Вирус гриппа имеет также суперкапсид с отростками. Вирус полиморфен: встре­чаются сферические, палочковидные, нитевидные формы.

Антигенная структура . Внутренние и поверхностные антигены. Внутренние антигены состоят из РНК и белков капсида, представлены нуклеопротеином (NP-белком) и М-белками. NP-и М-белки - это типоспецифические анти­гены. NP-белок способен связывать комп­лемент, поэтому тип вируса гриппа обычно определяют в РСК. Поверхностные антигены - это гемагглютинин и нейраминидаза. Их струк­туру, которая определяет подтип вируса гриппа, исследуют в РТГА, благодаря тор­можению специфическими антителами гемагглютинации вирусов. Внутренний антиген – стимулирует Т-киллеры и макрофаги, не вызывает антителообразования. У вируса имеются 3 разновидности Н- и 2 разновидности N – антигенов.

Иммунитет: Во время заболевания в проти­вовирусном ответе участвуют факторы неспе­цифической защиты: выделительная функция организма, сывороточные ингибиторы, аль­фа-интерферон, специфические IgA в секре­тах респираторного тракта, которые обеспечи­вают местный иммунитет.

Клеточный иммунитет - NK-клетки и специфические цитотоксические Т-лимфоциты, действующие на клетки, ин­фицированные вирусом. Постинфекционный иммунитет достаточно длителен и прочен, но высокоспецифичен (типо-, подтипо-, вариантоспецифичен).

Микробиологическая диагностика. Диагноз «грипп» базируется на (1) выделении и иден­тификации вируса, (2) определении вирусных АГ в клетках больного, (3) поиске вирусоспецифических антител в сыворотке больно­го. При отборе материала для исследования важно получить пораженные вирусом клетки, так как именно в них происходит репликация вирусов. Материал для исследования - но­соглоточное отделяемое. Для определения антител исследуют парные сыворотки крови больного.

Экспресс-диагностика. Обнаруживают ви­русные антигены в исследуемом материале с помощью РИФ (прямой и непрямой вариан­ты) и ИФА. Можно обнаружить в материале геном вирусов при помощи ПЦР.

Вирусологический метод. Оптимальная лабо­раторная модель для культивирования штаммов-ку­риный эмбрион. Индикацию вирусов проводят в зависи­мости от лабораторной модели (по гибели, по клиническим и патоморфологическим изменениям, ЦПД, образованию «бляшек», «цветной пробе», РГА и гемадсорбции). Идентифицируют вирусы по антигенной структуре. Применяют РСК, РТГА, ИФА, РБН (реакцию биологической нейтрализа­ции) вирусов и др. Обычно тип вирусов грип­па определяют в РСК, подтип - в РТГА.

Серологический метод. Диагноз ставят при четырехкратном увеличении титра антител в парных сыворотках от больного, полученных с интервалом в 10 дней. Применяют РТГА, РСК, ИФА, РБН вирусов.

Лечение: симптоматическое/патогенетическое. А-интерферон – угнетает размножение вирусов.

1. Препараты - индукторы эндогенного интерферона.

Этиотропное лечение - ремантидин – препятствует репродукции вирусов, блокируя М-белки. Арбидол – действует на вирусы А и В.

2. Препараты - ингибиторы нейраминидазы. Блокируют выход вирусных частиц из инфицированных клеток.

При тяжелых формах – противогриппозный донорский иммуноглобулин и нормальный человеческий иммуноглобулин для в\в введения.

Профилактика : Неспецифическая профилактика – противоэпидемические мероприятия, препараты а-интерферона и оксолина.

Специфическая – вакцины. Живые аллантоисные интраназальная и подкожная, тривалентные инактивированные цельно-вирионные гриппозные интраназальная и парентеральная-подкожная (Грипповак), химические Агриппал, полимер-субъединичная «Гриппол». Живые вакцины создают наиболее пол­ноценный, в том числе местный, иммунитет

Билет28

1. Бактериофаги. Взаимодействие фага с бактериаль­ной клеткой. Умеренные и вирулентные бактериофаги. Лизогения.

Бактериофаги - вирусы бактерий, обладающие способностью специфически про­никать в бактериальные клетки, репродуцироваться в них и вы­зывать их растворение (лизис).

Взаимодействие фага с бактериальной клеткой. По механизму взаимодействия различают вирулентные и умеренные фаги.

Ви­рулентные фаги , проникнув в бактериальную клетку, авто­номно репродуцируются в ней и вызывают лизис бактерий. Про­цесс взаимодействия вирулентного фага с бактерией протекает в виде нескольких стадий и весьма схож с процессом взаимодей­ствия вирусов человека и животных с клеткой хозяина. Однако для фагов, имеющих хвостовой отросток с сокращающим­ся чехлом, он имеет особенности. Эти фаги адсорбируются на по­верхности бактериальной клетки с помощью фибрилл хвостово­го отростка. В результате активации фагового фермента АТФазы происходит сокращение чехла хвостового отростка и внедрение стержня в клетку. В процессе «прокалывания» клеточной стенки бактерии принимает участие фермент лизоцим, находящийся на конце хвостового отростка. Вслед за этим ДНК фага, содержаща­яся в головке, проходит через полость хвостового стержня и ак­тивно впрыскивается в цитоплазму клетки. Остальные структур­ные элементы фага (капсид и отросток) остаются вне клетки.

После биосинтеза фаговых компонентов и их самосборки в бактериальной клетке накапливается до 200 новых фаговых ча­стиц. Под действием фагового лизоцима и внутриклеточного ос­мотического давления происходит разрушение клеточной стен­ки, выход фагового потомства в окружающую среду и лизис бактерии. Один литический цикл (от момента адсорбции фагов до их выхода из клетки) продолжается 30-40 мин. Процесс бактериофагии проходит несколько циклов, пока не будут лизированы все чувствительные к данному фагу бактерии.

Взаимодействие фагов с бактериальной клеткой характеризу­ется определенной степенью специфичности . По специфичнос­ти действия различают поливалентные фаги, способные взаимодействовать с родственными видами бактерий, моновалентные фаги, взаимодействующие с бактериями определенного вида, и типовые фаги, взаимодействующие с отдельными вариантами (типами) данного вида бактерий.

Умеренные фаги лизируют не все клетки в популяции, с частью из них они вступают в симбиоз, в результате чего ДНК фага встраивается в хромосому бактерии. В таком случае гено­мом фага называют профаг. Профаг, ставший частью хромосо­мы клетки, при ее размножении реплицируется синхронно с геном бактерии, не вызывая ее лизиса, и передается по наслед­ству от клетки к клетке неограниченному числу потомков.

Био­логическое явление симбиоза микробной клетки с умеренным фагом (профагом) называется лизогенией , а культура бакте­рий, содержащая профаг, получила название лизогенной. Это название отражает способность профага самопроизвольно или под действи­ем ряда физических и химических факторов исключаться из хро­мосомы клетки и переходить в цитоплазму, т. е. вести себя как вирулентный фаг, лизирующий бактерии.

Лизогенные культуры по своим основным свойствам не от­личаются от исходных, но они невосприимчивы к повторному заражению гомологичным или близкородственным фагом и, кроме того, приобретают дополнительные свойства, которые находятся под контролем генов профага. Изменение свойств мик­роорганизмов под влиянием профага получило название фаго­вой конверсии. Последняя имеет место у многих видов мик­роорганизмов и касается различных их свойств: культуральных, биохимических, токсигенных, антигенных, чувствительности к антибиотикам и др. Кроме того, переходя из интегрированного состояния в вирулентную форму, умеренный фаг может захва­тить часть хромосомы клетки и при лизисе последней перено­сит эту часть хромосомы в другую клетку. Если микробная клет­ка станет лизогенной, она приобретает новые свойства. Таким образом, умеренные фаги являются мощным фак­тором изменчивости микроорганизмов.

2. Патогенность и вирулентность бактерий. Факторы патогенности.

Фенотипическим признаком патогенного микроорганизма является его вирулентность , т.е. свойство штамма, которое проявляется в определенных условиях (при изменчивости микроорганизмов, изменении восприимчивости макроорганизма и т.д.). Вирулент­ность можно повышать, понижать, измерять, т.е. она является мерой патогенности. Количественные показатели вирулентности могут быть выражены в DLM (минимальная летальная доза), DL« (доза, вызывающая гибель 50 % экспериментальных живот­ных). При этом учитывают вид животных, пол, массу тела, спо­соб заражения, срок гибели.

К факторам патогенности относят способность микроорганизмов прикрепляться к клеткам (адгезия), размещаться на их поверхности (колонизация), проникать в клетки (инвазия) и противостоять факторам защиты организма (агрессия).

Адгезия является пусковым механизмом инфекционного процесса. Под адгезией понимают способность микроорганизма адсорбироваться на чувствительных клетках с последующей колонизацией. Структуры, ответственные за связывание микроорганизма с клеткой называются адгезинами и располагаются они на его поверхности. Адгезины очень разнообразны по строению и обусловливают высокую специфичность - способность одних микроорганизмов прикрепляться к клеткам эпителия дыхательных путей, других - кишечного тракта или мочеполовой системы и т.д. На процесс адгезии могут влиять физико-химические механизмы, связанные с гидрофобностью микробных клеток, суммой энергии притяжения и отталкивания. У грамотрицательных бактерий адгезия происходит за счет пилей I и общего типов. У грамположительных бактерий адгезины представляют собой белки и тейхоевые кислоты клеточной стенки. У других микроорганизмов эту функцию выполняют различные структуры клеточной системы: поверхностные белки, липополисахариды, и др.
Инвазия. Под инвазивностью понимают способность микробов проникать через слизистые, кожу, соединительно-тканные барьеры во внутреннюю среду организма и распространятся по его тканям и органам. Проникновение микроорганизма в клетку связывается с продукцией ферментов, а также с факторами подавляющими клеточную защиту. Так фермент гиалуронидаза расщепляет гиалуроновую кислоту, входящую в состав межклеточного вещества, и, таким образом, повышает проницаемость слизистых оболочек и соединительной ткани. Нейраминидаза расщепляет нейраминовую кислоту, которая входит в состав поверхностных рецепторов клеток слизистых оболочек, что способствует проникновению возбудителя в ткани.
Агрессия. Под агрессивностью понимают способность возбудителя противостоять защитным факторам макроорганизма. К факторам агрессии относятся: протеазы - ферменты, разрушающие иммуноглобулины; коагулаза - фермент, свертывающий плазму крови; фибринолизин - растворяющий сгусток фибрина; лецитиназа - фермент, действующий на фосфолипиды мембран мышечных волокон, эритроцитов и других клеток. Патогенность может быть связана и с другими ферментами микроорганизмов, при этом они действуют как местно, так и генерализовано.

Важную роль в развитии инфекционного процесса играют токсины. По биологическим свойствам бактериальные токсины делятся на экзотоксины и эндотоксины.
Экзотоксины продуцируют как грамположительные, так и грамотрицательные бактерии. По своей химической структуре это белки. По механизму действия экзотоксина на клетку различают несколько типов: цитотоксины, мембранотоксины, функциональные блокаторы, эксфолианты и эритрогемины. Механизм действия белковых токсинов сводится к повреждению жизненно важных процессов в клетке: повышение проницаемости мембран, блокады синтеза белка и других биохимических процессов в клетке или нарушении взаимодействия и взаимокоординации между клетками. Экзотоксины являются сильными антигенами, которые и продуцируют образование в организме антитоксинов.

Экзотоксины обладают высокой токсичностью. Под воздействием формалина и температуры экзотоксины утрачивают свою токсичность, но сохраняют иммуногенное свойство. Такие токсины получили название анатоксины и применяются для профилактики заболевания столбняка, гангрены, ботулизма, дифтерии, а также используются в виде антигенов для иммунизации животных с целью получения анатоксических сывороток.
Эндотоксины по своей химической структуре являются липополисахаридами, которые содержатся в клеточной стенке грамотрицательных бактерий и выделяются в окружающую среду при лизисе бактерий. Эндотоксины не обладают специфичностью, термостабильны, менее токсичны, обладают слабой иммуногенностью. При поступлении в организм больших доз эндотоксины угнетают фагоцитоз, гранулоцитоз, моноцитоз, увеличивают проницаемость капилляров, оказывают разрушающее действие на клетки. Микробные липополисахариды разрушают лейкоциты крови, вызывают дегрануляцию тучных клеток с выделением вазодилататоров, активируют фактор Хагемана, что приводит к лейкопении, гипертермии, гипотонии, ацидозу, дессиминированной внутрисосудистой коагуляции (ДВК).
Эндотоксины стимулируют синтез интерферонов, активируют систему комплемента по классическому пути, обладают аллергическими свойствами.
При введении небольших доз эндотоксина повышается резистентность организма, усиливается фагоцитоз, стимулируются В-лимфоциты. Сыворотка животного иммунизированного эндотоксином обладает слабой антитоксической активностью и не нейтрализует эндотоксин.
Патогенность бактерий контролируется тремя типами генов : гены - собственной хромосомами, гены привнесенные плазмидами умеренными фагами.

3. Возбудитель столбняка. Таксономия и характеристика. Микробиологическая диагностика и лечение.

Столбняк - тяжелая раневая инфекция, вызываемая Clostridium tetani, характеризуется по­ражением нервной системы, приступами тоничес­ких и клонических судорог.

Таксономия . С. tetani относится к отделу Firmicutes, роду Clostridium.

Морфологические свойства. Возбудитель - подвиж­ная (перитрих) грамположительная палочка, об­разует споры, чаще круглые, реже овальные, споры располо­жены терминально. В культуре старше 24 ч бактерии становятся грамотрицательными. Капсул не образуют.

Культуральные свойства . Облигатный анаэроб. На жидких питательных средах бактерии растут придонно, продуцируя сильный экзотоксин. На плотных питательных средах образуют прозрачные или слегка сероватые колонии с шероховатой поверхностью. Не расщепляют углеводов, обладают слабым протеолитическим действием.

Антигенная структура и токсинообразование . По жгутиковому Н-антигену делится на 10 сероваров; О-антиген является общим для всех представителей вида. Воз­будитель продуцирует два патогенных растворимых антигена - тетанолизин и тетаноспазмин, составляющих две фракции стол­бнячного экзотоксина.

Факторы патогенности . Основным фактором патогенности является экзотоксин. Тетанолизин и тетаноспазмин оказы­вают соответственно гемолитическое (вызывает лизис эритроци­тов) и спастическое (вызывает непроизвольное сокращение мышц) действие.

Резистентность . Являясь нормальным обитателем кишечника живот­ных, человека, клостридии попадают в окружающую среду, в почву с фекалиями, ще в виде спор могут сохраняться годами. Споры столбняч­ной палочки отличаются термоустойчивостью: при кипячении погибают лишь через 50-60 мин..

Эпидемиология и патогенез . Заражение происходит при проникно­вении возбудителя в организм через дефекты кожи и слизистых оболочек при ранениях (боевых, производственных, бытовых), ожогах, обморожениях, через операционные раны, после инъ­екций. При инфицировании пуповины возможно развитие стол­бняка у новорожденных («пупочный столбняк»).

Патогенез. Главным патогенетическим фактором является столбнячный токсин. Палочки столбняка остаются в раневой ткани, т.е. на месте внедрения, и не распространяются по организму. От места размножения возбудителя токсин распро­страняется по кровеносным и лимфатическим сосудам, по не­рвным стволам, достигает спинного и продолговатого мозга и поражает нервные окончания синапсов, секретирующих меди­аторы (ацетилхолин), в результате чего нарушается про­ведение импульсов по нервным волокнам.

Клиника. Инкубационный период составляет в среднем 6- 14 дней. У больных наблюдаются спазм жевательных мышц, затрудненное глотание, напряжение мышц затылка, спины (ту­ловище принимает дугообразное положение - опистотонус), груди и живота. Характерны постоянные мышечные боли, по­вышенная чувствительность к различным раздражителям, час­тые генерализованные судороги. Болезнь протекает при повы­шенной температуре тела и ясном сознании.

Иммунитет . После перенесенной болезни иммунитет не вы­рабатывается. От матери, вакцинированной против столбняка, новорожденным передается непродолжительный пассивный ан­титоксический иммунитет.

Микробиологическая диагностика. Для бактериологического исследования берут материал из раны и очагов воспаления, а также кровь. В культурах выявляют стол­бнячный токсин, проводя опыт на мышах, у которых разви­вается характерная клиническая картина. Обнаружение столбняч­ного токсина при наличии грамположительных палочек с круг­лыми терминальными спорами позволяет сделать заключение, что в исследуемом материале присутствует С. tetani.

Лечение. Адсорбированный столбнячный анатоксин. Получен путем обезвреживания формалином столбнячного токсина с последую­щей его очисткой, концентрацией и адсорбцией на гидрате оксида алюминия. Входит в состав ассоциированной коклюшно-дифтерийно-столбнячной вакцины и других препаратов. Приме­няется для активной иммунизации против столбняка.

Противостолбнячная сыворотка. Получена из крови лоша­дей, гинериммунизированных столбнячным анатоксином. Применяется для профилактики и лечения столбняка..

Иммуноглобулин человеческий противостолбнячный. Полу­чен из гамма-глобулиновой фракции крови людей-доноров, ревакцинированных очищенным столбнячным анатоксином. Применяется для пассивной экстренной профилактики столбняка в сочетании со столбнячным анатоксином при повреждениях кожных покровов, а также для лечения начав­шегося заболевания.

Профилактика: При обширных травмах необходимо об­ратиться к врачу. Проводится хирургическая обработка раны. На­дежным способом защиты от столбняка является специфическая профилактика, которая состоит в проведении плановой и эк­стренной иммунизации. Экстренная пассивная иммунизация осуществляется у привитых детей и взрослых в случаях травм, ожогов и обморожений путем введения 0,5 мл сорбированного столбняч­ного анатоксина; непривитым вводят 1 мл столбнячного анаток­сина и человеческий иммуноглобулин. Для создания искусственного активного иммунитета применяют адсорбированный столбнячный анатоксин в составе вакцин АКДС и АДС или секстанатоксина. Вакцинацию начинают с 3-5-месячного возраста и затем пе­риодически проводят ревакцинации.

Билет29

1. Основные принципы культивирования бактерий.

Универсальным инструментом для производства посевов явля­ется бактериальная петля. Кроме нее, для посева уколом при­меняют специальную бактериальную иглу, а для посевов на чашках Петри - металлические или стеклянные шпатели. Для посевов жидких материалов наряду с петлей используют пасте­ровские и градуированные пипетки. Первые предварительно из­готовляют из стерильных легкоплавких стеклянных трубочек, которые вытягивают на пламени в виде капилляров. Конец ка­пилляра сразу же запаивают для сохранения стерильности. У пастеровских и градуированных пипеток широкий конец за­крывают ватой, после чего их помещают в специальные пеналы или обертывают бумагой и стерилизуют.

При пересеве бактериальной культуры берут пробирку в левую руку, а правой, обхватив ватную пробку IV и V пальцами, вынимают ее, пронося над пламенем горелки. Удерживая дру­гими пальцами той же руки петлю, набирают ею посевной ма­териал, после чего закрывают пробирку пробкой. Затем в пробирку со скошенным агаром вносят петлю с посевным материалом, опуская ее до конденсата в нижней ча­сти среды, и зигзагообразным движением распределяют мате риал по скошенной поверхности агара. Вынув петлю, обжигают край пробирки и закрывают ее пробкой. Петлю стерилизуют в пламени горелки и ставят в штатив. Пробирки с посевами над г писывают, указывая дату посева и характер посевного мате­риала (номер исследования или название культуры).

Посевы «газоном» производят шпателем на питательный агар в чашке Петри. Для этого, приоткрыв левой рукой крышку, пет­лей или пипеткой наносят посевной материал на поверхность питательного агара. Затем проводят шпатель через пламя горел­ки, остужают его о внутреннюю сторону крышки и растирают материал по всей поверхности среды. После инкубации посева появляется равномерный сплошной рост бактерий.

2. Иммунокомпетентные клетки. Т- и В-лимфоциты, макрофаги, их кооперация.

Антитоксические сыворотки Антитоксические сыворотки

иммунопрепараты, изготовляемые из крови иммунных людей и животных и применяемые для лечения пассивной иммунопрофилактики токсинемических инфекций (дифтерии, столбняка, ботулизма, некоторых форм стафилококковой инфекции и др.). Лечебное и профилактическое действие А. с. основано на том, что содержащиеся в них антитоксины (см.) создают пассивный иммунитет, к-рый защищает организм от токсического влияния токсинов с момента введения до 30 - 40-го дня после введения. А. с. не оказывают прямого ингибирующего действия на микробы, продуцирующие токсины, и их эндотоксины. Силу А. с. измеряют в международных ед. (ME) или АЕ, соответствующих минимальному количеству с-ки, нейтрализующему стандартную ед. того или иного токсина. См. Сыворотки иммунные диагностические и Сыворотки имунные лечебно-профилактические.

(Источник: «Словарь терминов микробиологии»)


Смотреть что такое "Антитоксические сыворотки" в других словарях:

    Искусственно получаемые сыворотки, содержащие антитоксины. Новый словарь иностранных слов. by EdwART, 2009. антитоксические сыворотки получаемые искусственно сыворотки, содержащие антитоксины Большой словарь иностранных слов. Издательство… … Словарь иностранных слов русского языка

    СЫВОРОТКИ - СЫВОРОТКИ. С. и м м у и н а я сыворотка, полученная из крови животного, иммунизированного естественно или искусственно к данному антигену (в большинстве случаев болезнетворному микроорганизму), и обладающая в отношении его строго специфическим… …

    С ки крови животных и человека, содержащие Ат против бактерий (антибактер.), вирусов (противовирусные), экзотоксинов (антитоксические), ядов змей, пауков и др. Готовят из крови гипериммунизированных животных (обычно лошадей, мулов, буйволов),… … Словарь микробиологии

    Препараты из крови животных и человека, содержащие Антитела против возбудителей инфекционных заболеваний или продуктов их жизнедеятельности. Применяются для серодиагностики (См. Серодиагностика), серопрофилактики (См. Серопрофилактика) и… … Большая советская энциклопедия

    Фотография микропрепарата Clostridiu … Википедия

    I Противоядия (antidota; синоним антидоты) средства, способные обезвреживать яд в организме, уменьшать или предотвращать развитие расстройств жизненно важных функций, обусловленных отравлением. Противоядия применяются только в токсикогенной фазе… … Медицинская энциклопедия

    АВИДИТЕТ - АВИДИТЕТ, Aviditat (от лат. avidus жадный), термин в современной иммунологии, обозначающий учение о качественной стороне реакций иммунитета. Понятие об А. введено в науку Эрлихом (Elhrlich) и его сотрудниками, которые пытались особенностями и… … Большая медицинская энциклопедия - ИНФЕКЦИОННЫЕ БОЛЕЗНИ. В представлении римлян слово «infectio» заключало в себе понятие о группе острых болезней, сопровождавшихся лихорадкой, часто приобретавших повальное распространение и зависевших от загрязнения" воздуха… … Большая медицинская энциклопедия

61. Антитоксические сыворотки. Получение, очистка, титрование, применение. Осложнения при использовании и их предупреждение

Антитоксические гетерогенные сыворотки получаются путем гипериммунизации различных животных. Они называются гетерогенными т.к. содержат чужеродные для человека сывороточные белки. Более предпочтительным является применение гомологичных антитоксических сывороток, для получения которых используется сыворотка переболевших людей (коревая, паротидная), или специально иммунизированных доноров(противостолбнячная, противоботулинистическая), сыворотка из плацентарной а так же абортивной крови, содержащие антитела к ряду возбудителей инфекционных болезней вследствие вакцинации или перенесенного заболевания.

Для очистки и концентрирования антитоксических сывороток используют методы: осаждение спиртом или ацетоном на холоде, обработка ферментами, аффинная хроматография, ультрафильтрация.

Активность иммунных антитоксических сывороток выражают в антитоксических единицах, т.е. тем наименьшим кол-вом антител, которое вызывает видимую или регистрируемую соответствующим способом реакцию с определённым кол-вом специфического антигена. активность антитоксической противостолбнячной сыворотки и соответствующего Ig выражается в антитоксических единицах.

Антитоксические сыворотки применяются для лечения токсинемических инфекций (столбняк, ботулизм, дифтерия, газовая гангрена).

После введения антитоксических сывороток возможны осложнения в виде анафилактического шока и сывороточной болезни, поэтому пред введением препаратов ставят аллергическую пробу на чувствительность к ним пациента, а вводят их дробно, по Безредке.

67. Менингит

Менингококковая инфекция - острая инфекционная болезнь, характеризующаяся поражением слизистой оболочки носоглотки, оболочек головного мозга возбудитель Neisseria meningitidis Мелкие диплококки. Характерно расположение в виде пары кофейных зерен, обращенных вогнутыми поверхностями друг к другу. Неподвижны, спор не образуют, грамотрицательные, имеют пили, капсула непостоянна. Ферментация глк. и мальтозы с образованием уксусной кислоты - диф.-диагностический признак.. Резистентность. Малоустойчив во внешней среде, чувствителен к высушиванию и охлаждению. В течение нескольких минут погибает при повышении температуры более 50 °С и ниже 22 °С. Чувствительны к 1 % раствору фенола, 0,2 % раствору хлорной извести, 1 % раствору хлорамина. Эпидемиология,

Патогенез и клиника. Человек - единственный природный хозяин менингококков. Носоглотка служит входными воротами инфекции, здесь возбудитель может длительно существовать, не вызывая воспаления (носительство). Меха-низм передачи инфекции от больного или носителя воздушно-капельный.Инкубационный период составляет 1-10 дней (чаще 2-3 дня). Различают локализованные (назофарингит) и генерализован-ные(менингит, менингоэнцефалит) формы менингококковой инфекции. Из носоглотки бактерии попадают в кровяное русло (менингококкемия) и вызывают поражение мозговых и слизистых оболочек с развитием лихорадки, геморрагической сыпи, воспаления мозговых оболочек.

Иммунитет. при генерализованных формах болезни стойкий.

Микробиологическаядиагностика: Материал для исследования - кровь, спинномозговая жидкость, носоглоточные смывы. Бактериоскопический метод – окраска мазков из ликвора и крови по Граму для определения лейкоцитарной формулы, выявления менингококков и их количества.

Бактериологический метод – выделение чистой культуры. Носоглоточная слизь, кровь, ликвор. Посев на плотные, полужидкие питательные среды, содержащие сыворотку, кровь. Лечение. антибиотики сульфамиды.

Профилактика. Специфическую профилактику проводят менинго-кокковой химической полиса-харидной вакциной серогруппы А и дивакциной серогрупп А и С по эпидемическим показаниям. Неспе-цифическая профилактика сводится к соблюдению санитарно-противо-эпидемического

17.Применение бактериофагов в медицине и биотехнологии

Практическое применение фагов. Бактериофаги используют в лабораторной диагностике инфекций при внутривидовой идентификации бактерий, т. е. определении фаговара (фаготипа). Для этого применяют метод фаготипирования, основанный на строгой специфичности действия фагов: на чашку с плотной питательной средой, засеянной «газоном» чистой культурой возбудителя, наносят капли различных диагностических типоспецифических фагов. Фаговар бактерии определяется тем типом фага, который вызвал ее лизис (образование стерильного пятна, «бляшки», или «негативной колонии», фага). Методику фаготипирования используют для выявления источника и путей распространения инфекции (эпидемиологическое маркирование). Выделение бактерий одного фаговара от разных больных указывает на общий источник их заражения.

Фаги применяют также для лечения и профилактики ряда бактериальных инфекций. Производят брюшнотифозный, сальмонеллезный, дизентерийный, синегнойный, стафилококковый, стрептококковый фаги и комбинированные препараты (колипротейный, пиобактериофаги и др). Бактериофаги назначают по показаниям перорально, парентерально или местно в виде жидких, таблети-рованных форм, свечей или аэрозолей.

Бактериофаги широко применяют в генной инженерии и биотехнологии в качестве векторов для получения рекомбинантных ДНК.


Строения коровы. Экспериментальный период. Э.Дженнер, придя к открытию вакцинации эмпирическим путем, не представлял (и на том этапе развития наук еще не мог представлять) механизм процессов, происходящих в организме после прививки. Эту тайну раскрыла новая наука - экспериментальная иммунология, основоположником которой стал Пастер. Луи Пастер (1822-1895 гг., рис. 184) - выдающийся французский...

Открыты в конце 18 века, но микробиология как наука сформировалась только в начале 19 века, после гениальных открытий французского ученого Луи Пастера. В связи с огромной ролью и задачами микробиологи не может справится со всеми вопросами в пределах одной дисциплины и в следствие этого происходит ее дифференцировка в различные дисциплины. Общая микробиология - изучает морфологию, физиологию, ...

JgD являются аутоиммунными антителами, так как при аутоиммунных заболеваниях (например, красная волчанка) их количество в сыворотке крови больных увеличивается в сотни раз. Раздел «Частная микробиология и вирусология» Вопрос 6. Возбудитель холеры: биологическая характеристика, среда обитания, источники, пути и механизмы инфицирования; факторы патогенности; принципы лабораторной диагностики; ...

Обнаруживается большое количество типичных ветвящихся клеток. Следовательно, ветвление у микобактерий зависит в значительной степени от питательной среды . 3. Особенности физиологии микроорганизмов рода Mycobacterium Микобактерии характеризуются высоким содержанием липидов (от 30,6 до 38,9 %), вследствие этого трудно окрашиваются анилиновыми красителями, но хорошо воспринимают краску...

Антитоксические гетерогенные сыворотки получаются путем гипериммунизации различных животных. Они называются гетерогенными т.к. содержат чужеродные для человека сывороточные белки. Более предпочтительным является применение гомологичных антитоксических сывороток, для получения которых используется сыворотка переболевших людей (коревая, паротидная), или специально иммунизированных доноров (противостолбнячная, противоботулинистическая), сыворотка из плацентарной а так же абортивной крови, содержащие антитела к ряду возбудителей инфекционных болезней вследствие вакцинации или перенесенного заболевания. Для очистки и концентрирования антитоксических сывороток используют методы: осаждение спиртом или ацетоном на холоде, обработка ферментами, аффинная хроматография, ультрафильтрация. Активность иммунных антитоксических сывороток выражают в антитоксических единицах, т. е. тем наименьшим кол-вом антител, которое вызывает видимую или регистрируемую соответствующим способом реакцию с определённым кол-вом специфического антигена. Активность антитоксической противостолбнячной сыворотки и соответствующего Ig выражается в антитоксических единицах.

Антитоксические сыворотки применяются для лечения токсинемических инфекций (столбняк, ботулизм, дифтерия, газовая гангрена). После введения антитоксических сывороток возможны осложнения в виде анафилактического шока и сывороточной болезни, поэтому перед введением препаратов ставят аллергическую пробу на чувствительность к ним пациента, а вводят их дробно, по Безредке.

Стрептококки, характеристика. Принципы лабораторной диагностики стрептококковых инфекций.

В семейство Streptococcaceae входит семь родов, из которых для человека наибольшее значение имеют стрептококки (род Streptococcus) и энтерококки (род Enterococcus). Наиболее значимые виды — S.pyogenes (стрептококки группы А), S.agalactiae (стрептококки группы В), S.pneumoniae (пневмококк), S.viridans (зеленящие стрептококки, биогруппа mutans), Enterococcus faecalis.

Морфология. Стрептококки — грамположительные цитохромнегативные бактерии шаровидной или овоидной формы, растущие чаще в виде цепочек, преимущественно неподвижные, не имеют спор. Патогенные виды образуют капсулу (у пневмококка имеет диагностическое значение). Факультативные (большинство) или строгие анаэробы.

Культуральные свойства. Стрептококки плохо растут на простых питательных средах. Обычно используют среды с кровью или сывороткой крови. Чаще применяют сахарный бульон и кровяной агар. На бульоне рост придонно — пристеночный в виде крошковатого осадка, бульон чаще прозрачен. На плотных средах чаще образуют очень мелкие колонии. Оптимум температуры +37о С, рН — 7,2-7,6. На плотных средах стрептококки группы А образуют колонии трех типов:

— мукоидные (напоминают капельку воды) — характерны для вирулентных штаммов, имеющих капсулу;

— шероховатые — плоские, с неровной поверхностью и фестончатыми краями — характерны для вирулентных штаммов, имеющих М- антигены;

— гладкие — характерны для маловирулентных штаммов.

Предпочитают газовую смесь с 5% СО2. Способны образовывать L- формы.

Существует ряд классификаций стрептококков. Бета — гемолитические стрептококки при росте на кровяном агаре образуют вокруг колонии четкую зону гемолиза, альфа — гемолитические — частичный гемолиз и позеленение среды (превращение окси- в метгемоглобин), гамма- гемолитические — на кровяном агаре гемолиза незаметно. Альфа — гемолитические стрептококки за зеленый цвет среды называют S.viridans (зеленящими).

Антигенная структура. Серологическая классификация имеет практическое значение для дифференциации имеющих сложное антигенное строение стрептококков. В основе классификации — группоспецифические полисахаридные антигены клеточной стенки . Выделяют 20 серогрупп, обозначенных заглавными латинскими буквами. Наибольшее значение имеют стрептококки серогрупп А,В и D.

У стрептококков серогруппы А имеются типоспецифические антигены — белки М, Т и R. По М- антигену гемолитические стрептококки серогруппы А подразделены на серовары (около 100).

Факторы патогенности стрептококков.

1. Белок М- главный фактор. Определяет адгезивные свойства, угнетает фагоцитоз, определяет типоспецифичность, обладает свойствами суперантигена. Антитела к М- белку обладают протективными свойствами.

2. Капсула — маскирует стрептококки за счет гиалуроновой кислоты, аналогичной гиалуроновой кислоте в тканях хозяина.

3. С5а — пептидаза — расщепляет С5а — компонент комплемента, чем снижает хемоатрактивную активность фагоцитов.

4. Стрептококки вызывают выраженную воспалительную реакцию, в значительной степени обусловленную секрецией более 20 растворимых факторов — ферментов (стрептолизины S и О, гиалуронидаза, ДНК- азы, стрептокиназа, протеазы) и эритрогенных токсинов.

Эритрогенин — скарлатинозный токсин, обусловливающий за счет иммунных механизмов образование ярко красной скарлатинозной сыпи. Выделяют три серологических типа этого токсина (А,В и С). Токсин обладает пирогенным, аллергенным, иммуносупрессивным и митогенным действием.

Генетика. Мутации и рекомбинации менее выражены, чем у стафилококков. Способны синтезировать бактериоцины.

Эпидемиологические особенности. Основными источниками являются больные острыми стрептококковыми инфекциями (ангина, пневмония, скарлатина), а также реконвалесценты. Механизм заражения — воздушно — капельный, реже — контактный, очень редко — алиментарный.

Клинико — патогенетические особенности. Стрептококки — обитатели слизистых верхних дыхательных путей, пищеварительного и моче — полового трактов, вызывают различные заболевания эндо- и экзогенного характера. Выделяют локальные (тонзиллит, кариес, ангины, отиты и др.) и генерализованные инфекции (ревматизм, рожистое воспаление, скарлатина, сепсис, пневмония, стрептодермии и др.).

Лабораторная диагностика. Основной метод диагностики — бактериологический. Материал для исследования — кровь, гной, слизь из зева, налет с миндалин, отделяемое ран. Решающим при исследовании выделенных культур является определение серогруппы (вида). Группоспецифические антигены определяют в реакции преципитации, латекс — агглютинации, коагглютинации, ИФА и в МФА с моноклональными антителами (МКА). Серологические методы чаще используют для диагностики ревматизма и гломерулонефрита стрептококковой этиологии — определяют антитела к стрептолизину О и стрептодорназе.

Билет № 30

1. Антибиотикорезистентность микробов. Механизм формирования. Пути преодоления. Методы определения чувствительности микробов к антибиотикам. Осложнения при антибиотикотерапии.

это лекарственные вещества, используемые для подавления жизнедеятельности и уничтожения микроорганизмов в тканях и средах больного, обладающие избирательным, этиотропным (действующим на причину) действием.

По направленности действия химиотерапевтические препараты делят на:

1) противопротозойные;

2) противогрибковые;

3) противовирусные;

4) антибактериальные.

По химическому строению выделяют несколько групп химиотерапевтических препаратов:

1) сульфаниламидные препараты (сульфаниламиды) – производные сульфаниловой кислоты. Они нарушают процесс получения микробами необходимых для их жизни и развития ростовых факторов – фолиевой кислоты и других веществ. К этой группе относят стрептоцид, норсульфазол, сульфаметизол, сульфометаксазол и др.;

2) производные нитрофурана. Механизм действия состоит в блокировании нескольких ферментных систем микробной клетки. К ним относят фурацилин, фурагин, фуразолидон, нитрофуразон и др.;

3) хинолоны. Нарушают различные этапы синтеза ДНК микробной клетки. К ним относят налидиксовую кислоту, циноксацин, норфлоксацин, ципрофлоксацин;

4) азолы – производные имидазола. Обладают противогрибковой активностью. Ингибируют биосинтез стероидов, что приводит к повреждению наружной клеточной мембраны грибов и повышению ее проницаемости. К ним относят клотримазол, кетоконазол, флуконазол и др.;

5) диаминопиримидины. Нарушают метаболизм микробной клетки. К ним относят триметоприм, пириметамин;

6) антибиотики – это группа соединений природного происхождения или их синтетических аналогов.

Принципы классификации антибиотиков.

1. По механизму действия:

1) нарушающие синтез микробной стенки (b-лактамные антибиотики; циклосерин; ванкомицин, тейкоплакин);

2) нарушающие функции цитоплазматической мембраны (циклические полипептиды, полиеновые антибиотики);

3) нарушающие синтез белков и нуклеиновых кислот (группа левомицетина, тетрациклина, макролиды, линкозамиды, аминогликозиды, фузидин, анзамицины).

2. По типу действия на микроорганизмы:

1) антибиотики с бактерицидным действием (влияющие на клеточную стенку и цитоплазматическую мембрану);

2) антибиотики с бактериостатическим действием (влияющие на синтез макромолекул).

3. По спектру действия:

1) с преимущественным действием на грамположительные микроорганизмы (линкозамиды, биосинтетические пенициллины, ванкомицин);

2) с преимущественным действием на грамотрицательные микроорганизмы (монобактамы, циклические полипептиды);

3) широкого спектра действия (аминогликозиды, левомицетин, тетрациклины, цефалоспорины).

4. По химическому строению:

1) b-лактамные антибиотики. К ним относятся:

а) пенициллины, среди которых выделяют природные (аминипенициллин) и полусинтетические (оксациллин);

б) цефалоспорины (цепорин, цефазолин, цефотаксим);

в) монобактамы (примбактам);

г) карбапенемы (имипинем, меропинем);

2) аминогликозиды (канамицин, неомицин);

3) тетрациклины (тетрациклин, метациклин);

4) макролиды (эритромицин, азитромицин);

5) линкозамины (линкомицин, клиндамицин);

6) полиены (амфотерицин, нистатин);

7) гликопептиды (ванкомицин, тейкоплакин).

Основные осложнения химиотерапии

Все осложнения химиотерапии можно разделить на две группы: осложнения со стороны макроорганизма и со стороны микроорганизма.

Осложнения со стороны макроорганизма:

1) аллергические реакции. Степень выраженности может быть различной – от легких форм до анафилактического шока. Наличие аллергии на один из препаратов группы является противопоказанием для использования и других препаратов этой группы, так как возможна перекрестная чувствительность;

2) прямое токсическое действие. Аминогликозиды обладают ототоксичностью и нефротоксичностью, тетрациклины нарушают формирование костной ткани и зубов. Ципрофлоксацин может оказывать нейротоксическое действие, фторхинолоны – вызывать артропатии;

3) побочные токсические эффекты. Эти осложнения связаны не с прямым, а с опосредованным действием на различные системы организма. Антибиотики, действующие на синтез белка и нуклеиновый обмен, всегда угнетают иммунную систему. Хлорамфеникол может подавлять синтез белков в клетках костного мозга, вызывая лимфопению. Фурагин, проникая через плаценту, может вызывать гемолитическую анемию у плода;

4) реакции обострения. При применении химиотерапевтических средств в первые дни заболевания может происходить массовая гибель возбудителей, сопровождающаяся освобождением большого количества эндотоксина и других продуктов распада. Это может сопровождаться ухудшением состояния вплоть до токсического шока. Такие реакции чаще бывают у детей. Поэтому антибиотикотерапия должна сочетаться с дезинтоксикационными мероприятиями;

5) развитие дисбиоза. Он чаще возникает на фоне применения антибиотиков широкого спектра действия.

Осложнения со стороны микроорганизма проявляются развитием лекарственной устойчивости. В ее основе лежат мутации хромосомных генов или приобретение плазмид устойчивости. Существуют роды микроорганизмов, обладающие природной устойчивостью.

Биохимическую основу устойчивости обеспечивают следующие механизмы:

1) энзиматическая инактивация антибиотиков. Этот процесс обеспечивается с помощью синтезируемых бактериями ферментов, разрушающих активную часть антибиотиков;

2) изменение проницаемости клеточной стенки для антибиотика или подавление его транспорта в бактериальные клетки;

3) изменение структуры компонентов микробной клетки.

Развитие того или иного механизма резистентности зависит от химической структуры антибиотика и свойств бактерий.

Методы борьбы с лекарственной устойчивостью:

1) поиск и создание новых химиотерапевтических препаратов;

2) создание комбинированных препаратов, которые включают в себя химиотерапевтические средства различных групп, усиливающих действие друг друга;

3) периодическая смена антибиотиков;

4) соблюдение основных принципов рациональной химиотерапии:

а) антибиотики надо назначать в соответствии с чувствительностью к ним возбудителей заболеваний;

б) лечение следует начинать как можно раньше;

в) химиотерапевтические препараты необходимо назначать в максимальных дозах, не давая микроорганизмам адаптироваться.

Предыдущая123456789101112Следующая

Этот тип иммунологической реакции основан на способности специфических антител - антитоксинов подавлять биологическую активность экзотоксинов бактерий.

Реакции нейтрализации токсина антитоксической сывороткой in vitro

1) Реакция флокуляции. Феномен флокуляции - помутнение - внешнее проявление образования комплекса экзотоксин (анатоксин) + антитоксин в оптимальных количественных соотношениях ингредиентов.

Реакция применяется:

— для определения специфической активности токсинов (анатоксинов) по стандартной антитоксической сыворотке (МЕ/мл), которая обозначается Ыглез?1осси!а1юп15 (и - порог флокуляции) или иммуногенной единицей (ИЕ). и - это то количество токсина (анатоксина), которое даёт интенсивную, ^-инициальную» флоккуляцию с 1МЕ сыворотки;

— для титрования антитоксических сывороток по известному анатоксину или токсину (метод Рамона). Активность сывороток выражается в МЕ/мл принимается то минимальное количество сыворотки, которое даёт интенсивную «инициальную» флокуляцию с Ш анатоксина (токсина). Например, эта реакция применяется для определения активности дифтерийного, столбнячного, ботулинического, гангренозного анатоксинов и титрования противодифтерийной, противостолбнячной, протиаоботулинической, прогивогангренозной и др. антитоксических сывороток.

2) Выявление токсигенности возбудителя дифтерии в РП в геле по Оухтерлоне (см. раздел «РП).

Реакции нейтрализации токсина антитоксической сывороткой (in vivo)

1. Реакция нейтрализации на животных применяется:

— для определения специфической активности анатоксинов (дифтерийный, столбнячный и др.) по стандартной антитоксической сыворотке и по опытной дозе токсина. Активность анатоксинов выражается в единицах связывания (ЕС), ЕС -количество анатоксина, которое целиком связывается с ШЕ/мл антитоксической сыворотки;

— для идентификации бактерий (возбудители газовой анаэробной инфекции, столбняка, ботулизма и др.) по стандартной антитоксической сыворотке;

— для титрования антитоксических сывороток (противодифтерийная, противостолбнячная и др.) по стандартному токсину. Титрование - это определение количества антитоксинов в 1 мл сыворотки. Специфическая активность сывороток выражается в международных антитоксических единицах (МЕ). 1МЕ -минимальное количество сыворотки, которое способно нейтрализовать определенную дозу токсина, выражающуюся в стандартных единицах: смертельных, некротических или реактивных дозах, в зависимости от вида токсина и способа титрования.

Титрование антитоксических сывороток может производиться следующими методами:

Метод Эрлиха. Титрование антитоксических сывороток по известной смертельной (опытной) дозе токсина.

Проводится в 2 этапа:

1) определение опытной дозы токсина. Смертельная доза - это количество токсина, которое в смеси с 1МЕ стандартной сыворотки вызывает гибель 50 % взятых в опыт животных;

2) к различным разведениям испытуемой сыворотки добавляют опытную дозу токсина, инкубируют 45 минут и вводят животным. По результатам производят расчет

титра сыворотки.

Метод Ремера.

Титрование антитоксических сывороток по известной некротической дозе токсина. Проводится в 2 этапа:

1) определение опытной некротической дозы токсина путём внутрикожного введения морской свинке различного количества токсина со стандартной сывороткой. Некротическая доза токсина - это его минимальное количество, которое в смеси с 1/50МЕ стандартной сыворотки вызывает на месте внутрикожного введения некроз на 4-5-и день;

2) к различным разведениям испытуемой сыворотки добавляют опытную дозу токсина и вводят внутрикожно морской свинке.

По результатам производят расчёт титра сыворотки. Так титруется противодифтерийная сыворотка.

Поиск Лекций

Антитоксическая сыворотка

Антитоксические сыворотки получают иммунизацией лошадей возрастающими дозами анатоксинов. В практике производства антитоксических сывороток широко используют хлористый кальций, алюмокалиевые квасцы, адъюванты типа Фрейда, тапиока. Антитоксические сыворотки выпускают с определённым содержанием антитоксинов, измеряемым в международных единицах (МЕ), принятых ВОЗ. За 1 МЕ принимается то минимальное количество сыворотки, которое способно нейтрализовать определённую дозу токсина. Действие сывороток сводится к нейтрализации токсинов, вырабатываемых возбудителем. Титрование антитоксических сывороток может проводиться тремя методами - Эрлиха, Ремера, Рамона. Лечебный эффект сыворотки заключается в образовании нетоксичного комплекса токсин - антитело при непосредственном контакте между свободно циркулирующем в крови больного ботулотоксином и сывороточными антителами.

Лечение антитоксической сывороткой

Для профилактики и лечения ботулизма применяют противоботулиновые лечебно-профилактические антитоксические сыворотки, выпускаемые в виде комплекта моновалентных или поливалентных сывороток. Сыворотку применяют после обязательного определения чувствительности пациента к лошадиному белку при помощи внутрикожной пробы. При положительной реакции сыворотку вводят по абсолютным показаниям под наблюдением врача с особыми предосторожностями. Заболевшим и всем лицам, употреблявшим продукт, вызвавший отравление, назначают антитоксическую поливалентную сыворотку.

Активную иммунизацию осуществляют очищенным сорбированным пентаанатоксином, обеспечивающим защиту от ботулинических токсинов типов А, В, С, D, Е, и секстаанатоксином. Препараты предназначены для иммунизации ограниченного контингента населения. Одна лечебная доза для антитоксинов типа А, С, Е составляет по 10 000 ME, типа В по 5 000 ME.

При лёгкой форме - в первые сутки - две дозы, на следующий день одну дозу, каждой из трёх типов сыворотки А, В, С. Всего на курс лечения 2-3 дозы. Вводят сыворотку внутривенно или внутримышечно после предварительной десенсибилизации (метод Безредко). При введении сыворотки внутривенно капельно необходимо смешать её с 250 мл физиологического раствора, подогретого до 37 °C.

При среднетяжёлой форме - в первый день вводят 4 дозы сыворотки каждого типа внутримышечно с интервалом в 12 часов, в дальнейшем - по показаниям. Курс лечения - 10 доз.

При тяжёлой форме - в первый день 6 доз, на второй - 4-5 доз. Курс лечения - 12-15 доз. Вводят внутримышечно с интервалом в 6-8 часов.

Обязательно проводится проба на чувствительность к чужеродному белку, так как антитоксическая сыворотка гетерогенна. Если проба положительная, то проводится (в присутствии врача) предварительная десенсибилизация, затем вводят необходимую дозу сыворотки под прикрытием кортикостероидов. От сыворотки могут возникнуть различные осложнения, наиболее опасное из них - анафилактический шок. На вторую неделю заболевания может развиться сывороточная болезнь. Существует альтернатива антитоксической сыворотке - нативная гомологичная плазма (вводят по 250 мл 1-2 раза в сутки).

Гепатит А

Материал из Википедии - свободной энциклопедии

Гепатит A
МКБ-10 BB15 15 —
МКБ-9 070.1 070.1
DiseasesDB
MedlinePlus
eMedicine med/991 ped/topic 977.htm ped/ 977
MeSH D006506

Гепатит A (также называемый Болезнью Боткина ) - острое инфекционное заболевание печени, вызываемое вирусом гепатита A (англ. HAV ). Вирус хорошо передается по алиментарному пути, через зараженную пищу и воду, ежегодно вирусом инфицируются около десяти миллионов человек. Инкубационный период составляет от двух до шести недель, в среднем - 28 дней.

В развивающихся странах и в районах с недостаточным уровнем гигиены коэффициент заболеваемости гепатитом A высокий и сама болезнь переносится в раннем детстве в стёртой форме. Образцы океанической воды исследуют на наличие вируса гепатита A при изучении качества воды.

Гепатит A не имеет хронической стадии развития и не вызывает постоянных повреждений печени. После инфицирования иммунная система образует антитела против вируса гепатита A, которые обеспечивают дальнейший иммунитет. Заболевание может быть предотвращено вакцинированием. Вакцина против вируса гепатита A эффективно сдерживает вспышки заболевания по всему миру.

Патология

Ранние симптомы инфицирования гепатитом A (ощущение слабости и недомогания, потери аппетита, тошноты и рвоты и боли в мышцах) могут быть ошибочно приняты за симптомы другой болезни с интоксикацией и лихорадкой, однако у ряда лиц, особенно детей, симптомы не проявляются вообще.

Вирус гепатита A обладает прямым цитопатическим действием, то есть способен непосредственно повреждать гепатоциты. Гепатит A характеризуется воспалительными и некротическими изменениями в ткани печени и синдромом интоксикации, увеличением печени и селезёнки, клинико-лабораторными признаками нарушений функции печени, в ряде случаев желтухой с потемнением мочи и обесцвечиванием кала.

После попадания в организм вирус гепатита A проникает в кровеносную систему через клетки эпителия ротовой части глотки или кишечник. Кровь переносит вирус к печени, где вирусные частицы размножаются в гепатоцитах и клетках Купфера (макрофагах печени). Вирионы секретируются в жёлчь и выводятся со стулом. Вирусные частицы экскретируются в значительных количествах в среднем около 11 дней до появления симптомов или IgM против вируса гепатита A в крови. Инкубационный период длится от 15 до 50 дней, смертность составляет менее 0,5%.

В гепатоците геномная РНК выходит из белковой оболочки и транслируется на рибосомах клетки. Для инициации трансляции РНК вируса требует эукариотический фактор инициации трансляции 4G (eIF4G).

Диагностика

Концентрации IgG, IgM и аланинотрансферазы (ALT) в сыворотке крови в ходе инфекции вирусом гепатита A

Так как вирусные частицы экскретируются с калом лишь в конце инкубационного периода, возможна лишь специфическая диагностика наличия анти-HAV IgM в крови. IgM появляются в крови лишь после острой фазы инфекции и могут быть обнаружены через одну или две недели после заражения. Появление IgG в крови свидетельствует об окончании острой фазы и появлении иммунитета к инфекции. IgG против HAV появляются в крови после введения вакцины против вируса гепатита A.

В ходе острой фазы инфекции в крови значительно повышается концентрация фермента печени — аланинтрансферазы, (англ. ALT ). Фермент появляется в крови в результате разрушения гепатоцитов вирусом.

Терапия

Не существует специфического способа лечения гепатита A. Около 6-10 % людей с диагнозом «гепатит A», могут иметь один или несколько симптомов заболевания в течение до сорока недель после начала заболевания.

Центр по контролю и предотвращению заболеваний США в 1991 году опубликовали следующую статистику смертности при заражении вирусом гепатита A: 4 смерти на 1000 случаев по всей популяции и до 17,5 смертных случаев среди лиц старше 50 лет. Как правило, смертельные случаи происходят, когда лицо заражается гепатитом A уже болея гепатитами B и C.

Дети, инфицированные вирусом гепатита A, как правило, переносят заболевание в легкой форме в течение 1-3 недель, а взрослые лица переносят болезнь в значительно более тяжелой форме.

Гепати́т В - антропонозное вирусное заболевание, вызываемое возбудителем с выраженными гепатотропными свойствами - вирус гепатита B (в специальной литературе его могут обозначать «вирус ГВ», ВГВ или HBV) из семейства гепаднавирусов.

Вирус отличается чрезвычайно высокой устойчивостью к различным физическим и химическим факторам: низким и высоким температурам (в том числе кипячению), многократному замораживанию и оттаиванию, длительному воздействию кислой среды. Во внешней среде при комнатной температуре вирус гепатита B может сохраняться до нескольких недель: даже в засохшем и незаметном пятне крови, на лезвии бритвы, конце иглы. В сыворотке крови при температуре +30°С инфекционность вируса сохраняется в течение 6 месяцев, при температуре −20°С около 15 лет; в сухой плазме - 25 лет. Инактивируется при автоклавировании в течение 30 минут, стерилизации сухим жаром при температуре 160°С в течение 60 минут, прогревании при 60°С в течение 10 часов.

Эпидемиология

Инфицирование вирусом гепатита B (HBV) остается глобальной проблемой здравоохранения, и, по оценкам, около 2 миллиардов людей во всем мире были инфицированы этим вирусом, более 350 миллионов людей больны.

Механизм передачи инфекции - парентеральный. Заражение происходит естественным (половой, вертикальный, бытовой) и искусственным (парентеральным) путями. Вирус присутствует в крови и различных биологических жидкостях - слюне, моче, сперме, влагалищном секрете, менструальной крови и др. Контагиозность (заразность) вируса гепатита B превышает контагиозность ВИЧ в 100 раз.

Наибольшее значение раньше повсеместно имел именно парентеральный путь - заражение при лечебно-диагностических манипуляциях, сопровождающихся нарушением целостности кожного или слизистого покрова через медицинский, стоматологический, маникюрный и прочий инструментарий, трансфузии крови и её препаратов.

В последние годы всё большее значение в развитых странах приобретает половой путь передачи вируса, что обусловлено во-первых, снижением значения парентерального пути (появление разового инструментария, применение эффективных дезинфицирующих средств, ранним выявлением больных доноров), во-вторых так называемой «сексуальной революцией»: частой сменой половых партнёров, практикованием анальных контактов, сопровождающихся бо́льшей травматизацией слизистых и, соответственно, возрастанием риска попадания вируса в кровоток. При этом инфицирование при поцелуях, передача инфекции через молоко матери, а также распространение воздушно-капельным путем считается невозможным. Распространение наркомании также играет большую роль, поскольку «внутривенные» наркоманы входят в группу высокого риска и, что немаловажно, они не являются изолированной группой и с лёгкостью вступают в беспорядочные незащищённые половые отношения с другими людьми.

Примерно 16-40 % половых партнёров при незащищённом половом контакте заражаются вирусом.[источник не указан 2381 день ]

При бытовом пути заражения инфицирование происходит при пользовании общими бритвами, лезвиями, маникюрными и банными принадлежностями, зубными щётками, полотенцами и т. д. В этом отношении опасны любые микротравмы кожи или слизистых оболочек предметами (или соприкосновение с ними травмированной кожи (потёртости, порезы, трещинки, воспаления кожи, проколы, ожоги и т. п.) или слизистых оболочек), на которых имеется даже микроколичество выделений инфицированных людей (мочи, крови, пота, спермы, слюны и др.) и даже в высушенном виде, незаметном невооружённым глазом. Собраны данные о наличии бытового пути передачи вируса: считается[кем? ], что если в семье есть носитель вируса, то все члены семьи будут заражены в течение 5-10 лет.

Большое значение в странах с интенсивной циркуляцией вируса (высокой заболеваемостью) имеет вертикальный путь передачи, когда ребёнка заражает мать, где также реализуется кровоконтактный механизм. Обычно ребёнок заражается от инфицированной матери во время родов при прохождении через родовые пути. Причём имеет большое значение в каком состоянии находится инфекционный процесс в организме матери. Так, при положительном HBe-антигене, косвенно свидетельствующем о высокой активности процесса, риск инфицирования возрастает до 90 %, тогда как при единственном положительном HBs-антигене - такой риск составляет не более 20 %.[источник не указан 2381 день ]

С течением времени в России возрастная структура заболевших острым вирусным гепатитом B существенно меняется. Если в 70-80-х годах сывороточным гепатитом чаще болели 40-50-летние люди, то в последние годы от 70 до 80 % заболевших острым гепатитом B - молодые люди в возрасте 15-29 лет.[источник не указан 2381 день ]

Клопы рассматриваются как потенциальные трансмиссивные переносчики вируса гепатита B.

Патогенез

Самый значимый патогенетический фактор при вирусном гепатите B - гибель заражённых гепатоцитов вследствие атаки собственными иммунными агентами. Массивная гибель гепатоцитов приводит к нарушению функций печени, прежде всего детоксикационной, в меньшей степени - синтетической.

Течение

Инкубационный период (время с момента заражения до появления симптомов) гепатита B составляет в среднем 12 недель, но может колебаться в пределах от 2 до 6 месяцев. Инфекционный процесс начинается с момента попадания вируса в кровь. После попадания вирусов в печень через кровь идёт скрытая фаза размножения и накопления вирусных частиц. При достижении определённой концентрации вируса в печени развивается острый гепатит B. Иногда острый гепатит проходит для человека практически незаметно, и обнаруживается случайно, иногда протекает в легкой безжелтушной форме - проявляется только недомоганием и снижением работоспособности. Некоторые исследователи[какие? ] полагают, что бессимптомное течение, безжелтушная форма и «желтушный» гепатит составляют равные по количеству поражённых лиц группы. То есть выявленные диагностированные случаи острого гепатита B составляют только одну треть всех случаев острого гепатита. По данным других исследователей[каких? ] на один «желтушный» случай острого гепатита B приходится от 5 до 10 случаев заболеваний, которые как правило не попадают в поле зрения врачей. Между тем представители всех трёх групп потенциально заразны для окружающих.

Острый гепатит либо постепенно сходит на нет с элиминацией вируса и оставлением стойкого иммунитета (функция печени восстанавливается через несколько месяцев, хотя остаточные явления могут сопровождать человека всю жизнь), либо переходит в хроническую форму.

Хронический гепатит B протекает волнообразно, с периодическими (иногда имеющими сезонный характер) обострениями. В специальной литературе этот процесс обычно описывают как фазы интеграции и репликации вируса. Постепенно (интенсивность зависит как от вируса, так и иммунной системы человека) гепатоциты заменяются на клетки стромы, развивается фиброз и цирроз печени. Иногда следствием хронической HBV-инфекции бывает первичноклеточный рак печени (гепатоцеллюлярная карцинома). Присоединение вируса гепатита D к инфекционному процессу резко меняет течение гепатита и увеличивает риск развития цирроза (как правило у таких больных рак печени не успевает развиться).

Стоит обратить внимание на следующую закономерность: чем раньше человек заболевает, тем вероятность хронизации выше. Например, более 95 % взрослых людей заболевших острым гепатитом B, выздоравливают. А из заболевших гепатитом B новорожденных избавятся от вируса только 5 %. Из заразившихся детей в возрасте 1-6 лет хрониками станут около 30 %.

Клиника

Вся симптоматика вирусного гепатита B обусловлена интоксикацией вследствие снижения детоксикационной функции печени и холестазом - нарушением оттока желчи. Причём предполагается[кем? ], что у одной группы больных превалирует экзогенная интоксикация - от токсинов поступающих с пищей или образующихся при пищеварении в кишечнике, а у другой группы больных превалирует эндогенная - от токсинов, образующиеся в результате метаболизма в собственных клетках и при некрозе гепатоцитов.

Поскольку к любым токсинам чувствительна прежде всего нервная ткань, в частности нейроциты головного мозга, прежде всего наблюдается церебротоксический эффект, что приводит к повышенной утомляемости, нарушению сна (при лёгких формах острого и хроническом гепатите), и спутанности сознания вплоть до печёночной комы (при массивном некрозе гепатоцитов или последних стадиях цирроза печени).

При поздних стадиях хронического гепатита, при обширном фиброзе и циррозе на первый план выступает синдром портальной гипертензии отягощённый хрупкостью сосудов вследствие снижения синтетической функции печени. Геморрагический синдром также характерен для фульминантного гепатита.

Иногда при гепатите B развивается полиартрит.

Диагностика

Основана на клинических данных, окончательный диагноз ставится после лабораторных исследований (показатели функции печени, признаки цитолиза, серологические маркеры, выделение ДНК вируса).

©2015-2018 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Нарушение авторских прав и Нарушение персональных данных

1. Антитоксические сыворотки содержат специфические антитела против токсинов — антитоксины и дозируются антитоксическими единицами. Действие их сводится к нейтрализации токсинов, вырабатываемых возбудителем. Антитоксическими сыворотками являются противодифтерийная, противостолбнячная, противогангренозная, противосибиреязвенная и др.

2. Антибактериальные сыворотки содержат антитела против бактерий (агглютинины, бактериолизины, опсонины). В последние годы антибактериальные сыворотки уступили место специфическим иммуноглобулинам , представляющим собой активную в иммунном отношении фракцию сыворотки. Их готовят из крови людей (гомологичные) или животных (гетерологичные). Эти препараты имеют высокую концентрацию антител, лишены балластных белков, являются малореактогенными. Гомологичные иммунные препараты обладают преимуществом перед гетерогенными в связи со сравнительно большой продолжительностью (до 1- 2 мес) их циркуляции в организме и отсутствием у них побочных эффектов. Сыворотки и иммуноглобулины, изготовленные из крови животных, действуют сравнительно недолго (1 – 2 нед) и способны вызывать побочные реакции. Их можно применять только после предварительной десенсибилизации организма по Безредка, осуществляемой путем последовательного подкожного (с интервалом в 30 – 60 мин) введения небольших порций. Затем внутримышечно применяется вся доза лечебной сыворотки. При отдельных формах экзотоксических инфекций (токсическая дифтерия зева) 1/2 — 1/3 часть препарата при первом его введении можно применять внутривенно.

При положительной пробе на чувствительность к чужеродному белку гетерологичные препараты вводятся под наркозом или под прикрытием больших доз глюкокортикоидов. Введение гетерологичных сывороток во всех случаях проводят на фоне внутривенного введения кристаллоидных растворов. Это позволяет в случае развития осложнений (анафилактичекий шок) немедленно начинать неотложную помощь.

Общим принципом использования с лечебной целью готовых антител (сывороток или иммуноглобулинов) является необходимость возможно раннего применения препарата, пока возбудитель и токсины не проникли в органы и ткани, где они будут уже недоступны антителам. Доза препарата должна соответствовать клинической форме инфекционного процесса и быть способной нейтрализовать не только циркулирующие в данный момент в крови антигены возбудителей заболевания, но и те, которые могут появиться в ней в промежуток времени между введениями препарата. Мало эффективна серотерапия (специфическая пассивная иммунотерапия ) при уже возникших осложнениях. Назначение ее после 4 – 5 дня болезни редко даёт выраженный положительный результат.

Даже при раннем использовании сыворотки и иммуноглобулины, направленные против бактериальных возбудителей, обладают относительно меньшей эффективностью по сравнению с антибиотиками, и в последнее время их использование имеет подсобный характер. При вирусных болезнях применение пассивной иммунизации имеет больше оснований.

В настоящее время отечественная лечебная практика располагает средствами пассивной иммунизации против дифтерии (противодифтерийная антитоксическая гетерологичная сыворотка), ботулизма (противоботулиническая антитоксическая лошадиная очищенная и сонцентрированная сыворотка типов А, В, С, Е и F), поливалентный противоботулинический гомологичный гамма-глобулин против ботулотоксина типа А, В и Е ), столбняка (противостолбнячная антитоксическая очищенная и концентрированная лошадиная сыворотка, а также человеческий противостолбнячный антитоксический гамма-глобулин ), сибирской язвы (противосибиреязвенный антитоксический лошадиный иммуноглобулин), стафилококковой инфекции (противостафилококковый антитоксический человеческий иммуноглобулин, противостафилококковая донорская плазма, противостафилококковый гетерогенный антитоксический лошадиный иммуноглобулин), лептоспироза (противолептоспирозный гетерологичный воловий гамма-глобулин к пяти возбудителям: grippotyphosa, icterohaemorrhagie, canicola, tarasovi), гриппа (противогриппозный донорский гамма-глобулин к вирусам гриппа типа А и В ), клещевого энцефалита (противоэнцефалитный лошадиный гамма-глобулин или человеческий иммуноглобулин). При ряде инфекций (полиомиелит, эпидемический паротит и др.) можно использовать нормальный человеческий иммуноглобулин, производимых из плацентарной, абортной и венозной крови людей. Существует также целый ряд зарубежных иммуноглобулинов (полиглобулин, пентаглобин, интраглобин, цитотект, гепатект и др.), используемых в основном при тяжелых бактериальных и вирусных инфекциях (вирусный гепатит, пересадка печени и др.).

Из возможных осложнений, наблюдающихся, в основном при использовании гетерологичных сывороток и гамма-глобулинов, нужно отметить анафилактический шок, возникающий через несколько секунд (минут) после введения препарата, и позднее осложнение (через 7 – 12 сут) – сывороточную болезнь. Реже могут возникать другие осложнения аллергического характера.

В целом, при использовании антибиотиков, химиопрепаратов и других средств воздействия на возбудителя и его токсины, возможен целый ряд осложнений. Наиболее часто встречаются аллергические, эндотоксические и дисбиотические осложнения.

Аллергические реакции (анафилактический шок и сывороточная болезнь) проявляются капилляротоксикозом, катаральными изменениями слизистых оболочек, дерматитом. Возможно поражение сердца (аллергический миокардит), легких (бронхит), печени (гепатит). Эндотоксические реакции возникают после введения массивных доз антибиотиков и связаны с усиленным распадом микробов и освобождением эндотоксина. Наконец, серьезной проблемой является дисбиоз, связанный с угнетением нормальной микрофлоры желудочно-кишечного тракта и избыточным размножением условно-патогенной и патогенной микрофлоры, включая стафилококки, некоторые грамотрицательные микробы и дрожжеподобные грибы рода Candida.

Для выведения из организма больного возбудителей и их токсинов в последние годы существенно расширились возможности использования различных методов эфферентной терапии инфекционных больных. Эфферентная терапия (от лат. efferens – выводить) направлена на выведение из организма токсических и балластных веществ (включая микробные токсины, бактерии и вирусы), метаболитов и осуществляется, главным образом, с помощью медико-технических систем. Одновременно возможно осуществление коррекции иммунологических нарушений (выведение избытка циркулирующих иммунных комплексов, аутоантител и др.), белкового и водно-электролитного состава крови. Эфферентная терапия реализуется инвазивными (экстракорпоральная гемокоррекция и фотомодификация крови) и неинвазивными (энтеросорбция) методами. Основными методиками гемокоррекции являются гемодиализ, гемосорбция, плазмаферез, плазмосорбция, лимфосорбция, перитонеальный диализ, ликворосорбция, гемоксигенация (как дополнение к другим операциям, в том числе с применением перфторуглеродов) и др.